文档库 最新最全的文档下载
当前位置:文档库 › DSP课设——正弦波发生器

DSP课设——正弦波发生器

摘要

数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。数字信号处理器(DSP)是在模拟信号变成数字信号以后进行高速实时处理的专用处理器。DSP 芯片以其独特的结构和快速实现各种数字信号处理算法的突出优点,发展十分迅速。本文中提出的基于DSP技术设计的正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。

在本文中简要的概括了一种基于TMS320C5402实现正弦信号发生器的设计原理与方法,介绍了所设计的正弦信号发生器硬件电路结构和软件程序流程图。结合DSP硬件特性,通过使用泰勒级数展开法得到设定参数的正弦波形输出,达到设计目的。该信号发生器弥补了通常信号发生器模式固定,波形不可编程的缺点,其具有实时性强,波形精度高,可方便调节频率和幅度、稳定性好等优点。

关键字:DSP;TMS320C5402;信号发生器;正弦信号;

目录

1 设计目的及要求 (1)

1.1 设计目的 (1)

1.2 设计内容及要求 (1)

2设计方案及原理 (2)

2.1总体方案 (2)

2.2设计原理 (2)

3系统硬件设计 (3)

3.1系统硬件框图 (3)

3.2 TMS320C5402简介 (4)

3.3 D/A转换部分设计 (5)

4系统软件设计及调试 (6)

4.1变频调幅的方法 (6)

4.2程序设计 (6)

4.3程序编写 (8)

4.4 CCS简介 (14)

4.5运行步骤及结果 (15)

5 设计心得 (19)

参考文献 (20)

附录设计程序 (21)

1 设计目的及要求

1.1 设计目的

DSP课程设计是对《数字信号处理》、《DSP原理及应用》等课程的较全面练习和训练,是实践教学中的一个重要环节。

通过本次课程设计,综合运用数字信号处理、DSP技术课程以及其他有关先修课程的理论和生产实际知识去分析和解决具体问题,并使所学知识得到进一步巩固、深化和发展。初步培养学生对工程设计的独立工作能力,掌握电子系统设计的一般方法。通过课程设计完成基本技能的训练,如查阅设计资料和手册、程序的设计、调试等,提高学生分析问题、解决问题的能力。

主要是:

1.掌握DSP程序设计的方法以及软件的调试等;

2.掌握CCS软件的使用;

3.学会用CCS仿真模拟DSP芯片,通过CCS软件平台上应用C54X汇编

语言来实现正弦信号发生装置;

4.掌握控制TLC320AIC23的输出信号,使该信号通过滤波放大后输出,

并在点阵液晶中大致显示出幅频图的基本方法和步骤。

1.2 设计内容及要求

本题目DSP通过计算法或者查表的方法,得到正弦信号,然后将数据传递给TLC320AIC23,控制TLC320AIC23的输出信号,该信号通过滤波放大后输出,并在点阵液晶中大致显示出幅频图。

1.DSP与TLC320AIC23接口电路的原理图绘制;

2.DSP控制TLC320AIC23的程序编写与调试;

3.TLC320AIC23进行D/A的转换,实现信号的输出;

4.控制点阵液晶,实现绘图功能,将幅频图显示出来;

5.按要求编写课程设计报告书,正确、完整的阐述设计和实验结果。

6.在报告中绘制程序的流程图,并文字说明。

2设计方案及原理

2.1总体方案

总体思想是:

(1)基于DSP 的特点,本设计采用TMS320C5402这款DSP 芯片作为

正弦信号发生器的核心控制芯片。

(2)用泰勒级数展开法实现正弦波信号。

(3)利用点阵的绘图功能将正弦波的波形显示出来。

2.2设计原理

泰勒级数展开法是一种有效的方法,与查表法和查表结合插值法相比,该方

法需要的存储单元很少,而且精度更高。

我们知道一个角度为x 的正弦和余弦函数,都可以展开为泰勒级数,且其前

五项可以看为:

???

? ?????? ?????? ?????? ???-?-?-?-≈-+-+-=981761541321!9!7!5!3)sin(22229753x x x x x x x x x x x (1) ???

? ?????? ?????? ???-?-?--≈-+-+-=87165143121!8!6!4!21)cos(22228642x x x x x x x x x (2) 程序的设计思想是这样的,正弦波的波形可以看为由无数点组成,这些点与

x 轴的每一个角度值相对应,那么我们可以利用DSP 处理器处理大量重复计算的

优势来计算,x 轴每一点对应的y 轴的值(在x 轴取360个点来进行逼近),由于

程序的编制采用小数形式,其弧度大于1的正弦值得不到,这就对正弦波的产生

造成了障碍。可由于正弦波的特殊的对称形式给程序的编制找到了出口。)4

sin(π的弧度为0.7854<1,即4~0π 之间的任意正弦、余弦值可以利用汇编程序得到N

又可以利用公式:αααcos sin 22sin =得到2~0π之间的正弦值。而2

~0π之间的正弦曲线与ππ

~2之间的正弦曲线通过2π=x 这条轴左右对称,那么就可以得到ππ~2的正弦值,而π~0的正弦曲线的相反数通过π=x 这条轴与π

π2~

左右对称。这样ππ2~的正弦值也得到了。一个周期内完整的正弦波就得到了。

正弦波产生的流程图如下:

