文档库 最新最全的文档下载
当前位置:文档库 › 高等代数新题型综合

高等代数新题型综合

高等代数新题型综合
高等代数新题型综合

一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若

122

21

1211=a a a a ,则=1

6

030

32221

1211a a a a 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是

_________

6. 设A 为三阶可逆阵,???

?

? ??=-1230120011

A

,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是

二、选择题(本题总计10分,每小题2分)

2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)

A.8 B.8-

C.

3

4

D.3

4-

三、计算题(本题总计60分。1-3每小题8分,4-7每小题9分)

1. 计算n 阶行列式2

2221 =D 22222 22322

2

12

22-n

n 2

222

。 2.设A 为三阶矩阵,*

A 为A 的伴随矩阵,且2

1=

A ,求*

A A 2)3(1--. 3.求矩阵的逆

111211120A ?? ?=- ? ???

4. 讨论λ为何值时,非齐次线性方程组2

123123123

1x x x x x x x x x λλλλλ?++=?

++=??++=?

① 有唯一解; ②有无穷多解; ③无解。

5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。

???

??=++=+++=+++5

221322431

43214321x x x x x x x x x x x 6.已知向量组()T 32011=α、()T

53112=α、()T 13113-=α、()T 94214=α、()T

52115=α,求此向量组的一个最大无关组,并把其余

向量用该最大无关组线性表示. .

四、证明题(本题总计10分)

设η为b AX =()0≠b 的一个解,12,n r ξξξ- 为对应齐次线性方程组0=AX 的基础解系,证明12,,n r ξξξη- 线性无关。

(答案一)

一、填空题(本题总计20分,每小题 2 分)

1~15;2、3;3、CA ;4、()n b A R A R ==),(;5、2;6、???

?

? ??123012001;7、()n A R <;8、0;9、3;

10、1。.二、选择题(本题总计 10 分,每小题 2分 1、D ;2、A ;3、D ;4、C ;5、B

三、计算题(本题总计60分,1-3每小题8分,4-7他每小题9分)

1、

解:D

),,4,3(2n i r r i =-0

0021 00022 00122

30

22-n

20

022-n

------3分

122r r - 0

0001 00022 - 00122

-

30

22--n

20

022--n -------6分

)!2(2)2()3(21)2(1--=-?-????-?=n n n ----------8分 (此题的方法不唯一,可以酌情给分。)

解:(1)???

?

? ??---????? ??-????? ??--=-1111111112412131121111111111

2A AB ------1分

????? ??---????? ??=222222

222

602222464?

????

?

?=420004242------5分 (2)????? ??--????? ??--=-1711116102395113111311

2

2B A ?

???? ?

?-------=16128711

3084--------8分 3. 设A 为三阶矩阵,*

A 为A 的伴随矩阵,且21=

A ,求*A A 2)3(1--. 因*

A A =E E 2

1=A ,故411=

=-n A *A 3分 **A A A

211

==-A 5分 27164

1

34342322)3(3

1

-=??? ??-=-=-=--****

A A A A A 8分

4、解: ??

??? ??---=100111010011001001),(E A 1

31

2r r r r ++???

?

? ??---10111001101000100

1---3分 23r r +????? ??---11210001101000100

1)1()1()1(321-÷-÷-÷r r r ???

?? ??------112100011010001001---6分

故?

???? ??------=-11201100

11A -------8分 (利用*-=A A A 11

公式求得结果也正确。) 5、解;???

??

?

?=21

11

1

111

),(λλ

λλ

λb A 1

31231r r r r r r λ--?????

?

??------322

2111011011λλλλλλλλλ

23r r + ????

? ??-+-+---)1()1()1)(2(00110112

2

2

λλλλλλλλλλ---------3分

(1)唯一解:3),()(==b A R A R 21-≠≠λλ且 ------5分 (2)无穷多解:3),()(<=b A R A R 1=λ --------7分

(3)无解:),()(b A R A R ≠ 2-=λ --------9分 (利用其他方法求得结果也正确。)

6、解:????

?

??=522011113221111),(b A ?→?

r ?????

??---000003111052201--------3分 ???=--=++0022432

4

31x x x x x x 基础解系为 ?

?

???

?

? ??-=01121ξ,???????

??-=10122ξ-----6分 ???-=--=++3522432431x x x x x x 令043==x x ,得一特解:??

???

?

? ??-=0035η---7分 故原方程组的通解为: ????

