文档库 最新最全的文档下载
当前位置:文档库 › 肝病与药物肝毒性及其药物代谢

肝病与药物肝毒性及其药物代谢

肝病与药物肝毒性及其药物代谢

周权

浙江大学医学院附属二院药剂科临床药学室(310009)

肝病状态下药物代谢能力如何、药物的肝毒性是否与药物代谢机制参与等话题,是临床药师必须关心的内容。笔者简要介绍相关知识。

一、肝脏疾病状态下的药物代谢

肝脏是药物代谢的主要场所,所以肝脏疾病对药物代谢酶的影响最为直接。

a. 病毒性肝炎甲型肝炎患者的CYP2A6活性显著下降,而且在儿童中更甚。慢性活动性丙型肝炎患者CYP2D6和CYP3A4的活性显著下降。经 -干扰素、利巴韦林联合治疗1个月后活性恢复。提示经抗病毒药物治疗后,应用CYP2D6和CYP3A4底物时剂量无需调整。与无脂肪变性的慢性丙型肝炎患者相比,慢性丙型肝炎合并脂肪变性患者的CYP2E1 mRNA表达增加37%。机制与TNF-α mRNA表达增加和氧化应激(谷胱甘肽、超氧化物歧化酶、过氧化氢酶活性下降)有关。提示这些患者应用CYP2E1底物时剂量应适度增加。

b. 肝硬化一般来说,肝硬化比其他肝脏疾病对药物代谢的影响要大。肝硬化对一相代谢有抑制作用,而相对而言葡醛酸转移酶的活性不受肝硬化和慢性肝病的影响。例如地西泮的去甲基化和普萘洛尔的氧化代谢受影响非常显著。奥沙西泮、罗拉西泮的代谢纯粹为葡醛化,在肝硬化病中并无影响。肝硬化患者的CYP3A4活性、含量和基因表达显著下降,且CYP3A4活性与血清白蛋白浓度显著相关,与血清转氨酶浓度则无关。慢性活动性肝炎和代偿期肝硬化患者的CYP1A2和NAT2的活性显著降低。因此,肝硬化患者使用CYP3A4或CYP1A2底物时剂量应降低,参考血清白蛋白浓度有一定的临床价值。

c. 酒精性肝病乙醇对肝药酶活性的影响呈双相性,短时间内大量饮酒,乙醇通过直接竞争性结合CYP2E1而产生药酶抑制作用;乙醇慢性中毒者肝内质网增生,CYP2E1数量和活性增加,使同时服用药物的代谢加快、t1/2缩短、药效降低。

d. 胆汁淤积肝内胆汁淤积患者的P450含量和CYP2E1显著受损,且下降程度与血清总胆红素、胆汁酸浓度相关,但与血清谷草转氨酶水平无相关性。细胞色素b5含量、NADPH-细胞色素还原酶活性无改变。慢性肝病伴血清胆红素浓度升高患者的CYP1A2、CYP2C8/10含量显著下降。提示这些患者应用经P450代谢的药物时,剂量应下降,参考血清胆红素和胆汁酸浓度具有临床价值。

二、肝毒性与药物代谢

药物性肝损伤的机制可纳为:(1)药物的直接损伤;(2)免疫特异质机制损伤;(3)代谢特异质机制损伤和(4)氧应激损伤。本文着重介绍与药物代谢有关的机制。某些药物在肝细胞内经CYP450代谢产生亲电子物、自由基、氧基等,他们可与肝细胞内大分子物质共价结合,引起膜系统脂质过氧化,破坏膜完整性和膜Ca2+-ATP酶系,扰乱细胞内外Ca2+稳态,影响线粒体、内质网等重要细胞器的功能,并最终导致肝细胞损伤甚至死亡。

1 长期饮酒者服用对乙酰氨基酚后致肝细胞损伤

- 118 -

在对乙酰氨基酚代谢过程中,GST起到解毒作用。对乙酰氨基酚在治疗剂量范围内使用时,绝大部分通过葡醛酸化和硫酸化而解毒,少量经CYP2E1、CYP1A2和CYP3A4代谢为反应性代谢物N-乙酰苯亚胺醌(NAPQI)。见图1。NAPQI通过谷胱甘肽结合反应而解毒。但服用过量对乙酰氨基酚可耗竭肝细胞内的谷胱甘肽,NAPQI便与细胞内大分子结合,造成肝细胞损伤。上述CYP诱导剂可加重对乙酰氨基酚的肝毒性,而及时应用谷胱甘肽前体乙酰半胱氨酸可减轻肝毒性。

2 快乙酰化者应用异烟肼的肝毒性

快乙酰化者的基因型为NAT2*4的纯合子(EMs)或杂合子(IMs)。慢乙酰化者为各种突变等位基因的组合,其发生率白种人为50%~59%,中国人为20%,日本人为8%~10%。快乙酰化者服用异烟肼后肝毒性发生率要大于慢乙酰化者,而且异烟肼和利福平合用可明显增加肝毒性。实验证明,联合用药的肝毒性增加与肝细胞脂质过氧化及CYP2E1活性增加有关。口服银杏提取物除对人体CYP2E1和NAT2活性有抑制作用,还有自由基清除作用和线粒体膜Ca2+-ATP 酶保护作用,因此服用银杏提取物可以降低快乙酰化者以及异烟肼联用利福平引起的肝毒性。

3 曲格列酮撤出市场的原因及机制

曲格列酮用于治疗II型糖尿病,2%的接受曲格列酮治疗的患者谷丙转氨酶异常升高,大约1/1250的患者出现黄疸,1/40000~50000的患者出现不可逆的肝衰竭。CYP2C8、CYP3A4和CYP2C19介导了曲格列酮代谢为醌的过程,这些酶的多态性可能与其肝毒性有关。曲格列酮肝损害是多发于CYP2C19*2/*2、CYP2C19*2/*3和CYP2C19*3/*3的个体。也多发于GSTT1和GSTM1双无效突变病例。

CYP450个体差异的检测等. 这些问题的解决将有助于进一步了解药源性肝损伤的发生和发展,并对药源性肝损伤的预防和治疗起指导作用。

对于具有直接肝毒性的药物,如果其代谢相关CYP450被抑制,那么肝毒性的发生将不可避免。近年来由于对新药筛选和评审的严格要求,此类药物很难通过临床前实验和临床试验而上市,因此临床上因CYP450 抑制而引起肝损伤的发生率较低。但临床实践中,必须注意代谢性药物相互作用引发的肝毒性发生。例如辛伐他汀、阿托伐他汀和洛伐他汀具有潜在肝损作用,具有临床意义的血清转氨酶升高(>正常上限3倍)的发生率为0.5%~2.0%。但若与CYP3A4强抑制剂合用时,肝损作

- 119 -

用将大大增加。与CYP3A4底物合用时也要注意,例如笔者在临床上曾发现一例因为硝苯地平与血脂康(含洛伐他汀)相互作用导致的肝功能异常反应。机制是两种药物均是CYP3A4的底物,可发生竞争反应,导致他汀药物浓度增加。他汀类药物的肝毒性具有剂量依赖性。

临床意义突出的CYP的底物、抑制剂和诱导剂见表1。

表3-1 CYP的主要底物

CYP 底物

CYP1A2 利多卡因,非那西丁,萘普生,美西律,普罗帕酮,维拉帕米,氟他胺,β-受体阻滞剂,咖啡因,茶碱,齐留通,褪黑素,氯氮平,氟哌啶醇,氯米帕明,他克林,利鲁唑,石杉碱甲

