文档库 最新最全的文档下载
当前位置:文档库 › 化工原理课程设计精馏塔详细版

化工原理课程设计精馏塔详细版

化工原理课程设计精馏塔详细版
化工原理课程设计精馏塔详细版

广西大学化学化工学院

化工原理课程设计任务书

专业:班级:

姓名:

学号:

设计时间:

设计题目:乙醇——水筛板精馏塔工艺设计

(取至南京某厂药用酒精生产现场)

设计条件: 1. 常压操作,P=1 atm(绝压)。

2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿

程热损失,进精馏塔时原料液温度降为90℃。

3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分

率)。

5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1——2.0)R

min

设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计

算和选型。

2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负

荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精流塔的设计说明书,包括设计结果汇总和对自己

设计的评价。

指导教师:时间

1设计任务

1.1 任务

1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒

精生产现场)

1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。

2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,

产量为40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%

(质量分率)。

5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶

采用全凝器,泡点回流。

6.操作回流比R=(1.1—2.0)

R。

min

1.1.3 设计任务

1.完成该精馏塔工艺设计,包括辅助设备及进出口接

管的计算和选型。

2.画出带控制点的工艺流程示意图,t-x-y相平衡

图,塔板负荷性能图,筛孔布置图以及塔的工艺条

件图。

3.写出该精馏塔的设计说明书,包括设计结果汇总

和对自己设计的评价。

1.2 设计方案论证及确定

1.2.1 生产时日

设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。

1.2.2 选择塔型

精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列

优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于清洗检修[2]。因此,本设计采用筛板塔比较合适。

1.2.3精馏方式

由设计要求知,本精馏塔为连续精馏方式。

1.2.4 操作压力

常压操作可减少因加压或减压操作所增加的增、减压设备费用和操作费用,提高经济效益, 在条件允许下常采用常压操作,因此本精馏设计选择在常压下操作。

1.2.5加热方式

在本物系中,水为难挥发液体,选用直接蒸汽加热,可节省再沸器。

1.2.6 工艺流程

原料槽中的原料液先由离心泵送到预热器预热,再进精馏塔,精馏塔塔顶蒸汽经全凝器冷凝,泡点回流,塔顶产品输送进乙醇贮存罐,而再沸器则加热釜液,塔釜产品流入釜液贮存罐。

2 筛板式精馏塔的工艺设计

2.1 精馏塔的工艺计算

2.1.1乙醇和水的汽液平衡组成

相对挥发度 的计算:

塔顶产品浓度为92.4%,因此,可近似看成纯乙醇溶液;同理,塔底浓度为0.02%可近似看成纯水溶液。所以,塔顶温度为乙醇沸点为78.3o C,塔底温度为水的沸点96.0o C

表2-1查[2]

书得:不同温度下乙醇和水的汽液平衡组成如下表所示:

根据以上数据画出以下乙醇-水的t-x(y)相平衡图,以及乙醇-水的x-y图

② 通过试差法求出塔顶、塔底、进料处、加料板的乙醇气相组成

17

.05

.95903891.017.00.895.95--=--进料板Y

0190

.05

.95900721.00190.00.895.95--=--进料板X

解得 X 进料板=0.0639 Y 进料板=0.355

③计算塔顶、塔底、进料处相对挥发度

计算公式为:Xa

Ya 1Xa 1Ya )()

(α--=

Y --=--8943.03.7815.788943.07815.015.7841.78

Y

=0.8292

8943

.015

.783.788943.07472.015.7841.78--=--顶X

X 顶=0.8094

17.05

.959617.005.95100--=--顶Y

0190

.05

.9596019.005.95100--=--底X

塔顶:α顶=1.123 塔底:α底=8.957 加料板:α加料板=8.063

④计算乙醇-水的平均相对挥发度:

乙醇-水的相对挥发度一般应用各温度下的挥发度的几何平均值或者算术平均值表示,

本设计中使用各温度下的几何平均值来表示。 α底顶αα=

=2.32

2.1.2全塔物料衡算

原料液中:设 A 组分-乙醇; B 组分-水

查[6]

书和[7]书得:

乙醇的摩尔质量:M 乙=46.07 kg/kmol

水的摩尔质量: M 水=18.02 kg/kmol

826.002

.18/0759.007.46/9241.007

.46/9241.0=+=

D x

0000782.002.18/98.007.46/02.007

.46/02.0=+=W x

因为入口的原料液是上游为95——96℃的饱和蒸汽冷却至90o

C 所得,因此,x F 的液相

组成就是95.5 o

C 的气相组成。经查表得,95.5 o

C 的饱和蒸汽进料液的摩尔组成为:

x F = 0.17

根据产量和所定工作时间,即日产40吨92.41%乙醇,每天24小时连续正常工作,则

原料处理量:D =

3

401040.51(/)24(0.826546.070.1718.02)kmol h ?=??+? 206.000000782

.0826.00000782.017.0=--=--=W D W F X X X X F D h kmol /196.650F =

h kmol D F W /156.14040.51196.650=-=-=

求q 值

由表2-1乙醇-水的平衡数据用内差法求得原料进入塔时{90℃时}的气液相组成为:x A =0.0639 y A

=0.3554

由 F F x = L x A + V y A

和 F = L + V 得 L = 125.26(kmol/h ),

∴q = L /F = 0.6360

则:q 线方程为 y =

11

F x q

x q q ---= -1.747x+0.467 塔顶和塔釜温度的确定

由t-x-y 图可知: 塔顶温度t D =78.30℃,塔底温度t w = 96.00℃,

t=1/2(t D

+t w

)=87.15℃

回流比和理论塔板的确定

用内差法求得进料板的气液相组成(90℃进料)