??

? ??-+??????? ??-+??????? ??-=++101201120035212211k k k k ξξη,其中R k k ∈21,---9分(此题结果表示不唯一,只要正确

可以给分。)

7、解:特征方程2110430(2)(1)1

2A E λ

λλλλλ

---=

--=--- 从而1232,1λλλ=== (4

分) 当

12λ=时,由(2)0A E X -=得基础解系1(0,0,1)T ζ=,即对应于12λ=的全部特征向量为

11k ζ1(0)k ≠ (7分)

当231λλ==时,由()0A E X -=得基础解系2(1,2,1)T ζ=--,即对应于231λλ==的全部特征向量为

22k ζ2(0)k ≠

四、证明题(本题总计10 分)

证: 由12,n r ξξξ- 为对应齐次线性方程组0=AX 的基础解系,则12,n r ξξξ- 线性无关。(3分) 反证法:设12,,n r ξξξη- 线性相关,则η可由12,n r ξξξ- 线性表示,即:r r ξλξλη++= 11 (6分)

因齐次线性方程组解的线性组合还是齐次线性方程组解,故η必是0=AX 的解。这与已知条件η为

b AX =()0≠b 的一个解相矛盾。(9分). 有上可知,12,,n r ξξξη- 线性无关。(10分)

(试卷二)

一、填空题(本题总计 20 分,每小题 2 分) 1. 排列6573412的逆序数是 .

2.函数()f x = 211

1

2

x

x

x x x

---中3x 的系数是 . 3.设三阶方阵A 的行列式3A =,则*1()A -= A/3 . 6.三阶方阵A 的特征值为1,1-,2,则A = .

7. 设1

121021003A --?? ?=- ? ???

,则_________A *=.

9.设A 为n 阶方阵,且A =2 则1

*1()3

A A --+= .

三、计算题(本题总计 60 分,每小题 10 分)

2.已知矩阵方程AX A X =+,求矩阵X ,其中220213010A ?? ?

= ? ???

.

3. 设n 阶方阵A 满足0422

=--E A A ,证明3A E -可逆,并求1

(3)

A E --.

5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.

123421234,1,3,5.2012αααα????????

? ? ? ?

==== ? ? ? ? ? ? ? ?????????

四、证明题(本题总计 10 分,每小题 10 分)

设11b a =, 212b a a =+ , , 12r r b a a a =+++ , 且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.

(答案二)

一、填空题(本题总计 20 分,每小题2 分)

1. 17

2. -2 3.13A 4.()R A n <5.2λ=-6.-27.116

A -或12110216003-??

??-??????

8. 29、

21n

)(-10、2,0-==y x

2.求解AX A X =+,其中

220213010A ??

?

= ? ???

解:由AX A X =+得

()

1

X A E A -=- (3分)

()120220,203213011010A E A ?? ?

-= ? ?

-??

(6分) 1002260102

03001213r -??

?- ? ?--?? (8分)

所以 2262

03213X -??

?

=- ? ?--??

(10分) 3.解:利用由0422

=--E A A 可得:0))(3(=-+-E E A E A --------5分

即 E E A E A =+-))(3( ------7分 故E A 3-可逆且)()3(1

E A E A +=----------10分

解:1112321388()3219501234A b ?? ?-

?= ?---- ?---??1112

3012340011200000r ?? ?

--- ?

?

?

??

(2分)

100210

1010001120

00

r ?? ?-

? ? ??? (4分)则有 142434

2102x x x x x x +=??

-=??+=? (6分)

取4x 为自由未知量,令4x c =,则通解为:12

3421101210x x c x x -?????? ? ? ? ? ? ?=+ ? ? ?- ? ? ? ?

??????

c R ∈ (8

分)

对应齐次线性方程组的基础解系为:21

11-??

? ? ?- ???

(10分)

5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.

123421234,1,3,5.2012αααα???????? ? ? ? ?

==== ? ? ? ? ? ? ? ?????????

解:

()

1234αααα=212321232123413501110111201201110000??????

? ? ?--- ? ? ? ? ? ?---??????

1101201110000??

? ?

? ? ???

(2分) 12,αα为一个极大无关组. (4分) 设 31122x x ααα=+, 41122y y ααα=+

解得 12121

x x ?