图2.1 正弦波产生的流程图 3系统硬件设计

3.1系统硬件框图

该正弦信号发生器的硬件结构框图如图3.1所示,主要由TMS320C5402芯

片,D /A 转换器,独立键盘等几部分组成。

得到正弦值 得到余弦值 sin2α=2sin αcos α

得到2~0π的值 得到ππ~2的值 得到ππ2~的值 得到π2~0的值

循环输出数据

图3.1 DSP 系统硬件框图

3.2 TMS320C5402简介

本次设计中采用的是TI 公司性价比良好的TMS320C5402芯片,这款芯片

它采用修正的增强型哈佛结构,程序和数据分开存放,内部具有8组高度并行总

线,一组程序总线、3组数据总线和4组地址总线,从而保证完成并行指令操作。

40位算术逻辑单元ALU 以及17位×17位并行乘法器与40位专用加法器相连,

可用于非流水线式单周期乘法/累加运算。双地址生成器,包括8个辅助寄存器

和2个辅助寄存器算术运算单元RARU ,使得周期定点指令的执行时间达到

100MIPS 。

片上集成有192K 存储空间:64K 字程序空间、64K 数据空间、64K 字I/O

空间,它具有23条外部程序地址线,可寻址1M 字的外部程序空间,因此增设

了额外的存储映射程序技术扩展寄存器XPC ,以及6条扩展程序空间寻址指令,

整个程序空间分成16页。同时可寻址64K 外部数据空间、64K 外部I/O 空间。

RAM 包括两种类型,一是只可以一次寻址的SARAM ,二是可以两次寻址的

DARAM 。此外,还有数据存储器0页映射的25个特殊功能寄存器。

同时,该芯片还有高度专业化的指令系统,具有功耗小、高度并行等优点。

此外,其支持C 语言和汇编语言混合编程,高效的流水线操作和灵活的寻址方

式使其适合高速实时信号处理。

T M S 320C 5402 电源 模块 时钟 模块 仿真 接口 D/A 转换器

独立 键盘 复位 电路

3.3 D/A转换部分设计

McBSP(Multi-channel Buffered Serial)即多通道缓冲串口,包括一个数据通道和一个控制通道。数据通道通过DX引脚发送数据、DR引脚接收数据。控制通道完成的任务包括内部时钟的产生、帧同步信号的产生、对这些信号的控制以及多通路的选择等。此外还负责产生中断信号送往CPU,产生同步事件信号通知DMA控制器。控制信息则是通过控制通道以时钟和帧同步信号的形式传送。

数模转换芯片采用TLC320AD50C其是TI公司出品的一块将A/D和D/A转换功能集成在一起的接口芯片,采用∑-△技术在低系统成本下实现高精度的A/D和D/A转换。该芯片由一对16 bit同步串行转换通道组成,在A/D之后有一个抽取滤波器,在D/A之前有一个插值滤波器。

TLC320AD50C可以与TMS320C5402 DSP的McBSP无缝串行连接进行数据采集、存储和处理。SCLK输出时钟,M/S主从模式选择(H为高电平,为主机模式),DIN串行输入,DOUT串行输出,FS帧同步信号输出,对应DSP的各相应引脚。McBSP和D/A芯片的硬件电路连接如图3.2所示。

图3.2 McBSP和D/A芯片的硬件连接图

4系统软件设计及调试

4.1变频调幅的方法

(1)16位定时模块

C5402 DSP 芯片片内定时器是一个软件可编程的计数器,它包括以下3个16

位存储器映射寄存器:定时寄存器TIM ,定时器周期寄存器PRD 和定时控制寄

存器TCR 。片内定时器中,4位的预定标计数器PSC 和16位定时计数器TIM 组

成一个20位的计数器,定时器每个CPU 时钟周期减1,每次计数器减到0将产生

定时器中断(TINT),同时PSC 和TIM 重新载入预设的值。定时器中断TINT 的

速率可由式(3)计算。

())

1(111+?+?=??=

PRD TDDR t v u t TINTrate c c (3) (2)变频调幅实现方法 调幅的实现相对简单,只需在所有采样值前乘以一个调幅因子A1就可得到

相应的正弦波幅值A 。而调频的实现必须依赖于C5402芯片内的16位定时器。

DSP 芯片不断向D /A 芯片送出采样值,然后经模数转换后可在示波器上观察到

连续的正弦波形。先预设要产生的正弦信号频率为f ,根据正弦波生成原理可知,

向D /A 送出采样值的间隔,即向D /A 送值的周期T1=T /N(N 为采样点数),

那么向D /A 送值的频率为f1=N×f ,即向D /A 送值的频率是期待产生的正弦

波信号频率的N 倍。

因此,为了能够调节产生正弦信号的频率,实际上改变向D /A 芯片送值的

频率即可。而改变向D /A 芯片送值的频率就得用到C5402芯片内的16位定时器。

根据式(3)将需要的频率值换算成PRD 内的初值和TDDR 的初值,并将该初值分

别置入PRD 和TDDR 。

4.2程序设计

软件系统采用模块化结构设计,主要包括DSP 主程序,中断程序和键盘驱动

程序。DSP 系统的主程序流程图如图4.1所示。先对系统进行检测、配置McBSP

端口等,开启中断调用键盘驱动程序读取键值并处理,进入中断后根据相应的键

值设置相应的信号参数,并通过D /A 转换,产生不同幅度、频率的正弦波。

开始

复位监测

系统初始化

配置MCBSP端口

开中断

调用键盘驱动程序

键值读取及处理

中断处理

图4.1 主程序流程图

中断程序流程图如图4.2所示。首先根据键盘的按键值选择已设置好的正弦波的幅度与频率,然后按具体步骤执行便可以得到所需正弦波。

图4.2 中断程序流程

在CCS 开发环境下编程,通过仿真器将程序下载到DSP 芯片中,选择不同的按

键产生相应的中断,即可在示波器中观察到相应的正弦波形。所产生的波形具有

精度高,幅值稳定的特点,同时具有较强的实时性和灵活性。

4.3程序编写

1、正弦波的实现

⑴计算一个角度的正弦值

利用泰勒级数的展开式,可计算一个角度x 的正弦值,并采用子程序的调用

方式。在调用前先在数据存储器d_xs 单元中存放x 的弧度值,计算结果存放在

d_sinx 单元中。

实现计算一个角度的正弦值的程序片段如下:

sinx:

.def d_xs,d_sinx 中断1的入口地

关中断

根据不同的按键值设

置相应的信号参数

计算0~90度 计算91~179度

计算180~359度

大送给DAC 循环输出

返回中断

调用子程序

sin θ和cos θ

.data

table_s .word 01C7H ;C1=1/(8*9)

.word 030BH ;C2=1/(6*7)

.word 0666H ;C3=1/(4*5)

.word 1556H ;C4=1/(2*3)

d_coef_s .usect "coef_s",4

d_xs .usect "sin_vars",1

d_squr_xs .usect "sin_vars",1

d_temp_s .usect "sin_vars",1

d_sinx .usect "sin_vars",1

d_l_s .usect "sin_vars",1

.text

SSBX FRCT

STM #d_coef_s,AR5 ;move coeffs table_s

RPT #3

MVPD #table_s,*AR5+

STM #d_coef_s,AR3

STM #d_xs,AR2

STM #d_l_s,AR4

ST #7FFFH,d_l_s

SQUR *AR2+,A ;A=x^2

ST A,*AR2 ;(AR2)=x^2

||LD *AR4,B ;B=1

MASR *AR2+,*AR3+,B,A ;A=1-x^2/72,T=x^2

MPYA A ;A=T*A=x^2(1-x^2/72)

STH A,*AR2 ;(d_temp)=x^2(1-x^2/72)

MASR *AR2-,*AR3+,B,A

;A=1-x^2/42(1-x^2/72);T=x^2(1-x^2/72) MPYA *AR2+ ;B=x^2(1-x^2/42(1-x^2/72))

ST B,*AR2

;(d_temp)=x^2(1-x^2/42(1-x^2/72)) ||LD *AR4,B ;B=1

MASR *AR2-,*AR3+,B,A

;A=1-x^2/20(1-x^2/42(1-x^2/72)) MPYA *AR2+

;B=x^2(1-x^2/20(1-x^2/42(1-x^2/72))) ST B,*AR2 ;(d_temp)=B

||LD *AR4,B ;B=1

MASR *AR2-,*AR3,B,A

;A=1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72))) MPYA d_xs ;B=x(1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72))))

STH B,d_sinx ;sin(theta)

RET

⑵计算一个角度的余弦值

利用余弦函数展开的泰勒级数的前五项计算一个角度的余弦值,可采用子程序的调用方式来实现。调用前先将x弧度值放在数据存储器d_xc单元中,计算结果存放在d_cosx单元中。

实现计算一个角度的余弦值的程序片段如下:

cosx:

.def d_xc,d_cosx

d_coef_c .usect "coef_c",4

.data

table_c .word 0249H ;C1=1/(7*8)

.word 0444H ;C2=1/(5*6)

.word 0AABH ;C3=1/(3*4)

.word 4000H ;C4=1/2

d_xc .usect "cos_vars",1

d_squr_xc .usect "cos_vars",1

d_temp_c .usect "cos_vars",1

d_cosx .usect "cos_vars",1

c_l_c .usect "cos_vars",1

.text

SSBX FRCT

STM #d_coef_c,AR5 ;move coeffs table_c

RPT #3

MVPD #table_c,*AR5+

STM #d_coef_c,AR3

STM #d_xc,AR2

STM #c_l_c,AR4

ST #7FFFH,c_l_c

SQUR *AR2+,A ;A=x^2

ST A,*AR2 ;(AR2)=x^2

||LD *AR4,B ;B=1

MASR *AR2+,*AR3+,B,A ;A=1-x^2/56,T=x^2

MPYA A ;A=T*A=x^2(1-x^2/56)

STH A,*AR2 ;(d_temp)=x^2(1-x^2/56)

MASR *AR2-,*AR3+,B,A ;A=1-x^2/30(1-x^2/56)

;T=x^2(1-x^2/56)

MPYA *AR2+ ;B=x^2(1-x^2/30(1-x^2/56))

ST B,*AR2

;(d_temp)=x^2(1-x^2/30(1-x^2/56)) ||LD *AR4,B ;B=1

MASR *AR2-,*AR3+,B,A

;A=1-x^2/12(1-x^2/30(1-x^2/56)) SFTA A,-1,A ;-1/2

NEG A

MPYA *AR2+ ;B=-x^2/2(1-x^2/12(1-x^2/30(1-x^2/56)))

MAR *AR2+

RETD

ADD *AR4,16,B ;B=-x^2/2(1-x^2/12(1-x^2/30(1-x^2/56)))

STH B,*AR2 ;cos(theta)

RET

⑶正弦波的实现

利用计算一个角度的正弦值和余弦值程序可实现正弦波。其实现步骤如下:

第一步:利用sin_start 和cos_start 子程序,计算 45~0(间隔为 5.0)的

正弦和余弦值;

第二步:利用sin(2x)=2sin(x)cos(x)公式,计算 90~0的正弦值(间隔为 1);

第三步:通过复制,获得 359~0的正弦值;

第四步:将 359~0的正弦值重复从PA 口输出,便可得到正弦波。

产生正弦波的程序片段如下:

.mmregs

.def start

.def d_xs,d_sinx,d_xc,d_cosx,sinx,cosx

sin_x: .usect "sin_x",360

STACK: .usect "STACK",10H

k_theta .set 286 ;theta=pi/360(0.5deg)

start:

.text

STM #STACK+10H,SP

STM k_theta,AR0

STM 0,AR1

STM #sin_x,AR6

STM #90,BRC

RPTB loop1-1

LDM AR1,A

LD #d_xs,DP

STL A,@d_xs

STL A,@d_xc

CALL sinx ;d_sinx=sin(x)

CALL cosx ;d_cosx=cos(x)

LD #d_sinx,DP

LD @d_sinx,16,A ;A=sin(x)

MPYA @d_cosx ;B=sin(x)*cos(x)

STH B,1,*AR6+ ;AR6----2*sin(x)

MAR *AR1+0

loop1: STM #sin_x+89, AR7 ;sin91(deg.)-sin179(deg.)