CYP2C8 西立伐他汀,紫杉醇,罗格列酮,吡格列酮

CYP2C9 甲苯磺丁脲,氯沙坦,苯妥英,S-华法林,氟伐他汀,双氯芬酸,布洛芬,氟比洛芬,塞来昔布,托拉塞米,格列吡嗪,格列本脲,扎鲁司特

CYP2C19 丙米嗪,氯米帕明,氯胍,阿米替林,西酞普兰,地西泮,奥美拉唑,兰索拉唑,泮托拉唑,托吡酯,美芬妥英,普萘洛尔

CYP2D6 可待因,曲马多,抗心律失常药,抗抑郁剂,利培酮,奋乃静,β受体阻滞剂,卡托普利,右美沙芬,异喹胍,甲氧氯普胺,地昔帕明,昂丹司琼

CYP2E1 含氟吸入麻醉药,氯唑沙宗,对乙酰氨基酚

CYP3A4 利多卡因,普罗帕酮,奎尼丁,氯吡格雷,阿司咪唑,特非那定,西沙必利,氯雷他啶,莫沙必利,多泮立酮,环孢素,他克莫司,西地那非,洛伐他汀,辛伐他汀,阿托伐他汀,咪达唑仑,阿普唑仑,三唑仑,卡马西平,丁螺环酮,麦角类药物、蛋白酶抑制剂,美沙酮,二氢吡啶类钙通道阻滞剂,阿霉素,紫杉醇,长春新碱,他莫西芬,雌二醇,西布曲明,可的松,甲泼尼龙,瑞格列奈,睾酮,非那甾胺,地塞米松

表3-2 CYP的主要抑制剂和诱导剂

CYP 抑制剂诱导剂

CYP1A2 西米替丁,氟伏沙明,异烟肼,干扰素,红霉素,

克拉霉素,依诺沙星,环丙沙星,诺氟沙星

苯妥英,利托那韦,利福平,

苯巴比妥,奥美拉唑

CYP2C9 胺碘酮,氟伐他汀,氟伏沙明,氟康唑,甲硝唑,

磺胺甲唑,利托那韦,氯霉素,异烟肼,

氟西汀,西咪替丁

卡马西平,苯巴比妥,

苯妥英,利福平,利托那韦,奈

非那韦

CYP2C19 氟伏沙明,氟西汀,利托那韦,噻氯匹定,奥美

拉唑

利福平,苯巴比妥,阿司匹林

- 120 -

CYP2D6 氟西汀,帕罗西汀,苯海拉明,塞来昔布,普罗帕酮,奎尼丁,特比萘芬,利托那韦

CYP2E1 双硫仑异烟肼,乙醇

CYP3A4 酮康唑,伊曲康唑,甲硝唑,葡萄柚汁,环孢素,

氟西汀,氟伏沙明,萘法唑酮,地尔硫,维拉

帕米,利托那韦,茚地那韦,奈非那韦,红霉素,

克拉霉素

卡马西平,苯巴比妥,

乙琥胺,利福平,利福喷丁,地

塞米松,奈韦拉平、依法韦瑞

- 121 -

肝病与药物肝毒性及其药物代谢

作者:周权

作者单位:浙江大学医学院附属二院药剂科临床药学室,310009

本文读者也读过(10条)

1.杜文惠HBsAg 转阴后检测HBV-DNA 的临床意义(附30例报告)[会议论文]-2007

2.钮志林.徐密琴.沈燕.叶杨.吴建成阿德福韦酯治疗乙型肝炎后失代偿期肝硬化的临床研究[会议论文]-2007

3.徐承富.徐磊.石巧娟.虞朝辉.厉有名不同方案缺血预处理对小鼠肝脏缺血再灌注损伤的影响[会议论文]-2007

4.竟永华.李行.郭剑非.JING Yong-hua.LI Xing.GUO Jian-fei美国FDA药物肝毒性监测和管理文件简析[期刊论文]-中国药物警戒2006,3(6)

5.王临润.张国兵.黄明珠.申屠建中.徐农吉西他滨固定速率输注的峰浓度与血液学毒性的相关性研究[会议论文]-2007

6.王文虎.王鲁文.龚作炯肝硬化腹水低钠血症的发生率及其临床意义[会议论文]-2007

7.李玉凤.吴纯启.廖明阳药物特异质肝毒性的发生机制及预测筛选方法[期刊论文]-国外医学(药学分册)2005,32(5)

8.张嫡群.石晓伟.王云志.ZHANG Di-qun.SHI Xiao-wei.WANG Yun-zhi药物代谢在新药研究中的作用[期刊论文]-中国药学杂志2006,41(11)

9.戚静燕.鲍红荣.俞建平.陈振明.王佶.王海燕高效液相色谱法同时测定人血浆中乙酰半胱氨酸和谷胱甘肽浓度[会议论文]-2007

10.何小爱.刘智.程泽能高通量药物代谢与毒性筛选平台研究进展[期刊论文]-中南药学2008,6(5)

本文链接:https://www.wendangku.net/doc/5018749322.html,/Conference_6543507.aspx

药物在肝脏内的代谢

药物在肝脏内的代谢 药物在肝脏内的代谢 一、药物在肝内的生物转化 肝脏在药物(或外源性毒物)的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外。肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应。另一方面,药物的代谢过程中的产物,可以造成肝损害。药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用。 (一)第一相反应 多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。其反应可概括如下: D+A→DA NADPH+DA+H+→DAH2+NADP- DAH2+O2+HADPH→A+DOH+H2O+NADP- (注:D=药物;A=细胞色素P450) 药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是细胞色素P450,其他有关的酶和辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等。细胞色素P450(以下简称P450)是一种铁卟啉蛋白,能进行氧化和还原。当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。 细胞色素P450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的是P450和有关的辅酶类。P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体。药物与P450结合位点与血红素分子非常接近,有利于电子的转移。药物与氧化型P450结合,此时血红素的铁为三价铁(Fe3+),通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价(Fe2+)。还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型(Fe3+)。如此反复循环,使药物进行第一相的代谢。 P450实际上为同一家庭的多种异构型。迄今为止,人类P450的基因已发现有27种,编码多种P450。基本上分成至少4个基因族,又可进一步区分为不同亚族。其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C……和阿拉伯数字1,2,3,……进一步分类。按其功能,人类的P450可分成二类。CYP1,2,3,主要代谢外源性化合物,如药物、毒物等,有交叉的底物特异性,常可被外源性物质诱导,在进化过程中,其保守性差。GYP4则主要代谢内源性物质,有高度特异性,通常不能被外源性物质诱导,在进行过程中相对保守。此类P450在类固醇、脂肪酸和前列腺素代谢中起作用。在药物代谢中起重要作用的P450。 表39-1具有代表性药物代谢CYP1,CYP2和CYP3亚家族 P450亚族代谢的底物(药物) CYP1A2 氧阿米替林,咖啡因,氟哌啶醇,茶碱,他克林,西咪替丁 CYP2B6 环磷酰胺 CYP2C 卡马西平,环磷酰胺,地西泮,布洛芬,奈普生,奥美拉唑,苯妥英,普奈洛尔,甲苯磺西脲 CYP2D6 异喹胍,大多数β受体拮抗剂,氧阿米替林,氯丙嗪,可待因,右美沙芬,恩卡尼,氟哌啶醇,去甲替林,维拉帕米 CYP2E 对乙酰氨基酚,乙醇,氟烷 CYP3A 胺碘酮,卡马西平,西沙必利,可卡因,皮质醇,环孢素,氨苯砜,地塞米松,地尔硫草,红霉素,丙米嗪,利多卡因,洛伐他汀,硝苯地平,孕酮,他克莫司,他莫昔芬,睾丸酮,丙戊酸盐,维拉帕米,长春新碱,华法令 一般说来,药物经过第一相的氧化、还原等作用,变为极性和水溶性较高而活性低的代谢物,再经过第二相的结合作用,通过胆汁或尿液排到体外。但有些药物,在P450药酶作用下,转化为对肝细胞肝毒性的代谢物。