=

???=?, 1211y y =??=?. (8分) 则有 31212ααα=+,

412ααα=+

四、证明题(本题总计 10分)若设,2121211,,,r r a a a b a a b a b +++=+== 且向量组r

a a a ,,,21 线性无关,证明向量组r

b b b ,,,21 线性无关. 证明:设存在12λ,λ,,λr R ∈ ,使得 1122r r b +b ++b =0λλλ 也即 1121212()(

)0r r a a a a a a λλλ+++++= 化简得 121

22

()

()

0r r r

r a a a λλλλλλ+++++++

+=

又因为12,,,r a a a 线性无关,则1220

00r r r λλλλλλ+++=??++=??

?

?=?

(8分)解得

120r λλλ==== 所以,12r

b , b ,, b 线性无关. 设向量组12,,,n ααα 中前1n -个向量线性相关,后1n -个向量线性无关,试证:

(1)1α可由向量组231,,,n ααα- 线性表示; (2)n α不能由向量组121,,,n ααα- 线性表示

2019最新高等数学(下册)期末考试试题(含答案)ABI

2019最新高等数学(下册)期末考试试题(含答 案) 一、解答题 1.建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为R == 设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程. 2.求下列线性微分方程满足所给初始条件的特解: πd 11(1)sin ,1d x y y x y x x x =+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -??????==+=-+?????? ?? 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x =--. 2311(2)(23)1,0x y x y y x ='+-== . 解:2 2323d 3ln x x x x c x --=--+? 2 2 223323d 23 +3ln d 3ln e e e d e d x x x x x x x x x x y x c x c -------??????∴==++???????? 2223311e .e e 22x x x x x c c ----????=?=++ ? ????? 以x =1,y =0代入上式,得12e c =-. 故所求特解为 2311e 22e x y x -??=- ??? . 3.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =??=?,t :0→π2

高等代数课程的基本内容与主要方法

2010年第2期 牡丹江教育学院学报 No 12,2010 (总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO N Serial N o 1120[收稿日期]2009-10-25 [作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。 [基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。 高等代数课程的基本内容与主要方法 戴立辉 林大华 吴霖芳 陈 翔 (闽江学院,福建 福州 350108) [摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。 [关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A [文章编号]1009-2323(2010)02-0146-03 高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。 通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。 一、多项式 一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。其中整除性是基础,因式分解是核心。 (一)基本内容 1.整除性理论)))整除,最大公因式,互素。 2.因式分解理论)))不可约多项式,典型分解式,重因式。 3.根的理论)))多项式函数,根的个数,根与系数的关系。 (二)主要方法 1.多项式除多项式的带余除法。 2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。 3.两多项式互素的判别法。 4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。 5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。 6.多项式根的判别法,多项式重根的判别法。 7.整系数多项式有理根的求法,艾森斯坦判断法。二、行列式 行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。 (一)基本内容 n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。 (二)主要方法 1.求一个排列的逆序数的方法。 2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。 3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。 4.克莱姆规则。三、线性方程组 /线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。 (一)基本内容 1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。 2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。 3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。 4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

高等数学下册期末考试题及答案

高等数学(下册)考试试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 2 2>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。 4、设曲线L 的参数方程表示为),() () (βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则=++?? ∑ ds y x )12 2( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数 ∑∞ =+1 )1(1 n n n 的和为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续; (B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(2 2→?+?y x 时,是无穷小; (D )0) ()(),(),(lim 2 2 00000 =?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分???Ω = zdV I 等于( ) (A )4 ? ??2 201 3 cos sin π π ???θdr r d d ;(B )???20 1 2 sin π π??θdr r d d ;

