文档库 最新最全的文档下载
当前位置:文档库 › 2018变频器控制改进2018.3.30

2018变频器控制改进2018.3.30

技术说明

一.名称

关于智能化机组中的变频器增加远程控制/本地控制装置

二.内容

1.现有变频控制柜分为两部分,在变频器部分的门板外侧靠上选取合适位置,分别安装万能转换开关和电位器(一台变频器对应1套装置),均匀分布,讲究美观,并在万能转换开关三个档位位置分别标注:本地,0,远程;

2.根据变频器接线示意图接线(附图)。

三.达成效果

1.在机组控制系统正常的情况下,变频器采用远程PLC 及触摸屏控制;

2.在PLC或触摸屏发生故障的情况下,变频器通过万能转换开关打到本地控制,同时操作电位器调节频率,通过变频器面板上显示出的频率反馈,来达到所需频率,无需设置任何参数,使变频器能够快速投入使用,尽量不影响用户的供暖;

3.为售后人员的到达腾出了一定的时间;

四.解决问题

1. 由于多种因素致使PLC或触摸屏发生故障,造成现场变频器无法运行,同时用户技术力量薄弱,无法启动变频

器,影响用户的供暖;

2.高效切换,给用户多一层保障。五.材料表

变频器的运行控制方式

变频器的运转指令方式 变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。 与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。 1操作器键盘控制 操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。 操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led数码和lcd液晶显示故障类型。 按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m以内的空间里。同理,距离较远时则必须使用远程操作器键盘。 在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。 对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。该功能对端子控制、通讯控制都有效。 2端子控制 2.1基本概念 端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。 这时这些由按钮、选择开关、继电器、plc或dcs的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。

变频器矢量控制的优点及应用

变频器矢量控制的优点及应用 矢量控制原理--应用采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。 异步电动机矢量控制变频调速系统的开发,使异步电动机的调速可获得和直流电动机相媲美的高精度和快速响应性能。异步电动机的机械结构又比直流电动机简单、坚固,且转子无碳刷滑环等电气接触点,故应用前景十分广阔。现将其优点和应用范围综述如下:1、矢量控制系统的优点:动态的速响应直流电动机受整流的限制,过高的di/dt是不容许的。异步电动机只受逆变器容量的限制,强迫电流的倍数可取得很高,故速度响应快,一般可达到毫秒级,在快速性方面已超过直流电动机。 低频转矩增大一般通用变频器(VVVF控制)在低频时转矩常低于额定转矩,在5Hz以下不能带满负载工作。而矢鱿控制变频器由于能保持磁通恒定,转矩与it呈线性关系,故在极低频时也能使电动机的转矩高于额定转矩。 控制的灵活性直流电动机常根据不同的负载对象,选用他励、串励、复励等形式。它们各有不同的控制特点和机械特性。而在异步电动机矢量控制系统中,可使同一台电动机输出不同的特性。在系统内用不同的函数发生器作为磁通调节器,即可获得他励或串励直流电动机的机械特性。 使用矢量控制,可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。 对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁

PWM型变频器的基本控制方式(DOC)

PWM型变频器的基本控制方式 通用的PWM型变频器是一种交—直—交变频,通过整流器将工频交流电整流成直流电,经过中间环节再由逆变器将直流电逆变成频率可调的交流电,供给交流负载。异步电动机调速时,供电电源不但频率可变,而且电压大小也必须能随频率变化,即保持压频比基本恒定。 PWM型变频器一般采用电压型逆变器。根据供给逆变器的直流电压是可变的还是恒定的,变频器可分成两种基本控制方式。 (1)变幅PWM型变频器这是一种对变频器输出电压和频率分别进行调节的控制方式,其基本电路如图3-3所示。中间环节是滤波电容器。 图2-3 变幅PWM型变频器 晶闸管整流器用来调压,与一般晶闸管调压系统一样,采用相位控制,通过改变触发脉冲的延迟角α来获得与逆变器输出频率相对应的不同大小的直流电压。逆变器只作输出频率控制,它一般是由6个开关器件组成,按脉冲调制方式进行控制。 图3-4所示是另一种直流电压可调的PWM变频电路。它采用二极管不可控整流桥,把三相交流电变换为恒定的直流电。分立斩波器电路,来改变输出直流电压的大小,通过逆变器输出三相交流电。 图2-4 利用斩波器的变频电路图 以上两种调压式变频电路,都需要两极可控功率级,相比较,采用晶闸管整流桥可以获得更大功率的直流电,由于可控整流桥采用相位控制,输入功率因数将随输出直流电压的减小而降低;而斩波式调压,输入功率变流级采用的是二级管整流桥,所以输入端有很高的功率因数,代价是多了一个斩波器。另外,就动态响应的快速性来说后者比前者好。 (2)恒幅PWM型变频器