STM #88,BRC

RPTB loop2-1

LD *AR7-,A

STL A,*AR6+

loop2: STM #179,BRC ;sin180(deg.)-sin359(deg.)

STM #sin_x,AR7

RPTB loop3-1

LD *AR7+,A

NEG A

STL A,*AR6+

loop3: STM #sin_x,AR6 ;generate sin wave

STM #1,AR0

STM #360,BK

B loop3

*.cmd文件描述输入文件和输出文件,说明系统中有哪些可用存储器、程序段、堆栈及复位向量和中断向量等安排在什么地方。其中MEMORY段就是用来规定目标存储器的模型,通过这条指令,可以定义系统中所包含的各种形式的存储器,以及它们占据的地址范围;SECTIONS段说明如何将输入段组合成输出段以及在可执行文件中定义输出段、规定输出段在存储器中的位置等。产生正弦波链接命令文件的程序片段如下:

MEMORY

{

PAGE 0:

EPROM: org=0E000H, len=1000H

VECS: org=0FF80H, len=0080H

PAGE 1:

SPRAM: org=0060H, len=0020H

DARAM1: org=0080H, len=0010H

DARAM2: org=0090H, len=0010H

DARAM3: org=0200H, len=0200H

}

SECTIONS

{

.text :> EPROM PAGE 0

.data :> EPROM PAGE 0

STACK :> SPRAM PAGE 1

sin_vars :> DARAM1 PAGE 1

coef_s :> DARAM1 PAGE 1

cos_vars :> DARAM2 PAGE 1

coef_c :> DARAM2 PAGE 1

sin_x : align(512) {} > DARAM3 PAGE 1

.vectors :> VECS PAGE 0

}

在实际应用中,正弦波是通过D/A口输出的。选择每个正弦周期中的样点数、改变每个样点之间的延迟,就能够产生不同频率的波形,也可以利用软件改变波形的幅度以及起始相位。

4.4 CCS简介

本实验是基于CCS开发环境的。CCS是TI公司推出的为开发TMS320系列DSP软件的集成开发环境,是目前使用最为广泛的DSP开发软件之一。它提供了环境配置、源文件编译、编译连接、程序调试、跟踪分析等环节,并把软、硬件开发工具集成在一起,使程序的编写、汇编、程序的软硬件仿真和调试等开发工作在统一的环境中进行,从而加速软件开发进程。CCS有两种工作模式:(1)硬件在线编程模式:可以实时运行在DSP芯片上,与硬件开发板相结合在线编

程和调试应用程序;(2)软件仿真器模式:可以脱离DSP芯片,在PC机上模拟DSP的指令集和工作机制,主要用于前期算法实现和调试。本次设计采取硬件在线编程模式。如图4.3所示

图4.3 DSP试验箱

4.5运行步骤及结果

1 运行步骤

本次课程设计采用CCS中的C5000。

第一步,软件中芯片的选择,如图所示,选择C5416 XDS510 Emulator。

图4.4 set up CCS界面

第二步,仿真器C5416 XDS510 Emulator的设置

图4.5 仿真器XDS510的设置

第三步,设置完成后,退出set up C5000后可自动打开CCS5000,选择Pr oject下的new,新建工程,如图4.5所示;将DspregDefine.h文件添加到工程sinl cd_54下的Include文件中,rts.lib文件添加到Libraries文件中,将程序的命令链接文件(.CMD),中断向量表(VECTORS.ASM)添加到Source文件下,如图4. 6所示。

图4.6 新建工程

图4.7 添加文件到工程

第四步对编写完成的程序进行编译,结果如图4.8所示

图4.8 编译成功

第五步汇编无误后就可将程序下载到实验箱中,点击如图所示命令运.out 文件,再点击run即可在实验箱中得到结果。

图4.9下载程序到实验箱

2仿真结果及分析

图4.10仿真结果

在CCS集成环境中实现正弦波能够起到防止干扰的作用,同时也大大地减小了波形的线性失真。同时我们也能从中看出CCS能够精确地对各个角度进行计算得出相应的正弦值,幅度和频率易于调节,波形也较为稳定,抗干扰能力较强。最重要的是这种设计方案简单可行,新颖实用,具有很高的实践和推广价值。分析:

通过不断的发现错误、改正错误和调试,最终得到了所希望的图象,即正弦波信号。

Proteus与cadence实训(高频正弦波振荡器)

课程设计任务书 学生姓名:专业班级:电子1001班指导教师:韩屏工作单位:信息工程学院题目: 高频晶体正弦波振荡器 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个高频晶体正弦波振荡器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus 软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对高频晶体正弦波振荡器电路进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 目录 (1) 摘要 (2) 一、工作原理说明 (3) 1.1、振荡器概念 (3) 1.2、静态工作点的确定 (3) 1.3、振荡器的起振检查 (4) 二、电路设计 (5) 2.1、正弦波振荡器的设计 (5) 2.2、电路功能的仿真 (7) 2.3、Cadence部分原理图设计 (9) 三、PCB版图设计 (15) 四、心得体会 (18) 五、参考文献 (19)

基于DSP的正弦波信号发生器

第1章 绪论 1.1 DSP 简介 数字信号处理(Digital Signal Processing ,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。 图一是数字信号处理系统的简化框图。此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。其中抗混叠滤波器的作用是将输入信号 x(t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。随后,信号经采样和A/D 转换后,变成数字信号x(n)。数字信号处理器对x(n)进行处理,得到输出数字信号 y(n),经D/A 转换器变成模拟信号。此信号经低通滤波器,滤除不需要的高频分量, 最后输出平滑的模拟信号y(t)。 图1.1 数字信号处理系统简化框图 数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。 抗混叠 滤波器 A/D 数字信号处理 D/A 低通滤波器 x(n) y(n) x(t) y(t)