《高等代数一》知识点

高等代数知识点 第一章 多项式 1. 数域的定义、常见数域 2. (系数在)数域P 上的多项式的定义 3. 多项式相等 4. 多项式的次数、零多项式和零次多项式 5. 一元多项式的运算(加减乘)、运算律、多项式环、次数定理 6. 整除的定义:()()g x f x ?()()()f x g x h x =(证明,不整除则用反证法)、因式和倍式 7. 整除的性质: (1) 一些特殊的整除性(0,常数,自身) (2) 整除的反身性 (3) 整除的传递性 (4) 整除的组合性 8. 带余除法()()()()f x q x g x r x =+、综合除法 9. 整除的判定法则:余式为零 10. 整除不受数域的影响 11. 公因式及最大公因式的定义、()()(),f x g x ,()0,()()g x g x =,()0,00= 12. 最大公因式的求法(辗转相除法)P44:5 13. 最大公因式可以表示为()(),f x g x 的一个组合()()()()()d x u x f x v x g x =+——P45:8 14. 互素的定义 15. 互素的相关定理(证明)P45:12、14 (1) ()()(),11()()()()f x g x u x f x v x g x =?=+ (2) ()()()()()()()(),1,f x g x f x g x h x f x h x =? (3) ()()()()()()() ()()()121212,,,1,f x g x f x g x f x f x f x f x g x =? 16. 不可约多项式的定义(次数大于等于1) 17. 平凡因式、不可约等价于只有平凡因式 18. 可约性与数域有关 19. 不可约多项式的性质: (1) ()p x 不可约,则()cp x 也不可约 (2) ()p x 不可约,()[],f x P x ?∈ ()()|(),(),()1p x f x or f x p x ?= (3) ()p x 不可约,()()()p x f x g x ()()()|(),p x f x or p x g x ? 20. 标准分解式1212()()()()s r r r s f x cp x p x p x =

大一第二学期高数期末考试题(含答案)讲课稿

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 221L n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且→=0() lim x f x A x ,A 为常数. 求'() g x

高等代数知识点归纳.doc

A , i j , a i 1 A j1 a i 2 A j 2 L a in A jn 0, i j . A O A A O O B = B A B O B O A = A B O ( 1)mn A B B O a 1n O a 1n a 2n 1 a 2 n 1 ( 1 n ( n 1) 2 N N ) a n1 O a n1 O a 1n a 2 n K a n1 范德蒙德行列式: 1 1 L 1 x 1 x 2 L x n x 12 x 22 L x n 2 x i x j M M 1 j i n M x n 1 x n 1 L x n 1 1 2 n 代数余子式和余子式的关系: M ij ( 1)i j A ij A ij ( 1)i j M ij A 11 B 11 A 11 B 11 n A n 分块对角阵相乘: A , B AB , A 11 A 22 A n B 22 A 22 B 22 22 A B T A T C T 分块矩阵的转置矩阵: C D B T D T A 11 A 21 L A n1 A * A ij T A 12 A 22 L A n2 , A ij 为 A 中各个元素的代数余子式 . M M M A 1n A 2n L A nn AA * A * A A E , A * n 1 A 1 1 A , A . A * BA * 分块对角阵的伴随矩阵:

矩阵转置的性质:( A T )T A 矩阵可逆的性质:( A 1) 1 A ( A ) n 2 伴随矩阵的性质: A A n 若 r ( A) n r ( A )1 若 r ( A) n 1 0 若 r ( A) n 1 1 B 1 a1 A B A 1 ( AB)T B T A T A T A ( A 1 )T ( A T ) 1 ( A T ) ( A )T ( AB) 1 B 1 A 1 A 1 1 ( A 1 )k ( A k ) 1 A k A ( AB) B A A n 1 ( A 1 ) ( A ) 1 A ( A k ) ( A ) k A A AB A B A k A k AA A A A E (无条件恒成立) 1 1 1 1 a1 a1 a3 a2 1 a2 1 a2 a 2 a3 1 a3 1 a3 a1 矩阵的秩的性质: ① A O r ( A) ≥1; A O r ( A) 0 ;0≤ r ( A m n ) ≤ min( m, n) ④若A m n , B n s ,若r ( AB) 0 r ( A) r ( B) n 的列向量全部是 Ax 的解 B 0 ⑤r ( AB) ≤min r ( A), r (B) ⑥若 P 、Q可逆,则 r ( A) r (PA) r ( AQ) r ( PAQ) ;即:可逆矩阵不影响矩阵的秩 . Ax 只有零解 ⑦若 r ( A m n ) n r ( AB) r ( B) ;在矩阵乘法中有左消去律AB O B O A A B A C B C 若 r ( B n s ) n r ( AB) r ( B) 在矩阵乘法中有右消去律 . B 若 ( ) 与唯一的E r O 等价,称E r O 等价标准型 . ⑧为矩阵的 r A r A O O O O A ⑨r ( A B) ≤ r ( A) r (B) , max r ( A), r ( B) ≤r ( A, B)≤r ( A) r (B) ⑩ A O O A ( ) ( ) , A C ( ) ( ) r B B O r A r B r B r A r B O O