恒幅脉宽调制PWM式变频电路如图3.3所示,它由二极管整流桥,滤波电容和逆变器组成。逆变器的输入为恒定不变的直流电压,通过调节逆变器的脉冲宽度和输出交流电压的频率,既实现调压又实现调频,变频变压都是由逆变器承担。此系统是目前使用较普遍的一种变频系统,其主电路简单,只要配上简单的控制电路即可。它具有下列主要优点: 1)简化了主电路和控制电路的结构。由二极管整流器对逆变器提供恒定的直流电压。在PWM逆变器内,在变频的同时控制其输出电压。系统只有一个控制功率级,从而使装置的体积小,重量轻,造价低,可靠性好。 2)由二极管整流器代替晶闸管整流器,提高了装置的功率因数。 3)改善系统的动态性能。PWM型逆变器的输出功率和电压,都在逆变器内控制和调节。因此,调节速度快,调节过程中频率和电压配合好,系统动态性能好。 4)对负载有较好的供电波形。PWM型逆变器的输出电压和电流波形接近正弦波,从而解决了由于以矩形波供电引起的电动机发热和转矩降低问题,改善了电动机运行性能。 图2-5 PWM型逆变器 但PWM型逆变器也有如下缺点: 1)在调制频率和输出频率之比固定的情况下,特别是在低频时,高次谐波影响较大,因而电动机的转矩脉动和噪声都较大。 2)在调制频率和输出频率之比作有级变化的情况下,往往使控制电路比较复杂。 3)器件的工作频率与调制频率有关。有些器件的开关损耗和换相电路损耗较大,而且需要采用导通和关断时间短的高速开关器件。 2.2.2 PWM型逆变器的基本工作原理

矢量控制变频器工作原理

矢量控制是20世纪70年代由前西德Blaschke等人首先提出来的对交流电动机的一种新的控制思想和控制技术,也是交流电动机的一种理想的调速方法。矢量控制的基本思想是将异步电动机的定子电流分为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流)并分别加以控制。由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,因此这种控制方式称为矢量控制方式。 矢量控制方式使对异步电动机进行高性能的控制成为可能。采用矢量控制方式的交流调速系统不仅在调速范围上可以与直流电动机相匹敌,而且可以直接控割异步毫乏t产生的转矩。所以已经在许多需要进行精密控制的领域得到了应用。 由于在进行矢量控制时需要准确地掌握对象电动机的有关参数,这种控制有式芝云主要用于厂家指定的变频器专用电动机的控制。但是,随着变频调速理论和技术的发曩以及现代控制理论在变频器中的成功应用,目前在新型矢量控制变频器中已经增加了自调整(autotuning)功能。带有这种功能的变频器在驱动异步电动机进行正常运转之前可以自动地对电动机的参数进行辨识并根据辨识结果调整控制算法中的有关参数,从而使得对普通的异步电动机进行有效的矢量控制也成为可能。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/5b18953242.html,/

变频器的控制方式

变频器的控制方式 1 引言 我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。根据不同的变频控制理论,其模式主要有以下三种: (1)v/f=c的正弦脉宽调制模式 (2)矢量控制(vc)模式 (3)直接转矩控制(dtc)模式 针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。这些控制方式在变频器通电运行前必须首先设置。 2 v/f控制方式 2.1 基本概念 我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。图1中所示就是变频器的基本运行v/f曲线。 由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。