关于肝脏的功能及作用

关于肝脏的功能及作用 肝脏有什么功能? 肝脏是人体最大的实质性消化器官,位于右上腹部,具有代谢、分泌、排泄解毒等非常复杂的生理功能,对脂类、蛋白质及糖等营养物质的消化、吸收、氧化、分解、转化等起着重要的作用。使其保持动态平衡,为机体的活动提供热能。 肝脏还是分泌(制造)和排泄胆汁的场所,胆酸也在肝脏中合成,并随胆汁排入肠内,参与脂质代谢、转化等生化过程,从而保障了人体各处器官,尤其是心、脑、肾等脏器的功能活动。 同时肝脏也是人体重要的代谢器官,每时每刻都在进行着一系列的物质代谢过程,被喻为人体的中心化工厂。 因此肝脏的健康保护对提高人的生活质量、促进您的健康长寿是至关重要的。 解毒功能:肝脏是人体的主要解毒器官,它可保护机体免受损害,使毒物成为低毒的或溶解度大的物质,随胆汁或尿液排出体外。 此外,肝脏还有防御机能、调节血液循环量、制造凝血因子、产生热量、肝脏再生能力等。因此,在某种意义上讲,肝脏健康是人体健康的基本条件之一。体内的某些代谢废物或肠道细菌的腐败产物以及服用的药物等,经过肝脏处理,把有毒物质变成无毒或毒性较小、或易于溶解的物质而便于排出体外,这些变化过程称为解毒作用。如酒精在肝内经过氧化过程,变成二氧化碳和水,胆红素与葡萄

糖醛酸结合,变成直接胆红素,随肝汁排入肠道,这些变化过程,就是肝脏的解毒作用。 【肝脏的生理功能】 ●肝脏是人体内最大的消化腺。也是体内新陈代谢的中心站。在肝脏中发生的化学反应有500种以上,实验证明,动物在完全摘除肝脏后即使给予相应的治疗,最多也只能生存50多个小时。这说明肝脏是维持生命活动的一个必不可少的重要器官。肝脏的血流量极为丰富,约占心输出量的1/4。每分钟进入肝脏的血流量为1000-1200ml。肝脏的主要功能是进行糖的分解、贮存糖原;参与蛋白质、脂肪、维生素、激素的代谢;解毒;分泌胆汁;吞噬、防御机能;制造凝血因子;调节血容量及水电解质平衡;产生热量等。在胚胎时期肝脏还有造血功能。肝呈红褐色,质软而脆嫩。成人肝重约1500克左右。肝大部分位于右腹上部,小部分延伸到左腹上部。人们常把它比喻为机体内的化工厂,起着改造、加工、合成、转变、排泄等复杂的作用。肝脏除能分泌胆汁外,还有很多重要功能。 ●肝脏的胆汁分泌作用:肝细胞能不断地生成胆汁酸和分泌胆汁,胆汁在消化过程中可促进脂肪在小肠内的消化和吸收。每天有600-1100ml的胆汁,经胆管输送到胆囊。胆囊起浓缩和排放胆汁的功能。 人体需要的能源,是我们吃进去的食物,它们含有碳水化合物、蛋白质和脂肪。这些营养物质的代谢过程和相互转化,主要是在肝脏内进行的。

药物的肝脏毒性

药物的肝脏毒性 关键词药物性肝损害药物性肝损害机制肝损害个体差异肝损害诊治 近年来,有两种药物因其肝脏毒性被美国食品与药物管理局从市场撤出,药物的肝毒性再次受到公众关注。据美国统计,被批准进入市场的药物从市场撤出的最常见原因是肝毒性作用;同时,一半以上的急性肝衰竭由于不当用药引起。因此,本文对药物的肝脏毒性作一综述。 药物在肝脏的生物学转化 肝脏担负着几乎所有外来物质的代谢、解毒作用,大多数药物在吸收时是脂溶性的,易通过肠道表面而被吸收。在肝细胞中,药物发生生物学转化成为水溶性物质,并进一步与葡萄糖苷酸或硫酸盐、谷胱苷肽结合,由肝细胞膜上的转运蛋白输送至血浆或胆汁发挥作用,经肾脏或胃肠道排出体外。氧化反应参与了肝脏的生物学转化过程,细胞色素P450系统在其中起重要作用[1 ] 。 药物所致肝脏损害的类型 一般来说,在规范使用时多数药物都是安全的,每1 000至100 000例患者中仅有1 例发生药物导致的肝损伤。肝毒性作用与用药患者的个体差异有关,不同种类或同一种类不同药物的肝损伤作用不尽相同。多数情况下,首次用药距离肝损发生的时间为5 至90 天不等,一旦药物性肝损出现,继续用药往往导致患者死亡。而异烟肼有所不同,如果肝脏损害轻微,继续服药患者常可自行缓解,但再次用药则发生严重的药物反应。而乙酰氨基酚的肝毒性呈剂量依赖性,用药剂量往往决定患者的预后。此外,患者的年龄、性别、体重指数等也影响药物的肝脏代谢过程,同时使用的其他药物或食物、患者的生理状态(如怀孕、伴发肝脏、肾脏疾病等) 等也 对预后起重要作用。女性似乎更容易发生药物导致的肝脏损害,对乙酰氨基酚的肝脏损害患者中有79 %为女性,由于个体差异导致的药物反应也有73 %是女性,具体原因尚不清楚。此外,苯巴比妥、苯妥英、乙醇、吸烟等均可诱导肝酶改变血药浓度,导致肝毒性作用。 肝脏的损伤机制 至少有六种机制参与了药物的肝毒性作用,由于损伤的细胞器不同,肝损害的表现也不相同。细胞色素P450 参与的高能反应使药物与细胞内的某些蛋白共价结合,导致相应的功能失调,引起离子梯度消失、ATP 减少、肌动蛋白断裂,最终细胞肿胀、溶解[2 ,3 ] 。有些药物作用于胆小管上的转运蛋白,引起胆管阻塞、胆汁淤积 ,但此时很少发生肝细胞损害[4 ] 。某些转运蛋白遗传缺陷( 如multidrug2resistance2associated protein 3 ,MRP3) 的患者在使用激素治疗时导致淤胆加重,因此该类患者服用含雌激素的药物应特别慎重。少数情况下,患者还合并有细胞内病变,因此胆酸的毒性作用逐渐累积,引发细胞损伤。一旦胆管细胞受损, 将导致持续性淤胆,即所谓“胆管消失综合征”。药物成分一般均为小分子物质,不引发免疫反 应。但是在有高能反应参与的生物学转化过程中,药物可能与某些酶共价结合,形成加合物(adduct) 。如果加合物足够大,就可能诱发免疫反应,导致抗体形成(抗体介导的细胞毒性作用) 或T 细胞介导的细胞溶解作用[5 ] ,引发炎症反应和肝脏中毒。在免疫损伤的同时还可出现细胞程序性死亡(凋亡) ,肿瘤坏死因子( TNF) 及Fas 途径破坏肝脏细胞,导致