高数 下 期末考试试卷及答案

2017学年春季学期 《高等数学Ⅰ(二)》期末考试试卷(A ) 注意: 1、本试卷共 3 页; 2、考试时间110分钟; 3、姓名、学号必须写在指定地方 一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中. 1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0?=a b (D)?=0a b 2.极限2 2 22 00 1 lim()sin x y x y x y →→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =?的是( ). (A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数 (C )(,)f x y = (D )(,)e x y f x y += 4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ). (A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域2 2 :(1)(1)2D x y -+-≤,若1d 4D x y I σ+= ??,2D I σ=,3D I σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I << 6.设椭圆L : 13 42 2=+y x 的周长为l ,则22(34)d L x y s +=?( ). (A) l (B) l 3 (C) l 4 (D) l 12 7.设级数 ∑∞ =1 n n a 为交错级数,0()n a n →→+∞,则( ). (A)该级数收敛 (B)该级数发散 (C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数1n n a ∞ =∑发散,则级数21n n a ∞ =∑也发散 (B )若级数21n n a ∞ =∑发散,则级数1n n a ∞=∑也发散 (C )若级数 21 n n a ∞ =∑收敛,则级数 1 n n a ∞ =∑也收敛 (D )若级数 1 ||n n a ∞ =∑收敛,则级数2 1 n n a ∞ =∑也收敛 二、填空题(7个小题,每小题2分,共14分). 1.直线34260 30 x y z x y z a -+-=?? +-+=?与z 轴相交,则常数a 为 . 2.设(,)ln(),y f x y x x =+则(1,0)y f '=______ _____. 3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 . 4.设2 2 :2D x y x +≤,二重积分 ()d D x y σ-??= . 5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω +???在柱面坐标系下 的三次积分为 . 6.幂级数11 (1)!n n n x n ∞-=-∑ 的收敛域是 . 7.将函数2 1,0 ()1,0x f x x x ππ--<≤??=?+<≤?? 以2π为周期延拓后,其傅里叶级数在点x π=处收敛 于 . 三峡大学 试卷纸 教学班号 序号 学号 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………

关于高等代数的一些解题方法总结

高等代数论文 题目:有关二次型的总结 学院:理学院 专业:信息与计算科学 姓名:王颀 学号:11271014 2011年12月30日

学习高等代数,最好的方法是多进行总结分类,将知识系统化。下面那二次型这章来进行操作。 二次型的问题来源于解析几何: 平面解析 一次曲线:Ax + By + C = 0 (直线); 二次曲线:Ax 2 + Bxy + Cy 2 + Dx + Ey = F → 经平移 变换化,旋转变换化成为Ax 2+ By 2 = d (二次齐次多项式) → 可根据二次项系数确定曲线类型(椭圆、抛物线、双曲线等); 空间解析 一次曲面: Ax + By + Cz + D = 0 (平面); 二次曲面: (平移后不含一次项)→ Ax + By + Cz + 2Dxy + 2Exz + 2Fyz = G (18-19世纪上半期表示方法) → 通过方程变形,选定主轴方向为坐标轴,可化简为 a/x/2 + b/y/2 + c/z/2 = d/ → 据二次项系数符号确定二次曲面的分类 更一般的问题: 数域P 上含n 个变量x 1,x 2,…,x n 的二次齐次多项式如何化成平方和形式,即标准型问题,是18世纪中期提出的一个课题 了解了二次型的相关背景,我们进行对课本上二次型的内容进行总结。 二次型这章内容如下 5.1 二次型及其矩阵表示 5.2 二次型的标准形 5.3 惯性定理和规范形 5.4 实二次型的正定性 在这章的学习中,我们需要学会二次型的矩阵表示,求解矩阵的秩,通过线性替换将二次型化为标准型,了解矩阵合同,规范型,掌握正定二次型的判定方法。 例1.二次型??? ? ?????? ??=21 21213201),(),(x x x x x x f 的矩阵为( 3 )。 (1)、102 3?? ??? (2)、1 22 3?? ??? (3)、1113?? ??? (4)、1 113-?? ?-?? 注意对于任意一个二次型,都唯一确定这一个对称矩阵,这个对称矩阵才叫做二次型的矩阵。二次型的秩就是矩阵的秩。 例2.将二次型2212311213233(,,)246f x x x x x x x x x x x =+-++化为标准形,并写出所用的非退化线性替换。 解:用配方法: 2 2 2 2 12311232323233 (,,)[2(2)(2)](2)6f x x x x x x x x x x x x x x =+-+---++ 2221232233(2)103x x x x x x x =+--+- 2 2 2 2 12322333 (2)(1025)22x x x x x x x x =+---++