进料板位于平衡线上,则:{

355

.00639.0====进料板进料板Y y X x q q

618.10639

.0355.0355

.0826.0min =--=

--=

q

q q D x y y x R

R=1.5*R min =1.5*1.618=2.427

操作方程的确定

精馏段:h kmol D R L /318.9851.40427.2=?=?=

h kmol D R V /828.13851.40)1427.2()1(=?+=+=

提馏段:h kmol qF L L /387.223650.196*636.0318.98=+=+='

h kmol F q V V /247.67650.196*)636.01(828.138)1(=--=--='

、精镏段操作方程:b

292.0708.0826.0*828

.13851

.40828.138318.981+=+=+=

+n D n n x Xn x V D x V L y 提镏段操作线方程:

000182.0322.30000782.0*247

.67140.156247.67387.2231-=-='-''=

+n w n n x Xn x V W x V L y 相平衡方程为:

n

n

n n n n n y y y y Xn x x y 32.132.2)1()1(1-=--=?-+=

αααα

板效率及实际塔板数的确定

(1)求αμL

平均温度 t ?=87.15 (0C)下

μA = 0.449mpas μB =0.3281 mpas 则μL =x F μA +(1-x F )μB

=0.17×0.449+(1-0.17)×0.3281 =0.3487mpas

αμL =2.35×0.3487=0.8194 (2)求板效率E T

由αμL =0.8194,由《化工原理(下)》164页图10-20查得 E T =51%,偏低;实际工作E T 有所提高,因此取E T =70%. (3)求实际板数

由 T

T E N N 1

-=

得 精馏段实际板数: N 精 =21/0.70=30(块) 提馏段实际板数: N 提 =7/0.70=10(块) 全塔板数: N=40块

2.2 精馏段物性衡算

2.2.1物料衡算

操作压强 P = 101.325

温度 t m t D =78.300C t F =900C t w =96.000C

∴t m =

015.842

90

30.782=+=+F D t t C 定性组成

(1)塔顶 y 1= X D = 0.826 查平衡曲线得到 x 1=0.810 (2)进料 y f =0.355 x f =0.0639 平均分子量 m M 查附表知: (1)塔顶:M

VDm

=0.826?46.07+(1-0.826)?18.02=41.189(mol g /) M

LDm

=0.810?46.07+(1-0.810)?18.02=40.730(mol g /) (2)进料: M

VFm

=0.355?46.07+(1-0.355)?18.02=27.978(mol g /)M

LFm

=0.0639?46.07+(1-0.0639)?18.02=19.810(mol g /)

平均分子量M

Vm =

2VFm VDm M M +=2978

.27189.41+=34.584(mol g /)

M

Lm =

2LFM LDM M M +=2

810

.19730.40+=30.270(mol g /)

平均密度m ρ 由[6]

书和[7]书:1/LM ρ=a A /LA ρ+a B /LB ρ A 为乙醇 B 为水

塔顶:在78.30℃下:LA ρ=744.289(3/m kg ) LB ρ=972.870(3/m kg )

LMD

ρ1

=0.9241/744.289+(1-0.9241)/972.870 则LMD ρ=758.716(3/m kg )

进料:在进料温度90℃下:

LA ρ=729.9(3/m kg ) LB ρ=965.3(3/m kg )

a A =

149.002

.18)0639.01(07.460639.007

.460639.0=?-+??

LMF

ρ1

=

3

.965)

149.01(9.729149.0-+

则LMF ρ=921.0(3/m kg ) 即精馏段的平均液相密度LM ρ=(758.716+921.0)/2=839.858(3/m kg ) 平均气相密度VM ρ=

RT

PM VM =

=+??)15.27315.84(314.86

.34325.101 1.180(3/m kg ) 液体平均粘度LM μ

液相平均粘度依下式计算:μμi i lm x lg lg ∑=

(1)塔顶: 查[6]

书和[7]书中图表求得在78.3℃下:A 是乙醇,B 是水

DA μ=0.504s mpa ?; DB μ=0.367s mpa ?; lg LD μ=0.826?lg(0.504)+0.174?lg(0.367) 则LD μ=0.477 (s mpa ?)