FDA《体内药物代谢药物相互作用研究-试验设计、数据分析、关于剂量和药品说明书的建议

FDA《体内药物代谢/药物相互作用研究-试验设计、数据分析、关于剂量和药品 说明书的建议 I.概述 本指导原则向申请新药(NDA)和就治疗用生物制品(以下统称为药物)申请生物制品许可(BLA),并计划进行体内药物代谢试验和代谢性药物-药物相互作用研究的申办者提供建议。本指导原则反映了管理当局的当前考量,即应在新药开发过程中确定该药物的代谢作用,同时探究其与其它药物的相互作用,作为适当评价安全性和有效性的一部分。对于代谢性药物-药物相互作用,本指导原则中考量的方法可这样理解,即某一个特殊的试验研究是否要进行,要根据所开发的药物以及其预期的临床应用而进行调整。此外,不是所有的药物-药物相互作用都是基于代谢而发生,也可因由吸收、组织和/或血浆结合、分布以及排泄的相互作用引起药动学变化。记载与体内载体有关的药物相互作用的频度越来越多,这在以后的指导原则中可能会进行更详细的阐述。药物-药物相互作用可能会改变药物代谢动力学/药效学的关系,尽管研究并不十分透彻。本指导原则中对这些重要领域考量的并不详尽。 FDA以前的关于药物代谢和代谢性药物-药物相互作用的体外研究方法指导原则,可参见题为药物开发过程中的药物代谢/药物相互作用研究:体外研究(1997年4月)的指导性文件。本指导原则可看作是先前指导原则的姊妹篇。有关药物代谢以及其它类型的药物-药物相互作用的讨论可参见其它指导原则,包括人用药品注册技术要求国际协调会议(ICH)E8 临床试验的总体考虑(1997年12月),E7 对于特殊人群的临床试验:老年人(1994年8月),以及E3临床研究报告的结构和内容(1996年7月),管理当局指导原则可能用于老年人的研究药物(1989年11月)和药物临床评价中性别差异的研究和评价(1993年7月)。 II. 背景 A. 代谢作用 药物的作用以及副作用源自药物在作用部位的浓度,通常与药量(剂量)或血液浓度有关,后者又受到药物吸收、分布、代谢和/或排泄的影响。药物的清除或代谢作用通常是通过肝脏代谢,或是肾脏的排泄途径。此外,蛋白质治疗药物可通过与细胞表面受体特殊的相互作用,继而被内吞并由溶酶体降解。肝脏的消除主要由位于肝细胞内质网的细胞色素P450酶系完成,但也可由非P450酶系清除,如N-乙酰化和葡萄糖醛酸转移酶。存在于消化道粘膜的P450酶系还可以显著影响药物吸收入体循环的药量。很多因素可以影响肝脏和肠道内药物的代谢,包括疾病的有无和/或合并用药。然而,大多数影响因素通常在一段时间内较为稳定,而合并用药则可以突然改变吸收和消除的代谢途径,成为特别需要关注的因素。当一个药物,包括前药,代谢成一种或更多活性代谢产

8药物对肝脏的毒性作用

药物对肝脏的毒性作用 第一节肝脏损伤的生理学和形态学基础 肝脏是药源性组织损伤的主要靶器官之一,常常是首当其冲受损的靶器官。 一、肝脏的生理学基础: 1、参与糖、脂肪、蛋白质三大物质的代谢、分泌胆汁,激素、内源性废物代谢等。 2、过滤作用: 肝的解毒作用、药物代谢、吞噬防御功能 二、肝脏损伤的形态学基础: 肝的基本结构单位—肝小叶(hepatic lobule) ρ肝脏组织构成单位,多达50万-100万个; ρ中心有一条中心靜脈,周围分布著放射狀的肝细胞索; ρ肝细胞之间为肝血窦,由内皮细胞衬覆而成。 三、肝脏易受药物损伤的原因(参见教材) 由其生理学功能、组织学特点所决定。 第二节肝毒物及其分类 凡能引起肝损伤的物质均可称为肝毒物(hepatotoxicant ). 一、按毒性机制分为: 1、体质依赖性肝毒物:多见于药物,如磺胺、异烟肼。 2、真性肝毒物:多见化学物,个别药物。 ①直接肝毒物:如抗肿瘤药等。 可直接作用于肝细胞膜、细胞器膜或生物大分子的化学毒物,可导致肝细胞膜脂质过氧化、膜蛋白变形,使膜结构破坏,细胞死亡。 ②间接肝毒物:如乙醇、黄曲霉毒素等。 具有干扰细胞酶活性从而导致细胞内物质代谢紊乱的化学物,使细胞功能发生变化的化学物,进而导致肝毒性等。如乙醇诱导甘油三酯合成酶合成,导致脂肪酸合成增多,出现脂肪肝。 二、根据肝毒物的化学性质分为:

1、无机肝毒物:重金属类、CCl4等 2、有机肝毒物:生物毒物、药物等 第三节药物性肝损伤类型及机理 一、肝细胞死亡(hepatocyte death ) 1、细胞坏死 (necrosis) :细胞的被动病死,称作“细胞他杀”。 细胞形态学表现为核与线粒体肿胀,细胞的质膜崩解(细胞膜、细胞器膜、核膜等),结构自溶,并引发急性炎症反应。 药/毒物引起肝细胞坏死的机制: (1)肝细胞膜脂质过氧化:如CCl4、对乙酰氨基酚 氧自由基与生物膜多不饱和脂肪酸的侧链及核酸等大分子物质起脂质过 氧化反应,形成脂质过氧化产物如丙二醛(Malonaldehyde, MDA)和4-羟基壬烯酸(4-hydroxynonenal,HNE),从而使细胞膜的流动性和通透性发生改变,最终导致细胞结构和功能的改变。 产生三氯甲烷自由基,非如在细胞色素P-450系统作用下,化学毒物CCl 4 甾体药物对乙酰氨基酚产生N-乙酰对位苯醌亚胺,可使细胞膜或亚细胞膜脂质发生过氧化,引起膜通透性增加,最终导致细胞死亡。 (2)与生物大分子结合:如抗肿瘤药、对乙酰氨基酚、可卡因等。 药物可与生物大分子如蛋白质、核酸、不饱和脂质发生共价结合,如氮芥引起DNA分子两条链在鸟嘌呤上的交联,使生物大分子功能丧失,导致细胞死亡。 (3)免疫反应:如氟烷类麻醉剂、利尿剂替尼酸、醋氨酚、呋喃坦丁等。 某些药物及其代谢产物可与肝细胞特异性蛋白结合,形成新抗原,诱导免疫反应。如氟烷引发的肝炎样综合征,系氟烷在P450作用下形成三氟乙酰基,三氟乙酰基和肝内蛋白结果,形成新抗原,激发机体产生抗体,激发免疫反应所致。 (4)钙内环境平衡失调:铅、镉等重金属 a.高Ca2+引发活性氧(ROS)的过度产生,再引致胞内Ca2+浓度增加,进一步引发ROS的过度产生。---恶性循环 b.高Ca2+激活钙依赖的磷脂酶,能引起膜磷脂的分解,在分解过程中产生游离脂肪酸、前列腺素、白三烯、溶血磷脂等,均对细胞产生毒害作用。---磷脂酶激活