方波-三角波-正弦波函数信号发生器讲解

课程设计说明书 课程设计名称:电子课程设计 课程设计题目:设计制作一个产生方波-三角波-正弦波函数转换器学院名称:信息工程学院 专业:电子信息科学与技术班级:xxxxxxxx 学号:xxxxxxx 姓名:xxxxx 评分:教师:xxxxxx 20 13 年10 月15 日

电子课程设计 课程设计任务书 20 13 -20 14 学年 第 1 学期 第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

摘要 当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。 信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和 教学实验等领域。常用超低频信号发生器的输出只有几种固定的波形,有方波、 三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器 设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、 三角波和方波的电路便是可取的路径之一,不用依靠单片机。 本系统本课题将介绍由LM324集成电路组成的方波——三角波——正弦波 函数信号发生器的设计方法,了解多功能函数信号发生器的功能及特点,进一步 掌握波形参数的测试方法,制作这种低频的函数信号发生器成本较低,适合学生 学习电子技术测量使用。制作时只需要个别的外部元件就能产生正弦波、三角波、 方波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。 关键字:信号发生器、波形转换、LM324

高频电子线路实验正弦波振荡器

. 太原理工大学现代科技学院 高频电子线路课程实验报告 专业班级信息13-1 学号2013101269 姓名 指导教师颖

实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。 正弦波振荡器在电子领域中有着广泛的应用。在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。 振荡器的种类很多。从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。我们只讨论反馈式振荡器。根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。我们只介绍正弦波振荡器。 常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。 一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到了一 ……………………………………装………………………………………订…………………………………………线………………………………………

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器 一.设计目的 设计一个基于DSP的正弦信号发生器 二.设计内容 利用基于CCS开发环境中的C54X汇编语言来实现正弦信号发生装置。三.设计原理 一般情况,产生正弦波的方法有两种:查表法和泰勒级数展开法。查表法是使用比较普遍的方法,优点是处理速度快,调频调相容易,精度高,但需要的存储器容量很大。泰勒级数展开法需要的存储单元少,具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失真度就越小。本文采用了泰勒级数展开法。一个角度为θ的正弦和余弦函数,可以展开成泰勒级数,取其前5项进行近似得: 式中:x为θ的弧度值,x=2πf/fs(fs是采样频率;f是所要发生的信号频率。 正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度值相

对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一点对应的y的值(在x轴取N个点进行逼近)。整个系统软件由主程序和基于泰勒展开法的SIN子程序组成,相应的软件流程图如图。

三.总体方案设计 本设计采用TMS320C54X系列的DSP作为正弦信号发生器的核心控制芯片。 通过计算一个角度的正弦值和余弦值程序可实现正弦波,其步骤如下: 1.利用sinx和cosx子程序,计算0°~45°(间隔为0.5°)的正弦和余弦值 2.利用sin(2x)=2sin(x)cos(x)公式,计算0°~90°的正弦值(间隔为1°) 3.通过复制,获得0°~359°的正弦值 4.将0°~359°的正弦值重复从PA口输出,便可得到正弦波 四.软件操作 DSP 集成开发环境 CCS是 Code Composer Studio 的缩写,即代码设计工作室。它是 TI 公司推出的集成可视化 DSP 软件开发工具。DSP CCS 内部集成了以下软件工具:◆ DSP 代码产生工具(包括 DSP 的 C 编译器、汇编优化器、汇编器和链接器)◆ CCS 集成开发环境(包括编辑、建立和调试 DSP 目标程序)◆ 实时基础软件 DSP/BIOS (必须具有硬件开发板)◆ RTDX、主机接口和 API(必须具有硬件开发板)在 CCS 下,用户可以对软件进行编辑、编译、调试、代码性能测试(profile)和项目管理等工作。CCS 可以提供如下功能:◆ 设置断点◆ 在断点处自动修改窗口◆ 观察变量◆ 观察和编辑存储器和寄存器◆ 利用测试点使数据流在目标系统和文件之间流动◆ 观察调用堆栈◆ 观察图形信号◆ 代码性能测试(profiling)◆ 观察反汇编和 C 指令执行◆ 提供 GEL (通用扩展语言)语言。此语言能增加一个函数或功能到 CCS 菜单中来完成用户自己设定的任务,是扩展 CCS 功能的专用语言。使用 CCS,可以加速 DSP 的开发进程,是 DSP 开发应用的得力助手。这里以 C54x DSP 的 CCS 3.1 为例介绍正弦波的产生。 利用 CCS 集成开发环境,用户可以在一个开发环境下完成工程定义、程序编辑、编译链接、调试和数据分析等工作环节。 1.创建工程(project)文件 选择Project→New,在“Project”文本框中键入将要创建的工程项目名,本例工程项目名为“sin”

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

(完整)高频课程设计_LC振荡器_西勒

高频电子线路课程设计报告设计题目:LC正弦波振荡器的设计 2014年1月10日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (1) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (3) 2.4西勒电路振荡器 (4) 三、设计内容 (5) 3.1LC振荡器的基本工作原理................................................ . (5) 3.2西勒电路原理图及分析 (6) 3.2.1振荡原理 (7) 3.2.2静态工作点的设置 (7) 3.3西勒振荡器原理图 (8) 3.4 仿真结果与分析 (8) 3.4.1软件简介 (8) 3.4.2进行仿真 (9) 3.4.3仿真结果分析 (11) 四、总结 (11) 五、主要参考文献 (13)