高等代数知识结构

高等代数知识结构

二、高等代数知识结构内容 (一)线性代数 工具:线性方程组 1 1 列时, a 性质1 性质2、一行得公因子可以提出来(或以一数乘行列式得一行就相当于用这个数乘此行列式。 性质3、如果某一行就是两组数得与,那么这个行列式就等于两个行列式得与,而这两个行列式除这一行以外与原行列式得对应行一样。 性质4、如果行列式中两行相同,那么行列式为零。(两行相同就就是说两行对应元素都相同) 性质5、如果行列式中两行成比例。那么行列式为零。 性质6、把一行得倍数加到另一行,行列式不变。 性质7、对换行列式中两行得位置,行列式反号。 2、矩阵: a、矩阵得秩:矩阵A中非零行得个数叫做矩阵得秩。 b、矩阵得运算 定义同型矩阵:指两个矩阵对应得行数相等、对应得列数相等得矩阵. 矩阵相等:设,, 若 , 称、 线性运算:, 加法: 数乘: 负矩阵: 减法: 矩阵得乘法定义:设 , 其中元素 得列数 = 得行数。 得行数 = 得行数; 得列数 = 得列数. 与得先后次序不能改变. (5)矩阵得初等变换 矩阵得等价变换形式主要有如下几种: 1)矩阵得i行(列)与j行(列)得位置互换; 2)用一个非零常数k乘矩阵得第i行(列)得每个元; 3)将矩阵得第j行(列)得所有元得k倍加到第i行(列)得对应元上去。 3、线性方程组 一般线性方程组、这里所指得一般线性方程组形式为

111122112 11222221122,,.n n n n s s s n n s ax ax ax b ax ax ax b ax ax ax b +++=??+++=??? ?+++=? L L L L L L ()i ()i 式中(1,2,,)i xi n =K 代表未知量,(1,2,,;1,2,,)i j a i s j n ==L L 称为方程组得系数,( 1,2,,)j b j n =L 称为常数项、 线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s bb b ====L 、 令 111212122212n n s s sn a a a a a a A a a a ????? ?=??????L L M M M M L ,12n x x X x ??????=??????M , 12s b b B b ?? ????=???? ?? M , 则()i 可用矩阵乘法表示为 A X B =,,,.m n n m A C X C B C ?∈∈∈ a 、线性方程组得解法 1)消元法 在初等代数里,我们已经学过用代入消元法与加减消元法解简单得二元、三元线性方程组、实际上,这个方法比用行列式解方程组更具有普遍性、但对于那些高元得线性方程组来说,消元法就是比较繁琐得,不易使用、 2)应用克莱姆法则 对于未知个数与方程个数相等得情形,我们有 定理1 如果含有n 个方程得n 元线性方程组 11112211 21122222 1122,,.n n n n n n n n n n ax ax ax b ax ax ax b ax ax ax b +++=??+++=?? ? ?+++=? L L L L L L ()i i 得系数矩阵

高等代数 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--??但. 3. 如果2A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ??=s I PAQ

正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11 (*)|| A A A -= . 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题 1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是(B ). (A) AB BA - (B) AB BA + (C) 2()AB (D) BAB (A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵. (A) T A A (B) T A A - (C) 2A (D) T A A - 3.以下结论不正确的是( C ).

高等数学(下)期末复习题(附答案)

《高等数学(二)》期末复习题 一、选择题 1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=?b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--. 2、在空间直角坐标系中,方程组2201x y z z ?+-=?=? 代表的图形为 ( ) (A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22 ()D I x y dxdy =+?? ,其中区域D 由222x y a +=所围成,则I =( ) (A) 2240 a d a rdr a π θπ=? ? (B) 2240 2a d a adr a π θπ=? ? (C) 2230 02 3 a d r dr a π θπ=? ? (D) 2240 01 2 a d r rdr a π θπ=? ? 4、 设的弧段为:2 3 0,1≤ ≤=y x L ,则=? L ds 6 ( ) (A )9 (B) 6 (C )3 (D) 2 3 5、级数 ∑∞ =-1 1 ) 1(n n n 的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑??=→?=n i i i i D f d y x f 1 0),(lim ),(σηξσλ中的λ代表的是( ) (A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分??-1 010 d ),(d x y y x f x 等于 ( ) (A )??-1010 d ),(d x x y x f y (B) ??-1010d ),(d y x y x f y (C) ? ?-x x y x f y 10 1 0d ),(d (D) ?? 1 010 d ),(d x y x f y 8、方程2 2 2z x y =+表示的二次曲面是 ( ) (A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面