药物体外肝代谢研究方法

药物体外肝代谢研究方法 摘要:对近几年的文献资料进行分析、综合、归纳。介绍肝微粒体体外温孵法、肝细胞体外温孵法、离体肝灌流及器官组织切片法。其中,肝细胞体外温孵法是当今药物体外肝代谢研究的热点,对新药研究与开发及正确指导临床合并用药有着巨大的推动作用,将对其进行重点论述。 关键词:体外肝代谢;肝微粒体;肝细胞;离体肝灌流;组织切片 广义的药物代谢指药物在体内吸收、分布、代谢、排泄等一系列过程[1]。狭义的药物代谢是指药物的生物转化。生物转化后,药物的理化性质发生变化,从而引起其药理和毒理活性的改变。因此,研究药物的生物转化,明确其代谢途径[2],对制定合理的临床用药方案,剂型设计及新药开发工作都具有重要的指导意义。当前,国内外对药物代谢的研究主要集中在代谢产物生成和确定代谢途径。在分子生物学技术推动下,药物代谢酶[3]领域的研究因其对临床药物间相互作用的研究有着积极的推动意义,已得到广泛的重视。 肝脏是药物代谢的重要器官,是机体进行生物转化的主要场所,富含参与药物代谢的一个庞大的依赖细胞色素P450的混合功能氧化酶系统[4],大多数药物的Ⅰ相反应及Ⅱ相反应都依赖于肝脏酶系统而发生。以肝脏为基础的体外代谢模型以其特有的优势在药物代谢研究中得到广泛应用,现概述如下。 1 肝微粒体体外温孵法 肝微粒体法[5]是由制备的肝微粒体辅以氧化还原型辅酶[6],在模拟生理温度及生理环境条件下进行生化反应的体系,制备肝微粒体一般用差速离心法。 肝微粒体体外温孵法和其它的体外肝代谢方法相比较,其酶制备技术简单,代谢过程快,结果重现性好,易大量操作,便于积累代谢样品供结构研究;同时,该方法可用于对药酶的抑制及体外代谢清除等方面的研究,因而在实际工作中应用较为普遍。但肝微粒体体外温孵法同其它体外肝代谢方法相比,在体内情况的一致性方面存在不足,因而其实验结果用于预测体内情况仍需进一步的确证。 2 肝细胞体外温孵法 肝细胞体外温孵法同肝微粒体法相似,即以制备的肝细胞辅以氧化还原型辅酶,在模拟生理温度及生理环境条件下进行生化反应的体系,适于研究蛋白及mRNA水平药物代谢酶诱导及酶活性,在评估药物代谢过程中药物间的相互作用时,该方法得到广泛的应用。但肝细胞制备技术较复杂,目前以胶原酶灌注技术为主[7],且体外肝细胞活性仅能维持4h,不利于储存和反复使用。 3 离体肝灌流法

(完整版)执业药师药物代谢动力学习题及答案

第二章药物代谢动力学 一、最佳选择题 1、决定药物每天用药次数的主要因素是 A、吸收快慢 B、作用强弱 C、体内分布速度 D、体内转化速度 E、体内消除速度 2、药时曲线下面积代表 A、药物血浆半衰期 B、药物的分布容积 C、药物吸收速度 D、药物排泄量 E、生物利用度 3、需要维持药物有效血浓度时,正确的恒定给药间隔时间是 A、每4h给药一次 B、每6h给药一次 C、每8h给药一次 D、每12h给药一次 E、每隔一个半衰期给药一次 4、以近似血浆半衰期的时间间隔给药,为迅速达到稳态血浓度,可以首次剂量 A、增加半倍 B、增加1倍 C、增加2倍 D、增加3倍 E、增加4倍 5、某药的半衰期是7h,如果按每次0.3g,一天给药3次,达到稳态血药浓度所需时间是 A、5~10h B、10~16h C、17~23h D、24~28h E、28~36h 6、按一级动力学消除的药物,按一定时间间隔连续给予一定剂量,达到稳态血药浓度时间长短决定于 A、剂量大小 B、给药次数 C、吸收速率常数 D、表观分布容积 E、消除速率常数 7、恒量恒速给药最后形成的血药浓度为 A、有效血浓度 B、稳态血药浓度 C、峰浓度 D、阈浓度 E、中毒浓度 8、药物吸收到达血浆稳态浓度时意味着 A、药物作用最强 B、药物吸收过程已完成 C、药物消除过程正开始 D、药物的吸收速度与消除速率达到平衡 E、药物在体内分布达到平衡 9、按一级动力学消除的药物有关稳态血药浓度的描述中错误的是 A、增加剂量能升高稳态血药浓度 B、剂量大小可影响稳态血药浓度到达时间 C、首次剂量加倍,按原间隔给药可迅速达稳态血药浓度 D、定时恒量给药必须经4~6个半衰期才可达稳态血药浓度 E、定时恒量给药达稳态血药浓度的时间与清除率有关 10、按一级动力学消除的药物,其消除半衰期 A、与用药剂量有关 B、与给药途径有关 C、与血浆浓度有关 D、与给药次数有关 E、与上述因素均无关 11、某药按一级动力学消除,其血浆半衰期与消除速率常数k的关系为 A、0.693/k B、k/0.693 C、2.303/k D、k/2.303 E、k/2血浆药物浓度 12、对血浆半衰期(一级动力学)的理解,不正确的是 A、是血浆药物浓度下降一半的时间 B、能反映体内药量的消除速度 C、依据其可调节给药间隔时间 D、其长短与原血浆浓度有关 E、一次给药后经4~5个半衰期就基本消除 13、静脉注射1g某药,其血药浓度为10mg/dl,其表观分布容积为 A、0.05L B、2L C、5L D、10L E、20L 14、在体内药量相等时,Vd小的药物比Vd大的药物 A、血浆浓度较低 B、血浆蛋白结合较少 C、血浆浓度较高 D、生物利用度较小 E、能达到的治疗效果较强 15、下列叙述中,哪一项与表观分布容积(Vd)的概念不符 A、Vd是指体内药物达动态平衡时,体内药量与血药浓度的比值 B、Vd的单位为L或L/kg C、Vd大小反映分布程度和组织结合程度 D、Vd与药物的脂溶性无关 E、Vd与药物的血浆蛋白结合率有关 16、下列关于房室概念的描述错误的是 A、它反映药物在体内分却速率的快慢 B、在体内均匀分布称一室模型 C、二室模型的中央室包括血浆及血流充盈的组织 D、血流量少不能立即与中央室达平衡者为周边室 E、分布平衡时转运速率相等的组织可视为一室 17、影响药物转运的因素不包括

2015_年最新版《药物性肝损伤诊治指南》

「药物性肝损伤(DILI)」是临床极具挑战的难题,中华医学会消化病学分会曾在2007 年发布了「急性药物性肝损伤」诊治建议草案,内容仅针对急性DILI,2014 年7 月美国胃肠病学会(ACG)发布了首个药物性肝损伤临床实践指南,迈出了药物性肝损伤规范化诊治的第一步,然而该指南仅适用于特异质性肝损伤。 近期,中华医学会肝脏分会发布了国内首个药物性肝损伤指南,该指南同时适用于固有型DILI(InDILI)和特异质性DILI(IDILI)。下面就为大家总结一下本指南的要点。 流行病学 1. 我国尚缺乏面向普通人群的大规模DILI 流行病学数据,其主要原因为我国DILI 数据多来自医疗相关机构的门诊及住院患者,难以明确DILI 在人群中的确切发病率。 2. 明确指出DILI 的危险因素,包括宿主因素(遗传因素如药物代谢酶等的HLA 遗传多态性、非遗传因素如年龄、性别、妊娠、基础疾病等)、药物因素和环境因素(酒精、吸烟等)。 DILI 的耐受性、适应性及敏感性的定义 指南明确了DILI 耐受性、适应性以及敏感性的定义,耐受性是指个体在药物治疗期间未出现肝损伤的生化学证据;适应性是指个体在药物治疗期间出现肝损伤的生化学证据,但继续用药生化学指标恢复正常;易感性是指个体在药物治疗过程中甚至停药后出现DILI,且不能呈现适应性缓解。准确区分上述概念对DILI 的治疗决策有重要意义。 发病机制 发病机制仍然分为药物及其代谢产物的直接肝毒性和特异质性肝毒性两大类,而亦有学者将其概括为药物及其代谢产物所致的「上游」事件以及肝脏靶细胞损伤通路和保护通路失衡构成的「下游」事件,目前观点倾向于认为「适应性免疫攻击」是最后的共同事件。