一、设计任务与要求 在本课程设计中,为了熟悉《高频电子线路》课程,着眼于LC正弦波振荡器的分析和研究。通过对电感反馈式三端振荡器(哈特莱振荡器)、电容反馈式三端振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析、对比和讨论,以达到课程设计的目的和要求。在课程设计中,为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、设计方案 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。由所学知识可知,西勒电路具有该电路频率稳定性非常高,振幅稳定,频率调节方便,适合做波段振荡器等优点。所以在本设计中拟采用并联改进型的西勒电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器 电感三点式振荡器又称哈特莱振荡器,其原理电路如图所示:

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器 2015年 1月 6 日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (6) 三、设计内容 (8) 3.1LC振荡器的基本工作原理 (8) 3.2克拉泼电路原理图 (9) 3.2.1振荡原理 (9) 3.3克拉泼振荡器仿真 (10) 3.4.1软件简介 (10) 3.4.2进行仿真 (10) 3.4.3电容参数改变对波形的影响 (11) 四、总结 (17) 五、主要参考文献 (18) 六、附录.................................................................................... .. (18)

一、设计任务与要求 为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。 在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 二:设计方案 通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器

基于DSP的信号发生器设计..

基于DSP的信号发生器设计设计题目:正弦信号发生器 专业班级电科11级-1班 学号 311108001417 学生姓名王博 指导教师王科平

摘要 正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。 目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。 目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

目录 一、概述 (3) 二、系统设计 (4) 2.1 总体方案 (4) 2.2正弦波信号发生器 (4) 三、硬件设计 (5) 3.1硬件组成部分 (5) 3.2控制器部分 (6) 3.4人机接口部分 (7) 四、软件设计 (8) 4.1流程图 (8) 4.2 正弦信号发生器程序清单 (9) 五、总结 (14) 参考文献 (14)

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

基于FPGA的正弦信号发生器

基于FPGA的正弦信号发生器设计 摘要:本设计结合了EDA技术和直接数字频率合成(DDS)技术。EDA技术是现代电子设计技术的核心,是以电子系统设计为应用方向的电子产品自动化的设计技术。DDS技术则是最为先进的频率合成技术,具有频率分辨率高、频率切换速度快、相位连续、输出相位噪声低等诸多优点。 本文在对现有DDS技术的大量文献调研的基础上,提出了符合FPGA结构的正弦信号发生器设计方案并利用MAXPLUSⅡ软件进行了设计实现。文中介绍了EDA技术相关知识,同时阐述了DDS技术的工作原理、电路结构,及设计的思路和实现方法。经过仿真测试,设计达到了技术要求。 关键词:现场可编程门阵列(FPGA);直接数字频率合成(DDS);正弦波信号发生器

The design of sine signal generating device based on FPGA Abstract:The design that combines EDA technology and Direct Digital Synthesis (DDS) technology. EDA technology is the design of modern electronic technology at the core, electronic system design direction for the application of electronic design automation products technology. DDS technology is the most advanced frequency synthesizer technology with the high-frequency resolution and frequency switching speed, continuous phase, low phase noise output many advantages. Based on the technology of existing DDS study of the extensive literature on the basis of FPGA with the structure of the sinusoidal signal generator design and the use of FPGA II software located Total realized. The paper introduced the EDA technology-related knowledge, and elaborated on the DDS technology principle, circuit structure, and design ideas and methods. After simulation tests designed to achieve the technical requirements. Keywords:FPGA;DDS;sine signal generating device

高频电容三点式正弦波振荡器课程设计报告

目录 摘要........................................................... I 1 绪论 (1) 2.1 反馈振荡器的原理 (2) 2.1.1 原理分析 (2) 2.1.2 平衡条件 (3) 2.1.3 起振条件 (3) 2.1.4 稳定条件 (4) 2.2 电容三点式振荡器 (4) 3 设计思路及方案 (6) 3.1 总体思路 (6) 3.2 设计原理 (6) 3.3 单元设计 (7) 3.3.1 电容三点式振荡单元 (7) 4 电路仿真与实现 (10) 4.1 基于NI.Multisim.V10.0.1软件的电路仿真 (10) 5 心得体会 (14)

摘要 在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。 高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。 本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。使用实验要求的电源和频率计进行验证,实现了设计目标。 关键字:通信高频信号电容正弦波振荡器

1 绪论 在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。 振荡器简单地说就是一个频率源,一般用在锁相环中能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。详细说就是一个不需要外信号激励、自身就可以将直流电能转化为交流电能的装置。一般分为正反馈和负阻型两种。所谓“振荡”,其涵义就暗指交流,振荡器包含了一个从不振荡到振荡的过程和功能。能够完成从直流电能到交流电能的转化,这样的装置就可以称为“振荡器”。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使震荡维持下去。选频网络则只允许某特定频率能通过,使振荡器产生单一频率的输出。 电容三点式振荡器(也叫考毕兹振荡器):自激振荡器的一种。图1.1中的L、C1、C2组成谐振回路,作为晶体管放大器的负载阻抗。反馈信号从电容器C2两端取得,送回放大器的基极b上,而且也是将LC回路的三个端点分别与晶体管的三个电极相连,故将这种电路成为电容三点式振荡器。由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 这种电路的优点是输出波形好、振荡频率可达100兆赫以上。缺点是调节频率时需同时调CC1、CC2不方便。适宜于作固定的振荡器。 图1.1 电容三点式振荡器