高等数学下册期末考试试题附标准答案75561

高等数学(下册)期末考试试题 考试日期:2012年 院(系)别 班级 学号姓名 成绩 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上) 1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ?=-4. 2、设ln()z x xy =,则32 z x y ?=??-(1/y2). 3、曲面2 2 9x y z ++=在点(1,2,4)处的切平面方程为 2 (x-1)+4(y-2)+z-4=0. 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于,在x π=处收敛于. 5、设L 为连接(1,0) 与(0,1)两点的直线段,则 ()L x y ds +=?√2. ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分) 1、求曲线222 222 239 3x y z z x y ?++=??=+??在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及22 6z x y =--所围成的立体体积. 故所求的体积为V dv Ω =???22 2620 20 2(63)6d d dz d πρρθρπρρπ-==-=?? (7) 3、判定级数 1 1 (1) ln n n n n ∞ =+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z z x x y ?????.

高等代数 知识点

第一章 定义1 数域 定义2 数域P上的一元多项式 定义3 多项式相等 定义4 一元多项式环 带余除法 定义5 整除 定理1 r(x)=0 定义 6 最大公因式 定理 2 d(x)=u(x)f(x)+v(x)g(x); (f(x),g(x))= u(x)f(x)+v(x)g(x) 定义7 互素(f(x),g(x))=1 定理 3 u(x)f(x)+v(x)g(x)=1 定理4 f ,g互素且f|gh,则f|h 推论f1|g,f2|g,且f1,f2互素,则f1f2|g, 定义8 不可约多项式 定理5 一个不可约多项式p,能够表达成P|fg, 则p|f或者p|g 因式分解及其唯一性定理数域P上的一个多项式f,都可以唯一的分解成数域P上的一些不可约多项式的乘积。

第四章 1 转轴----坐标系(x1,y1,z1)到(x2,y2,z2)的坐标变换矩阵是A,如果令X1=(x1,y1,z1)的转置,X2=(x2,y2,z2)的转置,则X1=AX2。 2单位矩阵E=数量矩阵为kE= 如:AE=A,EA=A 3矩阵的加法,乘法,减法,结合律,交换律,零矩阵 4 秩(A+B)秩A+秩B 5 如:A=则矩阵的数量乘积 kA= 6 矩阵的转置记作A的转置为A’。例如A= 则A’= 注意:转置的性质(A’)’=A (A+B)’=A’+B’( AB)’=B’A’ (kA)’=kA’ 定理1 假设A B是数域P上的两个n n矩阵,那么|AB|=|A||B| 即矩阵乘积的行列式等于它的因子的行列式的乘积 推论1 |A1A2An|=|A 1||A 2||An|

定义6数域P上的一个n n矩阵A,如果|A|0,称为非退化的,否则称为退化的 推论2 假设A B是数域P上的两个n n矩阵,矩阵AB为退化的充要条件是A,B中至少有一个是退化的 定理2 假设A是数域P上的n m矩阵,B是数域P上的m s 矩阵,于是秩(AB)min[秩A,秩B]。即乘积的秩不 超过个因子的秩 推论3 如果A=A1A2An,那么秩A min(秩Ai) 定义7 如果有n级方阵B,使得AB=BA=E,则n级方阵A称为是可逆的 定义8 如果有n级方阵B,使得AB=BA=E,那么B就称为A的逆矩阵,记作A-1 定义9 假设A ij是矩阵A=中a ij的代数余子式,矩阵A*=称为A的伴随矩阵。 A*A=AA*=dE 其中d=|A| 定理3 矩阵A 可逆的充分必要条件是A是非退化的, 而A-1=A* 推论如果A,B可逆,那么AB与A'也可逆, 且(A’)-1=(A-1)’,(AB)-1=B-1A-1