体外药物肝代谢研究进展

体外药物肝代谢研究进展 (作者:___________单位: ___________邮编: ___________) 【摘要】目的:介绍药物体外肝代谢方法的最新进展. 方法:根据近几年的文献资料进行分析、综合、归纳. 分别按肝微粒体体外温孵法、肝细胞体外温孵法、肝匀浆体外孵育法进行介绍. 结果:体外肝代谢研究方法发展迅速. 结论:目前主要的药物体外肝代谢方法各有利弊,但对于新药开发来都是必不可少的研究手段. 【关键词】肝代谢;微粒体,肝;肝细胞;药代动力学 0 引言 肝脏是药物主要的和重要的代谢器官,是药物生物转化的主要场所,是富含参与药物代谢的一个庞大的依赖细胞色素P450的混合功能氧化酶系统,大多数药物的Ⅰ相和Ⅱ相代谢反应都是在肝药酶系统的参与下发生的,因此药物的体外代谢模型主要是以肝脏为基础的,并以其特有的优势和特点在药物代谢的研究中得到广泛的应用. 体外药物的肝代谢研究已经发展很长时间,与体内代谢研究相比,体外代谢研究有许多优点,①体外代谢研究可以排除体内诸多的干扰因

素,直接观察到代谢酶对底物的选择性代谢,为体内代谢研究提供重要的线索和依据. ②对于体内代谢转化率低且缺乏灵敏检测手段的药物来说,体外代谢不失为一种很好的研究手段. ③体外代谢研究具有快速简便的特点,适合大量化合物的药动学筛选. ④不需要消耗大量的样品和实验动物,因而研究费用相对较低[1]. 我们从体外肝代谢模型入手,综述了近年来药物体外肝代谢的文献. 1 肝微粒体体外温孵法 肝微粒体体外温孵实验是采用从肝脏中提取的肝微粒体,并加入还原型辅酶II(NADPH)再生系统,在体外模拟生理环境下进行代谢反应,采用高效液相色谱(HPLC)、高效液相色谱质谱联用法(HPLC MS)等测定方法对原型药及代谢产物进行测定的一种体外代谢的实验方法. 1.1 Ⅰ相代谢Ⅰ相代谢又称为官能团反应,包括氧化、还原、水解、水合等反应. NADPH为还原型酰胺腺嘌呤二核苷酸磷酸,是许多药物生物转化反应中不可缺少的辅助因子,它在这些反应中起到还原剂的作用,体系中只要NADPH浓度达到1 mmol/L时,便足以维持药物代谢反应进行,但NADPH价格较高,且不易长时间保存. 因此常采用NADPH再生系统来代替NADPH. 即利用相对稳定和廉价的辅酶II(NADP)与6磷酸葡萄糖在6磷酸葡萄糖脱氢酶的作用下生成NADPH. 6磷酸葡萄糖+NADP 6磷酸葡萄糖脱氢酶

药物相互作用研究指导原则201205

附件 14:
药物相互作用研究指导原则
一、引言 本指导原则旨为拟进行药物(指新药,包括生物制品)相互作用研 究的申办方提供建议。本指导原则反映了国家食品药品监督管理局(以 下简称 SFDA)审评机构的当前认识:即新药的代谢应该在药物研发过程 中进行确定,该药与其他药物之间的相互作用应作为安全性和有效性评 价的一部分进行研究。本指导原则建议的研究方法是基于以下的共识, 即:是否应进行某项特定的试验取决于药物的特征及拟定的适应证。药 物相互作用除了发生在代谢过程中外,也可能发生在吸收、分布和排泄 过程。目前,越来越多的报告显示药物相互作用与转运体相关,因此, 它们也是新药开发过程中应该考察的因素之一。药物相互作用还可能改 变药代动力学/药效动力学(PK/PD)的相互关系。 二、背景 (一)代谢 药物在作用部位的浓度所引起预期的和非预期的效应通常与用药 剂量或血药浓度有关,而血药浓度受到药物吸收、分布、代谢/或排泄 的影响。药物或其代谢产物的消除通常通过两种途径:即代谢(常在肝 脏或肠粘膜)和排泄(常在肾和肝脏) 。此外,治疗用蛋白制剂可通过 与细胞表面受体产生特异性结合,然后经由细胞内吞和细胞内的溶酶体 降解进行消除。肝脏消除主要由位于肝细胞内质网的细胞色素 P450 酶 系,但也可经由非 P450 酶系系统,如通过 N-乙酰基和葡萄糖醛酰转移
1

酶完成。许多因素可影响药物在肝脏和肠内的代谢,如疾病、合并用药 (包括中草药) 、甚至食物(如西柚汁)等。虽然这些因素中的大多数 通常可保持相对的稳定,但是合并用药往往会突然改变药物的代谢,因 此需要特别关注。如果药物(包括前体药物)代谢成一种或多种活性代 谢物,合并用药对药物代谢的影响就变得更为复杂。这种情况下,药物 /药物前体的安全性和有效性不仅仅取决于原形药物的暴露量,还同时 取决于其活性代谢物的暴露量,而活性代谢物的暴露量与其生成、分布 和消除相关。因此,对新药安全性和有效性的评价应该包括药物的代谢 情况以及该代谢对整个消除过程的贡献大小。基于此,在药物代谢和相 互作用研究中,建立灵敏的、专属性强的药物及其重要代谢产物的测定 方法具有重要的意义。 (二)药物相互作用 1.代谢相关的药物相互作用 许多药物的代谢消除(包括大部分通过 P450 酶系的代谢) ,可因合 并用药而受到抑制、激活或诱导。因药物相互作用引起代谢的变化会相 当大,可能导致药物或其代谢物在血液或组织中浓度水平以一个数量级 或以上的降低或升高,也可能导致毒性代谢物的生成或毒性原型药物暴 露量水平的升高。这些暴露量水平的较大变化可使一些药物和/或其活 性代谢物的安全性和有效性特征发生重要的变化。此种变化不仅对于窄 治疗窗(NTR)的药物最为明显,也最容易预期,而且对于非窄治疗窗 (non-NTR)药物有时也可能发生(例如 HMG CoA 还原酶抑制剂) 。 代谢相关的药物相互作用研究的重要目的是探索新药是否有可能 对已上市的、并可能在医疗诊治中合用的药物的代谢消除产生显著影响。
2

肝功能减低或肝脏疾病患者避免使用或慎用药物

肝功能减低或肝脏疾病患者避免使用或慎用药物 肝脏是许多药物代谢的主要场所,当肝功能不全时,药物代谢必然受到影响,药物的生物转化减慢,血中游离型药物增多,从而影响药物的使用效果并增加毒性。因此,必须减少用药剂量及用药次数,特别是使用肝毒性的药物时更需慎重。 一、肝功能不全患者用药会产生哪些影响 1. 对药物吸收的影响肝脏疾病时,肝脏内在清除率下降,药物不能有效地经过肝脏的首过作用,使主要在肝脏内代谢清除的药物生物利用度提高,同时,体内血药浓度明显增高而影响药物的作用,药物的不良反应发生率也可能升高。 2 .对药物在体内分布的影响药物在体内的分布主要通过与血浆蛋白结合而转运。当肝功能不全时,肝脏的蛋白合成功能减退,血浆中白蛋白浓度下降,这时药物的血浆蛋白结合率下降,血中结合型药物减少,游离型药物增加,使该药物的作用增强,不良反应也可能相应增加,尤其对蛋白结合率高的药物影响更为显著。 3 .对药物代谢的影响肝脏是药物代谢最重要的器官。当肝功能不全时,肝细胞的数量减少,肝细胞的功能受损,肝细胞多数药物酶的活性和数量都有不同程度减少,长期用药可 引起蓄积中毒。 肝功能不全患者常伴有低蛋白血症和高胆红素血症,使血液中非蛋白结合型药物浓度升高,常规剂量可使药效增强或发生毒性反应。有些药物的毒性不是由于剂量增大的缘故,而 是因为肝合成功能减退所造成。 对于肝功能不全患者,应该根据肝功能损害的程度及药动学特点调整药物剂量。一般来说,对于肝功能损害较轻者,静脉或短期口服给予安全范围较大的药物,可不必调整剂量或仅将药物剂量下调20%;,对于肝功能损害较重者,药物剂量应下调30%,以确保用药安 全。 二、肝功能不全患者用药原则 1.合理选药,熟悉所选药物对肝脏的毒性,以免加重患者肝脏负担 2.定期检查肝功能,以便决定用药时间的长短,及时调整治疗方案。 3.注意药物相互作用,特别应避免肝毒性药物合用。 4.肝功能不全而肾功能正常的病人可选用对肝毒性小,可通过肾脏排泄的药物。 5.初始用药宜小剂量,必要时进行血药浓度监测,实施个体化给药方案。