(2)进料: 在90℃下:

FA μ=0.428 s mpa ?; FB μ=0.3165s mpa ?。

lg lF μ=0.0639?lg(0.428)+(1-0.0639)?lg(0.3165) 则lF μ=0.3226 (s mpa ?)

lm μ=(LD μ+lF μ)/2=(0.477+0.3226)=0.3998

液体表面张力m σ

(1)塔顶: 查[6]

书和[7]书求得在78.30℃下:

447.18=A σm mN / 974.62=b σm mN /

194.26974.62174.0447.18826.0=?+?=MD σ(m mN /)

(2)进料: 在90℃下:

29.17'=A σm mN / 79.60'=b σ m mN /

01.5879.60)0639.01(29.170639.0=?-+?=MF σ(m mN /) 则 m σ=(MD σ+MF σ)/2=(26.194+58.01)/2=42.102(m mN /) 2.2.2气液体积流率的计算

由已知条件V =138.828h kmol / L =98.318h kmol / 得

S V =

VM VMvm ρ3600=180.136006

.34828.138??=1.131 (s m /3)

S L =

LM LM LM ρ3600=001.0858

.839360027

.303.101=??(s m /3)

2.3 塔和塔板主要工艺尺寸计算

2.3.1 塔板横截面的布置计算 塔径D 的计算

参考化工原理下表10-1,取板间距H T =0.45m =L h 0.06m

H T -L h =0.45-0.06=0.39m

两相流动参数计算如下

LV F =

Vs Ls v

L

ρρ ∴LV F =(

131

.1001.0)(180.1858.839)2/1=0.0236

参考化工原理下图10-42筛板的泛点关联得:C 20f =0.083

f C =2.02020??

?

??σf C =0963.020102.42083.02

.0=?

??

??

u =f 5

.02

.02020???

? ??-?

?

?

??V V L f C ρ

ρρσ=5

.0180.1180.1858.8390963.0??? ??-=2.567(s m /) 本物系不易起泡,取泛点百分率为80%,可求出设计气速

n u '= 0.8*u =f 0.8?2.567=2.053(s m /) m u

Vs D 838.0053

.214.3131

.144=??==

根据塔设备系列化规格,将D '圆整到D=1m 作为初选塔径,因此 重新校核流速u

)(441.111785.0131

.12m u n =??=

实际泛点百分率为

561.0567

.2441.1==f n u u 222

785.01785.04

m D A T =?==

π

塔板详细设计 选用单溢流,弓形降液管,不设进口堰。

因为弓形降液管具有较大容积,又能充分利用塔面积,且单溢流液体流径长,塔板效率高,结构简单,广泛用于直径小于2.2米的塔中。[4] (1)溢流装置

取堰长w l =0.7D=0.7×1=0.7m, 选择平流溢流堰 出口堰高=w h OW L h h -,已取L h =0.06

W h 0=2.84×310-E 3

/2)(

w

h l L 由5

.2)

(w h

l L =3.544/7.05

.2=8.644

查化工原理下图10-48得:E=1.025

W h 0=2.84×310-×1.025(3.544/0.7)2/3=0.00859m

=w h OW L h h -=0.06-0.00859=0.0514m 取=w h 0.06是符合的。

∴h L =h W +h OW =0.06+0.00859=0.0686m

修正后h L 对u n 影响不大,顾塔径计算不用修正. (2) 降液管宽度W d 与降液管面积A f 由w l /D=0.7查化工原理下图10-40得:

149.0=D W d

088.0=T f A A ∴ d W =0.149×1=0.149m 220691.014

088.0m A f =??

(3) 降液管底隙高度h O

因物系较清洁,不会有脏物堵塞降液管底隙,取液体通过降液管底隙速度

o

u '=0.07m/s. m u l Ls h o w o 024.007

.070.0001

.0=?='?=

过小,取h o =0.04m (4)塔板布置 取安定区宽度W S =0.08m, 取边缘区宽度W C =0.04m

()()m W W D x S d 271.008.0149.021

2=+-=--=

m W D

r C 46.004.05.02

=-=-=

??

? ?

?

+-=-r x r x r x A a 1222sin

1802π )(468.046.0271.0sin 46.0180271.046.0271.022

1222m =??? ?

??+-=-π (3)筛板数n 与开孔率? 初取mm d o 6=,

0.3=o

d t

呈正三角形排列 t =3.0*6=18MM 依下式计算塔板上的开孔率?

=

?101.0)

6/18(907.0/907.0220===)(d t Aa Ao =10.1% 则每层塔板上的开孔面积o A 为: 20473.0468.0101.0m A A a o =?==?

n =

4

200d A π=孔1674006.0*14.34

0473.02

=? 2.3.2 筛板能校塔流体力学校核 1板压降的校核

(1)干板压降相当的液柱高度 取板厚mm 3=δ,

5.00

.60

.3==

o

d δ

,查化工原理下图10-45得: C o =0.74

911.230473

.0131.100===

A V u s m/s

h c =g 21*????

??????

??L

v o

o

C u ρρ2

=0.051???

? ??????

??L v o o C

u ρρ2

=m 0748.0858.839180.174.0911.23051.02

=??