当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。 基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。 2.2 预定义的v/f曲线和用户自定义v/f曲线 由于电动机负载的多样性和不确定性,因此很多变频器厂商都推出了预定义的v/f曲线和用户自定义的任意v/f曲线。 预定义的v/f曲线是指变频器内部已经为用户定义的各种不同类型的曲线。如艾默生ev2000变频器有三种特定曲线(图2a),曲线1为2.0 次幂降转矩特性、曲线2为1.7次幂降转矩特性、曲线为1.2次幂降转矩特性。罗克韦尔 ab powerflex 400变频器有4种定义的曲线(如图 2b),其定义的方式是在电动机额定频率一半(即50%fn)时的输出电压是电动机额定电压的30%时(即30%vn)为曲线1,35%vn为曲线 2,40%vn为曲线3,vn为曲线4。这些预定义的v/f曲线非常适合在可变转矩(如典型的风机和泵类负载)中使用,用户可以根据负载特性进行调整,以达到最优的节能效果。 对于其他特殊的负载,如同步电动机,则可以通过设置用户自定义v/ f 曲线的几个参数,来得到任意v/ f曲线,从而可以适应这些负载的特殊要求和特定功能。自定义v/ f曲线一般都通过折线设定,典型的有三段折线和两段折线。

西门子标准变频器控制方法描述

西门子标准变频器控制方法描述

第一节速度矢量控制(MM440) 在矢量控制中,速度控制器影响系统的动态特性。特别是恒转矩负载,速度闭环控制有利于改善系统的运动精度和跟随性能。在矢量控制过程中,速度控制器的配置是重要的环节。 根据速度控制器的反馈信号来源,可以将速度矢量控制分为带传感器的矢量控制(VC)与无传感器的矢量控制(SLVC)两种。 ?编码器的反馈信号(VC):P1300=20 ?观测器模型的反馈信号(SLVC):P1300=21 在快速调试和电机参数优化的过程中,变频器会根据负载参数自动辨识系统模型,建立模型观测器,在没有传感器的情况下,系统也会根据输出电流来计算当前速度,作为速度反馈来构成速度闭环。 速度控制器的设定方式(P1460,P1462,P1470,P1472) ?手动调节 可根据经验对速度控制器的比例与积分参数进行整定 ?PID自整定 设定参数:P1400 当P1400.0=1,使能速度控制器的增益自适应功能,即根据系统偏差的 大小来自动调节比例增益系数Kp。在弱磁区,增益系数随磁通的降低 而减小。 当P1400.1=1,速度控制器的积分被冻结,只有比例增益,即对开环运 行的电动机加上滑差补偿。 ?优化方式自整定 通过设置P1960=1,变频器会自动对速度控制器的各参数进行整定。

第二节 转矩控制(MM440) 矢量控制分为速度矢量控制与转矩矢量控制,转矩控制与速度矢量控制的主设定频率 滤波 编码器反馈 观测器模型反 馈实际频率 滤波 PI 速度 控制器 系统 手动调节 自整定 优化整定 P1400.0=1 P1960=1

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

PLC控制变频器的几种方法

在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。? 本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m。这种方法非常简捷便利,极易掌握。本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍。 2、三菱PLC采用扩展存储器通讯控制变频器的系统配置 2.1 系统硬件组成 FX2N系列PLC(产品版本V 3.00以上)1台(软件采用FX-PCS/WIN-C V 3.00版); FX2N-485-BD通讯模板1块(最长通讯距离50m); 或FX0N-485ADP通讯模块1块+FX2N-CNV-BD板1块(最长通讯距离500m); FX2N-ROM-E1功能扩展存储盒1块(安装在PLC本体内);

带RS485通讯口的三菱变频器8台(S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台;三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同。); RJ45电缆(5芯带屏蔽); 终端阻抗器(终端电阻)100Ω; 选件:人机界面(如F930GOT等小型触摸屏)1台。 2.2 硬件安装方法 (1) 用网线专用压接钳将电缆的一头和RJ45水晶头进行压接;另一头则按图1~图3的方法连接FX2N-485-BD通讯模板,未使用的2个P5S端头不接。 (2) 揭开PLC主机左边的面板盖, 将FX2N-485-BD通讯模板和FX2N-ROM-E1功能扩展存储器安装后盖上面板。 (3) 将RJ45电缆分别连接变频器的PU口,网络末端变频器的接受信号端RDA、RDB之间连接一只100Ω终端电阻,以消除由于信号传送速度、传递距离等原因,有可能受到反射的影响而造成的通讯障碍。 2.3 变频器通讯参数设置 为了正确地建立通讯,必须在变频器设置与通讯有关的参数如“站号”、“通讯速率”、“停止位长/字长”、“奇偶校验”等等。变频器内的Pr.117~Pr.124参数用于设置通讯参数。参数设定采用操作面板或变频器设置软件FR-SW1-SETUP-WE在PU口进行。 2.4 变频器设定项目和指令代码举例