药物代谢和药物相互作用的体外研究(修

工业指南 药物研发过程中药物代谢和药物相互作用的体外研究 I .简介 药物进入体内以后,一般经过两种途径进行消除:直接排泄或者代谢成为一种或几种活 性的或非活性的代谢产物。当药物主要通过代谢进行消除时,那么它的代谢途径会显著影响 药物的安全性、有效性及使用方法。如果药物仅由一种代谢途径进行消除,那么代谢速率的 个体差异能导致血和组织中的药物和代谢物浓度的极大差异。一些例子表明,差异呈现具有 遗传多态性特征的双相分布(如CYP450 2D6, CYP450 2C19, N-乙酰转移酶)。当遗传多态 性影响一条重要的药物消除途径时,为了达到安全有效地使用药物的目的,有必要进行大剂 量调整。已有例子证明这种差异的存在会影响治疗的效果。例如,某种药物主要有CYP4502 D6 进行代谢,大约有7%的高加索人对这种药物没有代谢能力,但是这个比例在别的人种通常要低得多。类似的报道也可见于其它的代谢途径,主要是CYP4502C19, N-乙酰转移酶。不 仅如此,很多酶的代谢消除途径,包括绝大部分由CYP450代谢酶介导的,可以被联合用药 中的其它药物抑制或诱导,结果,患者共服其它化合物会发生治疗情况的突然改变。这种药 物相互作用会引起血液和组织中药物和代谢物浓度减少或增加,或者引起有毒物质的积蓄 (如一些抗组胺药与抗真菌药间的相互作用)。这些变化能极大地改变一个新药的安全性和 有效性,特别是有效治疗浓度范围比较窄的药物。 如果了解药物代谢途径和可能存在的药物相互作用,有时允许使用那种若血药浓度不能 预测而会产生毒性浓度的药物。由于这些原因,所以在新药研究的早期弄清楚药物到底是通 过原形排泄的还是通过一种或者多种途径进行代谢消除的是非常重要的。假如代谢消除是主 要途径,那么需要了解其主要的代谢途径。这些信息将有助于认识个体之间代谢差异的意义 和一些药物-药物、药物-其它物质相互作用的重要性。这些资料也有助于决定一些代谢物的药理活性是否需要进行进一步的研究。 此FDA工业指南提供了研究体外药物代谢和药物相互作用的一些建议。本指导原则鼓励 只要可能和合适全面评估体外代谢和相互作用应作为常规工作,像其它所有FDA 指导性文件 一样,建议并非是需要的东西,但是,可供药物研究科学家们作为一种方法思考潜在的大量安全性的担忧。FDA认识到,任何方法的重要性都将视研发药物及其临床使用的不同而变化。FDA还认识到,临床观察也能阐明本文件中对体外研究敏感的相同问题。鉴于本指南所提供

肝脏的功能

肝脏的功能 D贮存血液肝脏只有凝血的功能,而没有贮存血液的功能。 肝脏是人体最大的腺体,它在人的代谢、胆汁生成、解毒、凝血、免疫、热量产生及水与 电解质的调节中均起着非常重要的作用,是人体内的一个巨大的化工厂”。 一、代谢功能: ①糖代谢:饮食中的淀粉和糖类消化后变成葡萄糖经肠道吸收,肝脏将它合成肝糖原贮存起来;当机体需要时,肝细胞又能把肝糖原分解为葡萄糖供机体利用。 ②蛋白质代谢:肝脏是人体白蛋白唯一的合成器官;丫球蛋以外的球蛋白、酶蛋白及 血浆蛋白的生成、维持及调节都要肝脏参与;氨基酸代谢如脱氨基反应、尿素合成及氨的处理均在肝脏内进行。 ③脂肪代谢:脂肪的合成和释放、脂肪酸分解、酮体生成与氧化、胆固醇与磷脂的合成、脂蛋白合成和运输等均在肝脏内进行。 ④维生素代谢:许多维生素如 A B C D和K的合成与储存均与肝脏密切相关。肝脏明显受损时会出现维生素代谢异常。 ⑤激素代谢:肝脏参与激素的灭活,当肝功长期损害时可出现性激素失调。 二、胆汁生成和排泄:胆红素的摄取、结合和排泄,胆汁酸的生成和排泄都由肝脏承担。肝细胞制造、分泌的胆汁,经胆管输送到胆囊,胆囊浓缩后排放入小肠,帮助脂肪的消化和吸收。 三、解毒作用:人体代谢过程中所产生的一些有害废物及外来的毒物、毒素、药物的代谢和分解产物,均在肝脏解毒。 四、免疫功能:肝脏是最大的网状内皮细胞吞噬系统,它能通过吞噬、隔离和消除入侵和内生的各种抗原。 五、凝血功能:几乎所有的凝血因子都由肝脏制造,肝脏在人体凝血和抗凝两个系统的 动态平衡中起着重要的调节作用。肝功破坏的严重程度常与凝血障碍的程度相平行,临床上常见有些肝硬化患者因肝功衰竭而致出血甚至死亡。 六、其它:肝脏参与人体血容量的调节、热量的产生和水、电解质的调节。如肝脏损害时对钠、钾、铁、磷、等电解质调节失衡,常见的是水钠在体内潴留,引 起水肿、腹水等。 肝脏的功能和作用 肝为人体最大的消化腺,也是最大的腺体,它不仅分泌胆汁参与消化活动,而且有营养物质代谢、贮存糖原、解毒、吞噬防御等重要机能,在胚胎期还有造血功能。 肝的重量约占体重的1/50~1/40,小儿肝相对比成人的大。据统计,成年男性肝为1230~1500克,女性肝为1100~1300克。 肝的位置和形态人的肝脏位于腹腔,大部分在腹腔的右上部,小部分在左上部,是人体最大的实质性腺体器官,一般重约1200?1600g,约占成人体重的1/50,男性的比女性的略重,胎儿和新生儿的肝脏相对较大,可达体重的 1 /20 。正常肝脏外观呈红褐色,质软而脆。肝脏形态呈一不规则楔形,右侧钝厚而左侧偏窄,一般 左右径(长)约25cm前后径(宽)约15cm上下径(厚)约6cm)上面突起浑圆,与