DSP正弦波信号发生器

第1章绪论 1.1 DSP简介 数字信号处理(Digital Signal Processing,简称DSP>是一门涉及许多学科而又广泛应用于许多领域地新兴学科.20世纪60年代以来,随着计算机和信息技术地飞速发展,数字信号处理技术应运而生并得到迅速地发展.数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号地方法,这些信号由数字序列表示.在过去地二十多年时间里,信号处理已经在通信等领域得到极为广泛地应用. ,经 x(t>,信号经采样和A/D 转换后,得到输出数字信号y(n>,, 图1.1数字信号处理系统简化框图 数字信号处理是以众多学科为理论基础地,它所涉及地范围极其广泛.例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理地基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关.近来新兴地一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分.可以说,数字信号处理是把许多经典地理论体系作为自己地理论基础,同时又使自己成为一系列新兴学科地理论基础. 1.2 课题来源 数字信号处理器(DSP>是在模拟信号变成数字信号以后进行高速实时处理地专用处理器.DSP芯片以其独特地结构和快速实现各种数字信号处理算法地突出优点,发展十分迅速.数字信号发生器是在电子电路设计、自动控制系统和仪表测量校正调试中应用很多地一种信号发生装置和信号源.而正弦信号是一种频率成分最为单一地常见信号源,任何复杂信号(例如声音信号>都可以通过傅里叶变换分解为许多频率不同、幅度不等地正弦信号地叠加,广泛地应用在电子技术实验、自动控制系统和通

方波-正弦波-锯齿波函数信号发生器

《模拟电子技术基础》 课程设计 方波—三角波—正弦波函数信号发生器1设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在0.02-20KHz范围内且连续可调;

2.方波、三角波、正弦波发生器方案与论证 原理框图 图1 方波、三角波、正弦波、锯齿波信号发生器的原理框图 该发生器通过将滞回电压比较器的输出信号通过RC 电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,通过改变方波的占空比不仅可以得到锯齿波,还可得到额外的矩形波。三角波通过低通滤波电路来实现正弦波的输出。然后将各种信号通过比例放大电路得到需要幅值;峰峰值的信号波 3.各组成部分的工作原理 电压比较器RC 充放电反馈回路 方波 占空比可调 积分电路 锯齿波 积分电路 三角波 低频滤波 正弦波 比例放大电路,得到需要幅值;峰峰值的信号波 矩形波

3.1 方波发生电路的工作原理 C11uF R 10kΩ R31kΩ R2 1kΩ 3 5GND U1 OPAMP_3T_VIRTUAL R11kΩ 2 D2 1N4680 D1 1N4680 GND 1 4 图2 方波信号发生原理 此电路由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。设某一时刻输出电压+Uz,,此时滞回电压比较器的门限电压为UTH2。输出信号通过R 对电容C 1正向充电,充电波形如图3箭头所示。当该电压上升到 U TH2时,电路的输出电压变为-UZ,门限电压也随之变为UTH1,电容C1经电阻R 放电。当该电压下降到UTH 1时输出电压又回到+Uz ,电容又开始正相充电。上述过程周而复始,电路产生了自激振荡。 充放电波形 U TH2 U TH1 O

正弦信号发生器(2012)(DOC)

正弦信号发生器 摘要:本系统以MSP430和DDS为控制核心,由正弦信号发生模块、功率放大模块、频率调制(FM)、幅度调制(AM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。采用数控的方法控制DDS芯片AD9851产生1kHz~10MHz正弦信号;经滤波、放大和功放模块达到正弦信号输出电压幅度 =6V±1V 并具有一定的驱动能力的功能;产生载波信号可设定的AM、FM信号;二进制基带序列码由CPLD产生,在100KHz固定载波频率下进行数字键控,产生ASK,PSK 信号且二进制基带序列码速率固定为10kbps,二进制基带序列信号可自行产生。 关键词:DDS;宽频放大;模拟调频;模拟调幅。 一、方案比较与论证 1.方案论证与选择 (1)正弦信号产生部分 方案一:使用集成函数发生器芯片ICL8038。 ICL8038能输出方波、三角波、正弦波和锯齿波四种不同的波形,将他作为正弦信号发生器。它是电压控制频率的集成芯片,失真度很低。可输入不同的外部电压来实现不同的频率输出。为了达到数控的目的,可用高精度DAC来输出电压以控制正弦波的频率。 方案二:锁相环频率合成器(PLL) 锁相环频率合成器(PLL)是常用的频率合成方法。锁相环由参考信号源、鉴相器、低通滤波器、压控振荡器几个部分组成。通过鉴相器获得输出的信号FO与输入信号Fi的相位差,经低通滤波器转换为相应的控制电压,控制VCO输出的信号频率,只有当输出信号与输入信号的频率于相位完全相等时,锁相环才达到稳定。如果在环路中加上分频系数可程控的分频器,即可获得频率程控的信号。由于输出信号的频率稳定度取决于参考振荡器信号fi ,参考信号fi 由晶振分频得到,晶振的稳定度相当高,因而该方案能获得频率稳定的信号。一般来说PLL的频率输出范围相当大,足以实现1kHz-10MHZ的正弦输出。如果fi=100Hz 只要分频系数足够精细(能够以1步进),频率100Hz步进就可以实现。 方案三:直接数字频率合成(DDS) DDS是一种纯数字化方法。它现将所需正弦波一个周期的离散样点的幅值数字量存入ROM中,然后按一定的地址间隔(相位增量)读出,并经DA转换器形成模拟正弦信号,再经低通滤波器得到质量较好的正弦信号,DDS原理图如图1所示:

高频课程设计 (LC正弦波振荡器)

高频电子线路课程设计报告设计题目:LC正弦波振荡器 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (1) 二、总体方案 (1) 三、设计内容 (4) 3.1 LC振荡电路工作原理 (4) 3.1.1构成振荡器的条件 (4) 3.1.2 由正反馈的观点来决定振荡的条件 (4) 3.1.3 振荡器平衡和稳定条件 (5) 3.1.4 LC三端式振荡器相位平衡条件的判断准 (6) 3.1.5 西勒电路工作原理 (7) 3.2仿真结果与分析 (7) 3.2.1各种条件下仿真波形图 (7) 3.2.2 参数计算 (10) 四、电路制作和调试 (11) 4.1 元器件清单及参数 (11)