变频器中常用的控制方式

变频器中常用的控制方式 1, 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直 接转矩控制等。 ⑴V/f 控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f 控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异 步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器 具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在 d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。 通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各 种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差 频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差频率控 制方式在输出特性方面能得到很大的改善。但是,这种控制方式属于闭环控制方式,需要在 电动机上安装速度传感器,因此,应用范围受到限制。 无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。 (4) 直接转矩控制

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样。 1、矢量控制方式 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式 V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变

变频器常用的几种控制方式

变频器常用的几种控制方式 变频调速技术就是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也就是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 1、1 变频器的基本结构 变频器就是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1、2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器与电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器与高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器与矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器与三相变频器等。 2、变频器中常用的控制方式 2、1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制就是为了得到理想的转矩-速度特性,基于在改变电源频率进 行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但就是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制就是一种直接控制转矩的控制方式,它就是在V/f控制的基础上,按照知道异 步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率与电流进行控制,因此,这就是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速与负载变动有良好的响应特性。 (3) 矢量控制 矢量控制就是通过矢量坐标电路控制电动机定子电流的大小与相位,以达到对电动机在d、q、0坐标轴系中的励磁电流与转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序与时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的

浅谈变频器U/f控制与矢量控制应用

浅谈变频器U/f控制与矢量控制应用 【摘要】交流变频调速系统主要用于控制异步电动机的转速和转矩,具有动态响应好、工作效率高、输出特性好、使用方便等优点。本文主要介绍变频调速系统中常用的两种控制方式:U/f控制和矢量控制,并结合生产实际描述分析这两种控制模式在现场生产中的应用,提高大家对变频调速系统控制模式的认识。 【关键词】变频调速系统;U/f控制;矢量控制 1 变频调速系统U/f控制 1.1 U/f控制的概念 U/f控制即恒压频比控制方式,它是采用SPWM正弦脉宽调制技术控制半导体器件开通和关断,将直流电压转变为一定形状的电压脉冲序列,实现频率和电压的控制,在调节输出频率?的同时,调节输出电压U的大小,通过U和?配合实现不同类型的调频调压来进行调速。解决了只改变频率进行调速:频率上升时,主磁通下降,拖动转矩下降,电动机的拖动能力降低,对于恒转矩负载因拖不动而堵转;频率下降时,主磁通上升,引起主磁通饱和,励磁电流急剧升高,使通过定子绕组的电流大于定子绕组额定电流,电机发热严重。在变频调速中基频以下常采用U/f恒磁通(恒转矩)调速,基频以上调速由于变频器输出电压无法大于额定输入电压因此只能恒功率调速。 1.2 U/f控制特性及应用 U/f控制是变频调速系统应用最普遍的调速模式,它通过调节电机供电电源电压和频率来进行调速因此该调速系统的机械特性可平滑地上下移动,转差率不变,调速时有很高的运行效率,但在基频下U/f(等于常数)调速并不是真正的恒磁通(恒转矩)调速,当电机在低频、低速运行时,由于变频器输出电压成正比地下降,电机满负荷运行时定子绕组电阻上产生的压降在电机输入电压中占的比例增大,反电动势比例减小,用于形成主磁通的电压不足,造成主磁通下降,使拖动转矩不足,带负载能力下降。 应用U/f控制模式时,首先根据变频器所带负载的特性选用合适的U/f曲线,U/f曲线是描述变频器输出电压与频率关系的曲线,一般通用性变频器U/f曲线有:直线形U/f曲线(适用于恒转矩负载如传送带),1.5次形U/f曲线(适用于风机,泵类变转矩性负载)及自定义形U/f曲线;其次根据设备在生产过程中是否需要低速满负荷运行来考虑是否采用适量补偿输出电压即是否设置变频器转矩提升量。正确预置转矩提升量十分重要,预置太小,可能电机磁通不足,电机输出转矩过小而无法带动设备运转,预置太大,又可能在电机轻载时引起电机磁路饱和,变频器因输出过电流而跳闸。在现场预置时,应以电机负荷率作为初步设定依据;最后根据生产设备惯性的大小及对电机启动加减速时间的要求来预置