? ????? ??液柱

(2)气体穿过板上液层压降相当的液柱高度h l )/(606.10691

.01785.0131

.12

s m A A Vs u f T a =-?=-=

相应的气体动能因子 745.1180.1606.15.05.0=?==ρa a u F 查化工原理下图10-46得:β=0.58

m h h h h L ow w l 0398.00686.058.0)(=?==+=ββ液柱 (3)克服液体表面张力压降相当的液柱高度h σ

h δ=

m d L 00341.0106858.83981.910102.42481.943

3

0=?????=--ρσ ∴气体通过筛板压降相当的液柱高度即板压降: h p =h c +h L +h σ

m h p 1180.000341.00398.00748.0=++=

本设计系常压操作,对板压降本身无特殊要求。 液面落差

对于筛板塔,液面落差很小,且本设计的塔径和液流量均不大,故可忽略液面落差的影响。 1 液沫夹带量的校核 m h h L f 1715.05.2*0686.05.2==?=

Kg Kg h H u e f T a v /0369.01715.045.0606.110102.42107.5107.52.3362

.36

液=??? ??-??=???

? ??-?=---σ汽 0.0369<0.1Kg 液/Kg 气

故在设计负荷下不会发生过量液沫夹带。

3 溢流液泛条件的校核

溢流管中的当量清液高度可由式2

153.0???

?

??=∑o w S f h l L h 计算液体沿筛板流动时,阻

力损失很小,其液面落差?可忽略不计,即 0=?。

已知: 06.0=L h 86m , 0=?,

故降液管内的当量清液高度:

m h h h H f f L d 2403.01715.0000195.000686.0=+++=++?+=∑

乙醇-水混合液不易起泡,取φ=0.6,则降液管内泡沫层高度:

m H H d

fd 5.0400.06

.02403

.0<==

=

φ

不会产生溢流液泛。

液体在降液管内停留时间的校核

降液管内的停留时间 s L H A s

d f 60.16001

.02403

.00691.0=?=

=

τ>5s

不会产生严重的气泡夹带。

4 漏液点的校核 漏液点的孔速为:

v L L o ow h h C u ρρσ/)13.00056.0(4.4-+=

=018.1/858.839)00341.00686.013.00056.0(74.04.4?-?+? =9.155(m/s ) 筛孔气速o u =

)/(911.230473

.0131.10s m A V S == 塔板稳定系数 ()0.2~5.1612.2155

.9911

.23>===

ow o u u k 表明具有足够的操作弹性。

根据以上各项流体力学验算,可认为设计的塔径及各工艺尺寸合适。

m h l L h o w S f 000195.004.07.0001.0153.0153.02

2

=??? ???=???

? ??=∑

2.4 精馏段塔板负荷性能图

注:以下计算常用3/23)(

1084.2w h ow l L E h -?=得)(~s ow L h ,E ~~5.2w

h l L

经验计算, 取E=1.0 则3/23

)7.0(0.11084.2h ow

L h ???=-=Ls Ls 8462.07.036001084.23/23=??

? ????-2/3

2.4.1 过量液沫夹带线

依下式计算: v e =

σ6107.5-????

? ??-f T

a h H u 3.2

(2-1) 式中:a u =

f T S

A A V -=0691

.01785.02

-?S V =S V 397.1 h

f

=5.2(h w +h ow )=8462.00502.0(5.2+)3

/2s L =3

/21155.2126.0s

L +

令v e =0.1kg 液/kg 气,由σ= 42.1?103-m N /, H T =0.45m

代入式(2-1)得:0.1=3

610102.42107.5--??(3/21155.20.12645.0397.1s

L Vs --)2

.3 整理得: 3

/293.1183.1s

s L V -=

在操作范围中,任取几个s L 值,根据上式算出s V 值列于表2-3中:

2.4.2溢流液泛线

由式]2[T w d

H h H ≤-φ

和 f f ow w d h h h h H ∑++?++= 联立求解。

(1)σh h h h L c p ++=

c h =051.0(

o o c u )2(L v ρρ)=051.0(o o s A C V )2L

v ρρ

=051.0(0473.074.0?s V )2(858

.83918.1)=2

0585.0s V

l h =β(h w +h ow )=3

/23

/24908.00291.0)8462.00502.0(58.0s

s

L L +=+

故 h p =20578.0s V +3

/24908.00291.0s L ++00409.0

=20578.0s V +3

/24908.0s L + 0.0332

(2)h

d

=0.153(

0h l L w s )2=153.0(04

.07.0?s L )2=2

2.195s L 则: =+)0502.045.0(6.02

0578.0s V +3

/24908.0s L +0.0332+0.0502+0.84623

/2s

L +195.22

s L

整理得: s V 2=3.19-23.13L 3

/2s -3377.16L 2s (2-18)

取若干s L 值依(2-18)式计算s V 值,见表2-4,作出液泛线 (参见2-1图)

表2-4

2.4.3液相上限线

取液体在降液管中停留时间为5秒。 则 s L man =

τ

f

T A H =

5

0691

.045.0?=00622.0(s m /3)

在s

L man

=00622.0s m /3处作出垂线得液相负荷上限线,可知在图上

它为与气体流量 V S 无关的垂直线。(参见图2-1) 2.4.4漏液线(气相负荷下限线)