(完整版)高等代数知识点归纳

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

高等代数行列式计算方法

第2章 n 级行列式的计算方法 2.1 定义法 对于含非零元素较少的行列式,用定义计算非常方便。由定义可知, n 级行列式共有!n 项,每一项的一般形式为 1212()12(1),n n r j j j j j nj a a a - 若每一项n 个元素的乘积中有零因子,则该 项的值为零。若零元素较多,则值为零的项就越多,此时找出那些不为零的项就可求出行列式的值。 例1 计算n 级行列式 000010002001000 0000 D n n =- 2.2 利用行列式的性质 例2 计算n 级行列式 11 12 121 2221 2n n n n n n x y x y x y x y x y x y D x y x y x y ------= --- . 解 当1n =时,11D x y =-; 当2n =时,1212()()D x x y y =--;

当3n ≥时,把第一行的1-倍分别加到第i 行,2,3,,,i n = 行列式的值不变,得 11 12121 2121 1 11 n n n n x y x y x y x x x x x x D x x x x x x ------= =--- 综上可得 111212(1)()()(2) 0(3)x y n D x x y y n n -=?? =--=??≥? 2.3 三角化法 由于上三角行列式或下三角行列式的值都等于主对角线上的元素的积。故可利用行列式的性质,采用“化零”的方法。充分利用行列式中元素间具有某些特点及行列式性质,化为三角形行列式。 例4 计算n 级行列式 n x b b b b x b b D b b x b b b b x = 解 这行列式的特点是每行和相等,根据行列式的性质,把

高等数学下期末考试题

《高等数学一(下)》期末考试模拟试题 一、选择题(本大题共5个小题,每小题4分,满分20分)。 1.函数()3x f x =的一个原函数是 13ln 3 x ( ) A .正确 B .不正确 2.定积分 1 1 430 d d x x x x >? ? ( ) A .正确 B .不正确 3.( )是2 sin x x 的一个原函数 ( ) A .2 2cos x - B . 2 2cos x C .2 1cos 2 x - D . 21 cos 2 x 4.设函数0 ()sin ,x f x tdt = ? 则()f x '= ( ) A .sin x B . sin x - C .cos x D . cos x - 5.微分方程x y e '=的通解是( ) ( ) A .x y Ce -= B . x y e C -=+ C .x y Ce = D . x y e C =+ 二、填空题(本大题共4个小题,每小题4分,满分16分)。 1. 21 9dx x =+? .

2. ()cos ,f x dx x C =-+?,则()f x '= . 3. 定积分 20 cos d 1sin x x x π =+? . 4.微分方程440y y y '''-+=的通解为 . 三、计算下列各题(本大题共5个小题,每小题8分,共40分) 1.求不定积分 cos 2cos sin x dx x x -?. 2.求不定积分 ? . 3.已知()f x 的一个原函数是2 x e -,求()xf x dx '?. 4.求定积分 4 x ? . 5.求定积分 1 x xe dx ? 四、(8分)求椭圆22 221x y a b +=绕x 轴旋转构成的旋转体的体积. 五、(8分)求方程2 2 (1)(1)0x y dx y x dy +-+=的通解. 六、(8分)求方程22 sin y y x x x '-=的通解.

高等数学下册期末考试试题及答案

考试日期:2012年 院(系)别 班级 学号 姓名 成绩 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上) 1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ?= . 2、设ln()z x xy =,则32 z x y ?=?? . 3、曲面2 2 9x y z ++=在点(1,2,4)处的切平面方程为 . 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 . 5、设L 为连接(1,0)与(0,1)两点的直线段,则 ()L x y ds +=? . ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分) 1、求曲线222 222 239 3x y z z x y ?++=??=+??在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及22 6z x y =--所围成的立体体积. 3、判定级数 1 1 (1)ln n n n n ∞ =+-∑是否收敛如果是收敛的,是绝对收敛还是条件收敛 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z z x x y ?????. 5、计算曲面积分 ,dS z ∑ ??其中∑是球面2222 x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分)

抛物面22 z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值. 四、 (本题满分10分) 计算曲线积分 (sin )(cos )x x L e y m dx e y mx dy -+-? , 其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周2 2 (0)x y ax a +=>. 五、(本题满分10分) 求幂级数13n n n x n ∞ =?∑的收敛域及和函数. 六、(本题满分10分) 计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑ = ++-??, 其中∑为曲面2 2 1(0)z x y z =--≥的上侧. 七、(本题满分6分) 设()f x 为连续函数,(0)f a =,2 22()[()]t F t z f x y z dv Ω= +++???,其中t Ω 是由曲面z = 与z = 3 () lim t F t t + →. ------------------------------------- 备注:①考试时间为2小时; ②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。 高等数学A(下册)期末考试试题【A 卷】

相关文档
相关文档 最新文档