变频器矢量控制与VF控制区别

变频器矢量控制与VF控制区别 一、V/F控制方式 变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。 一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。空载电流很大,励磁也越大。 何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。 变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。故空载电流是影响变频器输出电流的主要因素之一。 V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。三菱变频器资讯 上图中有个公式,描述转矩、转速、功率之间的关系。变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。 速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。以前一般的VF控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。 变频器V/F控制系统运行时,有两种方式进行转矩的提升: 1、自动转矩提升: 必须在P0.16=0且P4.00=0时,自动转矩提升才有效。其作用为:变频器V/F控制低频运行时,提高输出电压,抵消定子压降以产生足够的转矩,保证电机正常运行。自动转矩提升与变频器设置“空载电流”和静止学习的“定子电阻”有关系,变频器必须作电机参数静止自整定,才能更好的控制电机运行。变频器作自动转矩提升控制电机时,见上图所示输出电压和频率的线性关系,运行中因为负载变化对电压输出作适当的增减,由于响应时间的快慢,所以会出现出力不稳定因素。 2、手动转矩提升 设置P0.16为某一数值时,或者设置P4.00为非零时,手动转矩提升才有效。手动转矩提升只与变频器设置“空载电流”有关系,受电机其他参数设置影响较小。如下图所示,为手动转矩提升曲线图。变频器输出作手动转矩提升,其转矩出力在原来基础上成线性增加,所以出力稳定,不受负载变化的影响,出力稳定。但是转矩提升不益太大,转矩提升的幅度应根据负载情况适当设定,提升过多,在启动过程中将产生较大的电流冲击。 自动转矩提升只能满足一拖一的输出情况,当涉及一台变频器拖动多台电机时,V/F控制时必须采用手动转矩提升,即设置P0.16为非0值。 V/F控制时的有关性能参数调试: PA.02为V/F控制转差补偿增益,设置此参数时,可以参考电机额定转速P9.02来设定参数。该功能有助于变频器在负载波动及重载情况下保持电机转速恒定,即补偿由于负载波动而导致的电机转速增减,但是由于补偿本身的响应时间问题,导致系统出现不稳定因素增多,在系统波动较大的情况下,此功能码设置为0有一定效果。

变频器控制方式选型(精)

变频器控制方式选型 概述:本文介绍了通用变频器的控制方式,以及在实际应用中如何选择合理的型号。 关键词:控制方式选型 1引言 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 2变频器控制方式 低压通用变频输出电压为380~690V,输出功率为0.75~560kW,工作频率为0~500Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

变频调速 习题与答案)

课后辅导题一 一、选择题 1、正弦波脉冲宽度调制英文缩写是( C )。 A:PWM B:PAM C:SPWM D:SPAM 2、三相异步电动机的转速除了与电源频率、转差率有关,还与( B )有关系。 A:磁极数B:磁极对数C:磁感应强度D:磁场强度 3、目前,在中小型变频器中普遍采用的电力电子器件是( B )。 A:SCR B:GTO C:MOSFET D:IGBT 4、IGBT属于( B )控制型元件。 A:电流B:电压C:电阻D:频率 5、变频器种类很多,其中按滤波方式可分为电压型和( A )型。 A:电流B:电阻C:电感D:电容 6、电力晶体管GTR属于( A )控制型元件。 A:电流B:电压C:电阻D:频率二简单综合题 1、按照转子结构的不同,三相异步电动机分为哪两大类?从运行可靠性上看,上述哪一类电动机具有优越性? 2、三相异步电动机的转速n与哪些因素有关? 答:三相异步电动机的转速n与电源频率?1、磁极对数P、转差率s有关。 3、三相异步电动机有哪些调速方式?并比较其优缺点。 答:三相异步电动机有变极调速、变转差率调速和变频调速三种调速方式。 变极调速是有级调速,调速的级数很少,只适用于特制的笼型异步电动机,这种电动机结构复杂,成本高。变转差率调速时,随着s的增大,电动机的机械特性会变软,效率会降