药物是怎么经肝脏代谢转化的

如对您有帮助,可购买打赏,谢谢药物是怎么经肝脏代谢转化的 导语:我们都知道,肝脏是我们人体内的解毒场所,肝脏内部的代谢对我们是非常重要的。人们所吃下的都需要经过肝脏来进行代谢,对于药物来说,肝脏 我们都知道,肝脏是我们人体内的解毒场所,肝脏内部的代谢对我们是非常重要的。人们所吃下的都需要经过肝脏来进行代谢,对于药物来说,肝脏对其的清除能力也是非常强的,主要还是经过酶的分解以及药物自身的代谢来完成这个过程。那么,药物究竟是怎么经肝脏代谢转化的呢?让我们一起来看一下。 药物代谢是研究药物在生物体内的吸收、分布、生物转化和排泄等过程的特点和规律的一门科学,即药物分子被机体吸收后,在机体作用下发生的化学结构转化。也是药物研发产业链中的重要环节,贯穿药物研究过程的始终。代谢的意义就在于能把外源性的物质包括药物和毒物,进行化学处理失活,并使排出体外。但药物的作用、副作用、毒性、给药剂量、给药方式、药物作用的时间、药物的相互作用等对代谢具有重要的影响。 肝脏是药物的主要清除器官,肝脏清除分成肝脏代谢和胆汁排泄两种方式。肝脏富含药物Ⅰ相代谢和Ⅱ相代谢所需的各种酶,其中以 P450酶最为重要。P450酶是由多种类型的P450酶所组成的一个大家族,根据氨基酸的排序的雷同性,P450酶可以分为不同几个大类,每个大类又可以细分成几个小类。在人体中重要的P450酶有CYP1A2、CYP2A6、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6、CYP2E1、CYP3A4和CYP3A5)。 P450酶存在有明显的种属差异,药物在动物和人体内的代谢途径和代谢产物可能是不同的。多态性(polymorphisms)是P450酶的一个重要 预防疾病常识分享,对您有帮助可购买打赏

对肝脏有损伤的中药

对肝脏有损伤的中药 一般认为,中药大多是植物、动物、矿物药,性平毒性小,流传着中药“有 病治病,无病健身”、中药治疗属“自然疗法、安全、药食同源”等观点。然而,药物的两重性是药物作用的基本规律之一,中药也不例外。俗话说:“是药三分毒”,中药既能防治疾病,同样也能损害人体,导致生理机能的紊乱,甚至组织结构的改变。所以,应用中成药或中草药治病疗疾时也应谨慎,必须在医生的指导下使用,以确保用药安全。药店药师在工作中也应严格审方,防止医生开错药给患者带来用药安全隐患。下面是一些较常见的对肝脏有损害的中药,药店药师在销售这些药物时,应向顾客做出提醒。 克银丸、复方青黛丸主要作用是治疗银屑病。这些中成药中含有土茯苓、青黛等对肝脏有毒性作用的成分。治疗剂量可致皮肤瘙痒、小便发黄、皮肤巩膜黄染、转氨酶升高等药物性肝损害的表现。可导致此类肝损害的中药还有葛根素和复方丹参。 川楝子此药具有疏肝理气、止痛的功效。现代药理学研究表明,川楝子、苦楝皮中的苦楝素对肝脏有毒性作用,正常剂量既可导致药物性肝炎,出现黄疸、肝肿大和转氨酶升高。 苍耳子、雷公藤这两种药是治疗鼻炎、头痛和肾病的常用药。苍耳子所含的毒蛋白和毒甙能引起肝损害,甚至引发肝功能衰竭。雷公藤或雷公藤多甙片可致可逆性转氨酶升高及肝肿大,还可引起肝炎。抗癫痫药物苯妥英钠、卡马西平与苍耳子、雷公藤合用,有可能加重药物对肝脏的损害。老年患者要谨慎使用苍耳子和雷公藤。 五倍子、石榴皮这些中药含有的水解型鞣质,对肝脏有直接的毒性作用,长期使用可引起脂肪肝,甚至肝硬化。 蝮蛇抗栓酶该药是治疗心脑血管病的常用药。一般患者在用药10~14天时,可出现皮肤巩膜黄染、肝功能异常等症状。 铅丹、铅粉、密陀僧常用于治疗癫痫、银屑病、精神病等。因含有氧化铝等物质,可致铅中毒,表现为腹痛、肝肿大、黄疸及转氨酶升高等。 黄药子黄药子是治疗甲状腺疾病的常用中药,但却含有薯蓣皂甙等毒性物质, 使用两周后有可能引起黄疸(或无黄疸)型肝炎,也可出现腹水或肝昏迷。 蓖麻子是常用的泻下药,因其含有蓖麻毒蛋白,易伤害肝脏而致中毒性肝炎。 千里光、农吉利、天芥菜因含有吡里西啶类生物碱而具有迟发性肝毒性,长期使用可导致肝静脉闭塞,出现黄疸和腹水。 望江南、马桑、广豆根内服有强烈的刺激作用,特别是对胃肠道的刺激性,并致肝细胞损害。 半夏、蒲黄、桑寄生、天花粉、山慈菇如长期服用可致肝功能损害。 土荆芥、石菖蒲、八角茴香、花椒、蜂头茶、千里光这些中草药中含有黄樟醚、青木香、淮木通、硝石等硝基化合物,如使用不当,不但损害肝脏,还有诱发肝癌的可能。

肝脏在物质代谢中的作用

一、肝脏在糖代谢中的作用 肝脏是调节血糖浓度的主要器官。当饭后血糖浓度升高时,肝脏利用血糖合成糖原(肝糖原约占肝重的5%)。过多的糖则可在肝脏转变为脂肪以及加速磷酸戊糖循环等,从而降低血糖,维持血糖浓度的恒定。相反,当血糖浓度降低时,肝糖原分解及糖异生作用加强,生成葡萄糖送入血中,调节血糖浓度,使之不致过低。因此,严重肝病时,易出现空腹血糖降低,主要由于肝糖原贮存减少以及糖异生作用障碍的缘故。临床上,可通过耐量试验(主要是半乳糖耐量试验)及测定血中乳酸含量来观察肝脏糖原生成及糖异生是否正常。 肝脏和脂肪组织是人体内糖转变成脂肪的两个主要场所。肝脏内糖氧化分解主要不是供给肝脏能量,而是由糖转变为脂肪的重要途径。所合成脂肪不在肝内贮存,而是与肝细胞内磷脂、胆固醇及蛋白质等形成脂蛋白,并以脂蛋白形式送入血中,送到其它组织中利用或贮存。 肝脏也是糖异生的主要器官,可将甘油、乳糖及生糖氨基酸等转化为葡萄糖或糖原。在剧烈运动及饥饿时尤为显著,肝脏还能将果糖及半乳糖转化为葡萄糖,亦可作为血糖的补充来源。 糖在肝脏内的生理功能主要是保证肝细胞内核酸和蛋白质代谢,促进肝细胞的再生及肝功能的恢复。(1)通过磷酸戊糖循环生成磷酸戊糖,用于RNA的合成;(2)加强糖原生成作用,从而减弱糖异生作用,避免氨基酸的过多消耗,保证有足够的氨基酸用于合成蛋白质或其它含氮生理活性物质。 肝细胞中葡萄糖经磷酸戊糖通路,还为脂肪酸及胆固醇合成提供所必需的NADPH。通过糖醛酸代谢生成UDP?葡萄糖醛酸,参与肝脏生物转化作用。 二、肝脏在脂类代谢中的作用 肝脏在脂类的消化、吸收、分解、合成及运输等代谢过程中均起重要作用。 肝脏能分泌胆汁,其中的胆汁酸盐是胆固醇在肝脏的转化产物,能乳化脂类、可促进脂类的消化和吸收。 肝脏是氧化分解脂肪酸的主要场所,也是人体内生成酮体的主要场所。肝脏中活跃的β-氧化过程,释放出较多能量,以供肝脏自身需要。生成的酮体不能在肝脏氧化利用,而经血液运输到其它组织(心、肾、骨骼肌等)氧化利用,作为这些组织的良好的供能原料。 肝脏也是合成脂肪酸和脂肪的主要场所,还是人体中合成胆固醇最旺盛的器官。肝脏合成的胆固醇占全身合成胆固醇总量的80%以上,是血浆胆固醇的主要来源。此外,肝脏还合成并分泌卵磷脂?胆固醇酰基转移酶(LCA T),促使胆固醇酯化。当肝脏严重损伤时,不仅胆固醇合成减少,血浆胆固醇酯的降低往往出现更早和更明显。

相关文档
相关文档 最新文档