由 h L =h w +h ow =0.0502+0.8462s

L 3

/2,

u ow =

o

s A V min

.代入下式]2[求漏液点气速式: u ow =4.4C o v L L h h ρρδ/]13.00056.0[-+

o

s A V min =4.4?0.74180.1858.839]00341.08462.00502.013.00056.0[3

/2-++)(s L

将A o =0.0476 代入上式并整理得 =Ao

Vs min

3.2563/2292.78206.6Ls +

V s

m in

=0.1543

/2292.78026.6s

L +

据上式,取若干个s L 值计算相应s V 值,见表2-5,作漏液线 (参见图2-1)

2.4.5液相下限线 取平顶堰堰上液层高度h

ow

=6mm ,作为液相负荷下限条件,低于此下限,则不能

保证板上液流分布均匀。 则

h ow =2.84?103-E (

w

h

l L )3/2 0.006=2.84?103-?1.01(

7

.03600Ls )3/2

整理得: 4min ,1088.5-?=s L s m /3

在图上4min ,1088.5-?=s L s m /3处作垂线即为液相下限线。(见图2-2) 2.4.6 操作线

P 点为操作点,其坐标为:

s m V Vs h

/131.13600

3==

, s m Ls /001.03= OP 为操作线,OP 与液泛线的交点对应气相负荷为V s,ma ;n ,与漏夜线的交点对应气相负荷为V s,min .可知:

精馏段的操作弹性=

,max ,min

1.70

4.360.39

s s V V =

= 图2-1

2.5 提馏段物性衡算

2.5.1物料衡算

操作压强 P = 101.325

温度 t m t D =78.300C t F =900C t w =96.00C

∴t m =

932

90

962=+=+tf tw 0C 定性组成

(1)塔斧 W x =0.OOO0782查相平衡图得到:W y =0.0014 (2)进料 y f =0.355 x f =0.0639

平均分子量 m M 查附表知: (1)塔斧:M

VWm

=0.0014?46.07+(1-0.0014)?18.02=18.059(mol g /) M

LWm

=0.0001?46.07+(1-0.0001)?18.02=18.02(mol g /) (2)进料: M

VFm

=0.355?46.07+(1-0.355)?18.02=27.99(mol g /)

M LFm

=0.0639?46.07+(1-0.0639)?18.02=19.81(mol g /)平均分子量

M

Vm =

2VFm VWm M M +=18.0527.99

2+=23.02(mol g /)

M

Lm =

2LFM LWM M M +=18.0219.81

2

+=18.92(mol g /)

平均密度m ρ 由式]3[:1/LM ρ=a A /LA ρ+a B /LB ρ

塔斧:查[6]

书和[7]书在96.0℃下:A 乙醇 B 水

LA ρ=722.38(3/m kg ) LB ρ=961.16(3/m kg )

LMW

ρ1

=0.0000782/722.38+(1-0.0000782)/961.16 则

LMW ρ=961.135(3/m kg ) 进料:在进料温度90℃下:

LA ρ=729.9(3/m kg ) LB ρ=965.3(3/m kg )

a A =

149.002

.18)0639.01(07.460639.007

.460639.0=?-+??

LMF

ρ1

=

3

.965)

149.01(9.729149.0-+

则LMF ρ=921.0(3/m kg ) 即提馏段的平均液相密度LM ρ=(961.135+921.0)/2=941.067(3/m kg ) 平均气相密度VM ρ=

RT PM VM =)

(15.27393*314.802

.23*325.101+=0.766(3/m kg ) 液体表面张力m σ

(1)塔釜: 查[6]

书和[7]书得在96.0℃下:

σ=16.688m mN / B σ=58.99m mN /

σmv=0.0014*16.688+(1-0.0014)*58.99=58.930(m mN /)

(2) 进料: 查[6]

和[7]书得在90℃下:

29.17'=A σm mN / 79.60'=b σ m mN /

01.5879.60)0639.01(29.170639.0=?-+?=MF σ(m mN /) 则 m σ=(Mw σ+MF σ)/2=(58.930+58.01)/2=58.47(m mN /) 液体平均粘度LM μ (3)塔釜:

查[6]

书和[7]书得在96.0℃下:

WA μ=0.391s mpa ?; WB μ=0.2977s mpa ?; lg LW μ=0.0014?lg(0.391)+0.9986?lg(0.2977) 则LW μ=0.295(s mpa ?)

(4)进料:

查[6]

书和[7]书得在90℃下:

FA μ=0.388 s mpa ?; FB μ=0.290s mpa ?。

lg lF μ=0.0639?lg(0.388)+(1-0.0639)?lg(0.290) 则lF μ=0.3226 (s mpa ?)

LM μ= (LW μ+LF μ)/2 = (0.295+0.3226)/2 =0.309(s mpa ?)