五、总结 (12) 六、主要参考文 (13)

LC 正弦波振荡器的设计 一、 设计任务与要求: 通过LC 正弦波振荡器的设计进一步巩固高频电子线路的相关知识,并在设计制作的过程中运用并熟悉multisim10电子仿真软件,在实践的过程中培养我们发现问题,并利用所学知识或利用一切可以利用的资源解决问题的能力,掌握振荡器的工作原理知识,设计一个LC 正弦波振荡器,要求该电路输出稳定的正弦波信号,输出频率可调范围为10M~~20MHZ 。 二、 总体设计方案: LC 振荡电路采用三端式振荡,其中包括电感反馈式哈特莱振荡器、电容反馈式克拉泼振荡器、改进型电容反馈式西勒振荡器。 方案一:电感反馈式三端振荡器——哈特莱振荡器 哈特莱振荡器其振荡频率为f= LC 21,式中L=1L +2L +2M 。 优点:由于L 1与L 2之间有互感存在,所以比较容易起振。其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。 主要缺点:与电容反馈振荡电路相比,其振荡波形不够好。这是因为反馈支路为感性支路,对高次谐波成高阻抗,故对于LC 回路中高次谐波反馈较强,波 V CC (a ) 原理电路 (b ) 交流等效电路

基于Matlab_DSPBuilder的正弦信号发生器设计.

基于Matlab/DSP Builder的正弦信号发生器设计 引言 近年来随着通信技术的不断发展,信号的正确传输显得日益重要,也就是说要有一个可靠的能产生稳定确信号的发生器,基于Matlab/DSP Builder的正弦信号发生器是利用Matlab/DSP Builder的模块进行的模快化设计,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了、易懂、易学。使硬件在软件的控制下协调运作。 DSP Builder可以帮助设计者完成基于FPGA的DSP系统设计设计,除了图形化的系统建模外,还可以完成及大部分的设计过程和仿真,直至将设计文件下载到DSP 开发板上。此次实验的目的就是将两者的优势有机的结合在一起,利用DSP的优势开发正弦信号发生器。 在设计中主要采用DSP Builder库中的模块进行系统的模型设计,然后再进行Simulink仿真。 1.设计思想 1.1 DSP Builder特点 DSP Builder系统级(或算法级设计工具,它架构在多个软件工具之上,并把系统级(算法仿真建模和RTL(硬件实现两个领域的设计工具连接起来,最大程度的发挥了两种工具的优势。DSP Builder依赖于MathWorks公司的数学分析工具 Matlab/Simulink,可以在Simulink中进行图形化设计和仿真,同时又通过Signal Compilder把Matlab/Simulink的设计文件(.mdl转换成相应的硬件描述语言VHDL 设计文件(.vhd,以及用于控制和编译的tcl脚本。而对后者的处理可以用Quartus II 来实现。 1.2 QuartusII特点

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

正弦信号发生器

正弦信号发生器[2005年电子大赛一等奖] 2008年06月15日星期日 17:06 摘要:以SPCE061A单片机为核心,通过DDS合成技术设计制作了一个步进值能任意调节的多功能信号源。该信号源在1KHz~10MHz范围能输出稳定可调的正弦波,并具有AM、FM、ASK和PSK等调制功能。信号输出部分采用低损耗电流反馈型宽带运放作电压放大,很好地解决了带宽和带负载能力的要求。系统带中文显示和键盘控制功能,操作简便,实现效果良好。 一、方案论证 1、信号产生 方案一:使用传统的锁相频率合成的方法。要求产生1KHz到10MHz的信号,用锁相环直接产生这么宽的范围很困难,所以先产生50.001M到60M的可调信号,然后把此信号与一个50M的本振混频,得到需要的频率。此方法产生的频率稳定度高,但波形频谱做纯很困难,幅度也不恒定,实现也麻烦。 方案二:采用专用DDS芯片产生正弦波。优点:软件设计,控制方便,电路易实现,容易直接达到题目要求的频率范围和步进值,且稳定性和上法一样,频谱纯净,幅度恒定,失真小。 综上所述,选择方案二用专用DDS芯片AD9850产生正弦波。AD9850是采用DDS技术、高度集成化的器件,当它在并行工作方式时,有8根数据线、3根控制线与单片机相连。AD9850的频率控制字为: 其中FTW为频率控制字,为要输出的正弦的频率,为系统时钟的频 率,由晶振产生。 2、模拟频率调制 方案一:使用内调制(软件调制),通过单片机中断,对外来模拟调制信号进行采样,采样速率为32KHz,然后对采样值进行转换,把电压转换成对应的频偏,然后转换成相应的频率控制字送DDS,以实现对1KHz正弦信号的调频,这样可以满足最大频偏的精度要求。 方案二:使用外调制,通过锁相环控制DDS总时钟,在锁相环电路中进行频率调制,来改变DDS输出信号频率,间接实现调频,这样实现简单,频域内频谱连续,但是很难做到精确的10KHz和5KHz的最大频偏。 综合以上方案,选择方案一,实际中要求调制信号是固定不变的1KHz正弦信号,所以,我们直接把正弦信号存储在单片机中,并且换算好频率控制字。 3、模拟幅度调制 方案一:使用二极管调幅电路。较常用的二极管调幅电路有二极管平衡调幅电路和二极管环形调幅电路。但由于二极管的特性不一致,会造成电路不可能完全对称,造成控制信号的泄漏。 方案二:充分利用单片机SPCE061A的资源,1K的调制信号使用单片机的DA 口输出,经滤波放大后送MC1496与DDS产生的载波进行混频,这样效果非常好,而且成本低。 综合以上方案,选择方案二。 4、ASK和PSK数字调制

相关文档
相关文档 最新文档