低。变频调速具有调速范围宽,调速平滑性好,调速前后不 改变机械特性硬度,调速的动态特性好等特点。 4、在三相异步电动机的机械特性曲线上,标出与下列转速对应的转矩:、、。 5、变频调速时,改变电源频率?1的同时须控制电源电压U1,试说明其原因。 答:在变频调速时,若?1下降,U1不变,则Φm上升。因为 Φm已设计在接近饱和处,Φm上升即进入磁化曲线的饱和区, 引起工作电流大幅度增加,使电动机过热损坏;若?1上升, U1不变,则Φm下降,将使工作电流下降。由于电流的下降, 电动机的输出转矩不足。为了保持电动机的Φm不变,即电 动机的转矩不变,在?1变化的同时,U1必须同时变化,使 U1与?1的比值保持恒定,即U1/?1 =常数。 6、描绘三相异步电动机基频以下变频调速的机械特性曲线,并说明其特点。 7、说明三相异步电动机低频起动的优越性。 答:电动机以很低的频率起动,随着频率的上升,转速上升, 直至达到电动机的工作频率后,电动机稳速运行。在此过程 中,转速差△n被限制在一定的范围,起动电流也将被限制 在一定的范围内,而且动态转矩△T很小,起动过程很平稳。 8、说明三相异步电动机直流制动的原理,并描绘制动前后的机械特性曲线。 9、变频调速时,由于?1降低使电动机处于回馈制动状态,试说明其制动的原理,并描绘制 动前后的机械特性曲线。 10、在定性分析变频电路时,大功率开关器件的工作状态有哪两种?并画出其伏安特性曲线。 11、画出GTO的伏安特性曲线,并说明其工作原理。 12、画出IGBT的输出特性曲线及转移特性曲线,并说明其工作原理。 13、说明什么是脉冲宽度调制技术? 14、PWM逆变电路的单极性控制和双极性控制有什么区别? 15、以三相桥式SPWM逆变电路为例,说明脉宽调制逆变电路调压调频的原理。

变频器对矢量控制的给定及要求

1.矢量控制的给定 现在大部分的新型通用变频器都有了矢量控制功能,如何选择使用这种功能,多用下面两种方法: 1)在矢量控制功能中,选择“用”或“不用”。 2)在选择矢量控制后,还需要输入电动机的容量、极数、额定电流、额定电压、额定功率等。 由于矢量控制是以电动机的基本运行数据为依据,因此电动机的运行数据就显得很重要,如果使用的电动机符合变频器的要求,且变频器容量和电动机容量相吻合,变频器就会自动搜寻电动机的参数,否则就需重新测定。很多类型的变频器为了方便测量电动机的参数都设计安排了电动机参数自动测定功能。通过该功能可准确测定电动机的参数,且提供给变频器的记忆单元,以便在矢量控制中使用。 2.矢量控制的要求 若选择矢量控制模式,对变频器和电动机有如下要求: 1)一台变频器只能带一台电动机。 2)电动机的极数要按说明书的要求,一般以4极电动机为最佳。 3)电动机容量与变频器的容量相当,最多差一个等级。例如,根据变频器的容量应选配11kW的电动机,使用矢量控制时,电动机的容量可是11kW或7.5kW,再小就不行了。 4)变频器与电动机间的连接线不能过长,一般应在30m以内。如果超过30m,需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。 3.使用矢量控制的注意事项 在使用矢量控制时,一些需要注意的问题如下: 1)使用矢量控制时,可以选择是否需要速度反馈。对于无反馈的矢量控制,尽管存在对电动机的转速估算精度稍差,其动态响应较慢的弱点,但其静态特性已很完美,如果对拖动系统的动态特性无特殊要求,一般可以不选用速度反馈。 2)频率显示以给定频率为好。矢量控制在改善电动机机械特性时,最终是

相关文档
相关文档 最新文档