2.5.2气液体积流率的计算

由已知条件V =70.11h kmol / L =226.6h kmol / 得

Vs =

VM

Mvm V ρ3600=

=766.0*360002

.23*387.670.562 (s m /3)

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工原理课程设计报告

课程设计任务书 设计题目:水冷却环己酮换热器的设计 一、设计条件 1、处理能力53万吨/年 2、设备型式列管式换热器 3、操作条件 a.环己酮:入口温度120℃,出口温度为43℃ b.冷却介质:自来水,入口温度20℃,出口温度40℃ c.允许压强降:不大于1×105Pa d.每年按330天计,每天24小时连续运行 4、设计项目 a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 b.换热器的工艺计算:确定换热器的传热面积。 c.换热器的主要结构尺寸设计。 d.主要辅助设备选型。 e.绘制换热器总装配图。 二、设计说明书的内容 1、目录; 2、设计题目及原始数据(任务书); 3、论述换热器总体结构(换热器型式、主要结构)的选择; 4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直 径等); 5、设计结果概要(主要设备尺寸、衡算结果等); 6、主体设备设计计算及说明;

目录 1. 前言 (1) 1.换热器简介 (1) 2. 列管式换热器分类: (2) 2. 设计方案简介 (2) 2.1换热器的选择 (2) 2.2流程的选择 (2) 2.3物性数据 (2) 3. 工艺计算 (3) 3.1试算 (3) 3.1.1计算传热量 (3) 3.1.2计算冷却水流量 (3) 3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3) 3.1.5假设K值 (4) 3.1.6估算面积 (5) 3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5) 3.1.9计算总管数 (5) 3.1.10管子的排列 (6) 3.1.11折流板 (6) 3.2核算传热系数 (6) 3.2.1计算管程传热系数 (6) 3.2.2计算壳程传热系数 (7) 3.2.3污垢热阻 (7) 3.2.4计算总传热系数 (7) 3.3核算传热面积 (7) 3.3.1计算估计传热面积 (7) 3.3.2计算实际传热面积 (8) 3.4压降计算 (8) 3.4.1计算管程压降 (8) 3.4.2计算壳程压降 (8) 3.5附件 (9) 3.5.1接管 (9) 3.5.2拉杆 (9) 4. 换热器结果一览总表 (10) 5. 设计结果概要 (11) 1.结果 (11) 6. 致谢 (12)

化工原理课程设计精馏塔详细版

广西大学化学化工学院 化工原理课程设计任务书 专业:班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 6.操作回流比R=(1.1——2.0)R 。 min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间

1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大

化工原理课程设计最终版

青岛科技大学 化工课程设计 设计题目:乙醇-正丙醇溶液连续板式精馏塔的设计指导教师: 学生姓名: 化工学院—化学工程与工艺专业135班 日期:

目录一设计任务书 二塔板的工艺设计 (一)设计方案的确定 (二)精馏塔设计模拟 (三)塔板工艺尺寸计算 1)塔径 2)溢流装置 3)塔板分布、浮阀数目与排列 (四)塔板的流体力学计算 1)气相通过浮阀塔板的压强降2)淹塔 3)雾沫夹带 (五)塔板负荷性能图 1)雾沫夹带线 2)液泛线 3)液相负荷上限 4)漏液线 5)液相负荷上限 (六)塔工艺数据汇总表格 三塔的附属设备的设计 (一)换热器的选择 1)预热器 2)再沸器的换热器 3)冷凝器的换热器 (二)泵的选择 四塔的内部工艺结构 (一)塔顶 (二)进口 ①塔顶回流进口 ②中段回流进口 (三)人孔 (四)塔底 ①塔底空间 ②塔底出口 五带控制点工艺流程图 六主体设备图 七附件 (一)带控制点工艺流程图 (二)主体设备图 八符号表 九讨论 十主要参考资料

一设计任务书 【设计任务】设计一板式精馏塔,用以完成乙醇-正丙醇溶液的分离任务 【设计依据】如表一 表一 【设计内容】 1)塔板的选择; 2)流程的选择与叙述; 3)精馏塔塔高、塔径与塔构件设计; 4)预热器、再沸器热负荷及加热蒸汽消耗量,冷凝器热负荷及冷却水用量,泵的选择; 5)带控制点工艺流程图及主体设备图。 二塔板的工艺设计 (一)设计方案的确定 本设计的任务是分离乙醇—正丙醇混合液,对于二元混合物的分离,应采用连续精馏流程,运用Aspen软件做出乙醇—正丙醇的T-x-y 相图,如图一:

图一:乙醇—正丙醇的T-x-y相图 由图一可得乙醇—正丙醇的质量分数比为0.5:0.5时,其泡点温度是84.40o C (二)精馏塔设计模拟 1.初步模拟过程 运用Aspen软件精馏塔Columns模块中DSTWU模型进行初步模拟,并不断进行调试,模拟过程及结果如下:

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

最新《化工原理课程设计-年产量112000吨NaOH水溶液蒸发装置的设计》

湖南师范大学 《化工原理》课程设计说明书 设计题目年产量112000吨NaOH水溶液蒸发装置的设计学生姓名周鹏 指导老师罗大志 学院树达学院 学号 200721180135 专业班级 07制药工程1班 完成时间2009年10月

《化工原理》课程设计成绩评定栏 评定基元评审要素评审内涵 满 分指导教师 实评分 评阅教师 实评分 设计说明书,40% 格式规范 设计说明书是否符 合规定的格式要求 5 内容完整 设计说明书是否包 含所有规定的内容 5 设计方案 方案是否合理及符 合选定题目的要求 10 工艺计算 过程 工艺计算过程是否 正确、完整和规范 20 设计图纸, 40% 图纸规范图纸是否符合规范 5 标注清晰标注是否清晰明了 5 与设计吻合 图纸是否与设计计 算的结果完全一致 10 图纸质量 设计图纸的整体质 量的全面评价 20 平时成绩, 10% 上课出勤上课出勤考核 5 制图出勤制图出勤考核 5 答辩成绩, 10% 内容表述答辩表述是否清楚 5 回答问题回答问题是否正确 5 100 综合成绩成绩等级

指导教师评阅教师答辩小组负责人 (签名) (签名) (签名) 年月日年月日年月日 说明: 评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60) 目录 1前言 (1) 2设计任务 (2) 2.1设计任务 (2) 2.2操作条件 (2) 3设计条件及设计方案说明 (3) 4物性数据及相关计算 (3) 4.1估计各效蒸发量和完成液浓度 (3) 4.2估计各效蒸发溶液的沸点和有效总温度差 (4) 4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (7) 4.4蒸发器传热面积的估算 (8) 4.5有效温度的再分配 (8) 4.6重复上述计算步骤 (9) 4.7计算结果列表 (12) 5主体设备计算和说明 (12) 5.1加热管的选择和管数的初步估计 (13) 5.2循环管的选择 (13) 5.3加热管的直径以及加热管数目的确定 (13)

化工原理课程设计报告(换热器)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

化工原理课程设计乙醇水精馏塔设计

化工原理课程设计 题目:乙醇水精馏筛板塔设计 设计时间:2010、12、20-2011、1、6

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4)

1概述 (5) 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2设计说明书 (7) 2.1 流程简介 (7) 2.2 工艺参数选择 (8) 3 工艺计算 (9) 3.1物料衡算 (9) 3.2理论塔板数的计算 (10) 3.2.1 查找各体系的汽液相平衡数据 (10) 如表3-1 (10) 3.2.2 q线方程 (9) 3.2.3 平衡线 (11) 3.2.4 回流比 (12) 3.2.5 操作线方程 (12) 3.2.6 理论板数的计算 (12) 3.3 实际塔板数的计算 (13) 3.3.1全塔效率ET (13) 3.3.2 实际板数NE (14) 4塔的结构计算 (15) 4.1混合组分的平均物性参数的计算 (15) 4.1.1平均分子量的计算 (15) 4.1.2 平均密度的计算 (16) 4.2塔高的计算 (17) 4.3塔径的计算 (17) 4.3.1 初步计算塔径 (17) 4.3.2 塔径的圆整 (18) 4.4塔板结构参数的确定 (19) 4.4.1溢流装置的设计 (19) 4.4.2塔盘布置(如图4-4) (20) 4.4.3 筛孔数及排列并计算开孔率 (21) 4.4.4 筛口气速和筛孔数的计算 (21) 5 精馏塔的流体力学性能验算 (22) 5.1 分别核算精馏段、提留段是否能通过流体力学验算 (22) 5.1.1液沫夹带校核 (22) 5.2.2塔板阻力校核 (23) 5.2.3溢流液泛条件的校核 (25) 5.2.4 液体在降液管内停留时间的校核 (26) 5.2.5 漏液限校核 (26) 5.2 分别作精馏段、提留段负荷性能图 (26) 5.3 塔结构数据汇总 (29) 6 塔的总体结构 (30) 7 辅助设备的选择 (31) 7.1塔顶冷凝器的选择 (31) 7.2塔底再沸器的选择 (32) 7.3管道设计与选择 (33)

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

天津大学化工原理课程设计

《化工原理》课程设计报告 真空蒸发制盐系统卤水分效预热器设计 学院天津大学化工学院 专业化学工程与工艺 班级 学号 姓名 指导教师

化工流体传热课程设计任务书 专业化学工程与工艺班级姓名学号(编号) (一)设计题目:真空蒸发制盐系统卤水分效预热器设计 (二)设计任务及条件 1、蒸发系统流程及有关条件见附图。 2、系统生产能力:40 万吨/年。 3、有效生产时间:300天/年。 4、设计内容:Ⅱ效预热器(组)第 3 台预热器的设计。 5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。 6、卤水为易结垢工质,卤水流速不得低于0.5m/s。 7、换热管直径选为Φ38×3mm。 (三)设计项目 1、由物料衡算确定卤水流量。 2、假设K计算传热面积。 3、确定预热器的台数及工艺结构尺寸。 4、核算总传热系数。 5、核算压降。 6、确定预热器附件。 7、设计评述。 (四)设计要求 1、根据设计任务要求编制详细设计说明书。 2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制 按下列条目编制并装订:(统一采用A4纸,左装订) (1)标题页,参阅文献1附录一。 (2)设计任务书。 (3)目录。 (4)说明书正文 设计简介:设计背景,目的,意义。 由物料衡算确定卤水流量。 假设K计算传热面积。 确定预热器的台数及工艺结构尺寸。 核算总传热系数。 核算压降。 确定预热器附件。 设计结果概要或设计一览表。 设计评述。 (5)主要符号说明。 (6)参考文献。 (7)预热器设计条件图。 主要参考文献 1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 2002 2. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 2007 3. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 2001 4. 机械制图 自学内容: 参考文献1,第一章、第三章及附录一、三; 参考文献2,第五~七章; 参考文献3,第1、3、4、5、11部分。

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

化工原理课程设计

化工原理课程设计设计题目:空气中丙酮的回收工艺操作 学院:化学化工学院 班级:化工 0902 姓名(学号):侯祥祥 3091303039 朱晓燕 3091303036 熊甜甜 3091303035 周利芬 3091303033 指导教师:吴才玉 2012年01月

化工原理课程设计 目录 一、前言 (3) 二、设计内容 (5) (一)设计对象 (5) (二)工艺路线设计 (5) 1.路线选择 (5) 2.流程示意图 (8) 3.流程说明 (9) (三)工艺的设计计算 (10) 1.物料衡算 (10) 2.热量衡算 (12) (四)设备的设计计算 (21) 1.主要参数 (21) 2.直径 (21) 3.附加条件 (21) (五)设备示意图 (23) 三、总结体会 (24) 四、参考文献 (29) 五、附录 (31)

江苏大学化学化工学院

化工原理课程设计 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设 计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使 用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画 出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还 要考虑生产上的安全性、经济合理性。 在化工生产中,常常需要进行混合物的分离以达到提纯或回收有用组分的 目的,吸收和精馏两个单元操作为此提供了重要措施。气体吸收过程是化工生 产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在 特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。精馏是常用 的液体混合物的分离操作,它利用液体混合物中各组分挥发度的不同并借助于 多次部分汽化和部分冷凝,从而达到轻重组分分离的目的。 塔设备是一种重要的单元操作设备,其作用实现气—液相或液—液相之间 的充分接触,从而达到相际间进行传质及传热的过程。它广泛用于吸收、精馏、萃取等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来 越受到关注和重视。塔设备一般分为连续接触式和阶跃接触式两大类。前者的 代表是填料塔,后者的代表则为板式塔。在本次课程设计中,吸收操作采用的 是填料塔,而精馏操作采用的则为板式塔。 填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀 材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。过去,填料塔 多推荐用于0.6~0.7m以下的塔径。近年来,随着高效新型填料和其他高性能 塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究, 使填料塔技术得到了迅速发展。 筛板塔是1932年提出的,当时主要用于酿造,其优点是结构简单,制造 维修方便,造价低,气体压降小,板上液面落差较小,相同条件下生产能力高 于浮阀塔,塔板效率接近浮阀塔。其缺点是稳定操作范围窄,小孔径筛板易堵塞,不适宜处理粘性大的、脏的和带固体粒子的料液。但设计良好的筛板塔仍

化工原理课程设计模板123

目录 第一章前言 (1) 1.1 精馏及精馏流 (1) 1.2 精馏的分类 (2) 1.3精馏操作的特点 (2) 1.3.1沸点升高 (2) 1.3.2物料的工艺特性 (2) 1.3.3节约能源 (2) 1.4 相关符号说明 (4) 1.5相关物性参数 (6) 1.5.1苯和甲苯的物理参数............................... .6 第二章设计任务书. (7) 第三章设计内容 (8) 3.1设计方案的确定及工艺流程的说明 (8) 3.2全塔的物料衡算 (8) 3.2.1原料液及塔顶底产品含苯的摩尔分率 (8) 3.2.2原料液及塔顶底产品的平均摩尔质量 (8) 3.2.3料液及塔顶底产品的摩尔流率 (9) 3.3塔板数的确定 (9) 3.3.1平衡曲线的绘制 (9) 3.4塔的精馏段操作工艺条件及计算 (12) 3.4.1平均压强p m (12) 12 3.4.2平均温度t m..................................... M (13) 3.4.3平均分子量 m 3.4.4 液体的平均粘度和液相平均表面张力 (14) 3.5 精馏塔的塔体工艺尺寸计算 (16)

3.5.1塔径的计算 (16) 3.5.2精馏塔有效高度的计算 (18) 3.6塔板工艺结构尺寸的设计与计算 (18) 3.6.1溢流装置计算 (18) 3.6.2塔板布置 (19) 3.6.3气象通过塔板压降的计算 (21) 3.7塔板负荷性能图 ................................ ..23 3.7.1漏液线 (23) 3.7.2 雾沫夹带线 (23) 3.7.3 液相负荷下限线 (24) 3.7.4 液相负荷上限线 (24) 3.7.5液泛线 (25) 第四章附属设备的选型及计算 (27) 4.1接管——进料管 (27) 4.2法兰 (27) 4.3筒体与封头 (27) 4.4 人孔 (28) 4.5热量衡算 (28) 参考文献 (31) 课程设计心得 (32)

相关文档
相关文档 最新文档