文档库 最新最全的文档下载
当前位置:文档库 › 航模基础知识培训

航模基础知识培训

第二章模型的原理与结构

第一节概述

能够离开地面飞行的装置总称飞行器,飞行是航空模型的主要特征。飞行器可以分为外层空间的飞行器和大气层的飞行器两大类。外层空间的飞行器叫做宇宙飞行器,如人造卫星、宇宙飞船等。大气层的飞行器叫做航空器,它包括轻航空器和重航空器。

轻航空器和重航空器虽然都可以在大气层内飞行,但是它们的飞行历史截然不同的。

1、轻航空器

轻航空器是指它的重量比同体积空气轻的航空器。它是依靠空气的浮力而升空的。根据阿基米德定律,任何物体在空气中都会受到向上的浮力,这个浮力的大小等于被物体排开的空气的重量。如果航空器的重量等于它所排开的空气的重量,它所受到的浮力就会大于重力,航空器就会像上升起,正像放在水底的木块回向上浮起一样。

常见的轻航空器有气球和飞艇。气球和飞艇都充入比空气轻的气体,如氢气和氦气。有些气球还充入热空气。气球是没有动力装置的,靠自然风运动。飞艇使用发动机做动力,发动机带动螺旋桨,推动飞艇前进。飞艇一般造成流线形,以减少阻力。飞艇还装有尾翼,以保证它前进时的稳定性,并且通过尾翼操纵飞艇的飞行方向。

图2-1 气球与飞艇

气球的球囊一般都用不透气的布,而模型气球则用纸。

轻航空器的升空条件。要设计和制作一个轻航空器,必须要考虑它所受的浮力和重力。只有当浮力大于重力的时候,轻航空器才能升空。为了计算方便,我们引入比重这个概念。比重是指某种物质在单位体积内的重量。下面以热气球为例,介绍计算浮力和重力的方法。

2、重航空器

重航空器是指它的质量比同体积空气重的航空器。飞机、火箭、导弹等都属于重航空器。显然,重航空器所受到的浮力比重力小得多,不可能依靠浮力升空。飞机可以利用空气动力升空。火箭和导弹直接利用反作用力升空。重航空器的飞行原理要比轻航空器复杂得多。

第二节空气动力学基本原理

当一个物体在空气中运动,或者空气从物体表面流过的时候,空气对物体都会产生作用力。我们把空气这种作用在物体上的力叫做空气动力。

空气动力作用在物体的整个表面上。它既可以产生对飞机飞行有用的力,也可以产生对飞机飞行不利的力。升力是使飞机克服自身重量保持在空气重飞行的力;阻力是阻碍飞机前进的力。为了使飞机能够在空机中飞行,就要在飞机中安装发动机,产生向前的拉力区克服阻力,飞机和空气发生相对运动,产生升力区克服重力。

为了进一步讨论飞机的升力和阻力,我们需要简单介绍一下空气动力学的几个基本原理。

1、相对性原理

在运动学中,把运动的相对性叫做相对性原理或者叫做可逆性原理。

相对性原理对于研究飞机的飞行是很有意义的。飞机和空气做相对运动,无论是飞机运动而空气静止,还是飞机静止而空气向飞机运动,只要相对运动速度一样,那么作用在飞机上的空气动力就是一样的。

根据这个原理,在做实验的时候,可以采用一种叫风洞的实验设备。这种设备利用风向或其他方法在风洞中产生稳定的气流。把模型放在风洞里,进行吹风实验,用来研究飞机的空气动力问题,模型在风洞里测出的数据和模型在空气中以相同的速度飞行时测出的数据是相近似的。

2、连续性原理

为了一目了然地描述流体的流动情况,需要引入流线的概念。流体微团流动时所经过的路径叫做流线。

图2-2 稳定流体的流线

图2-2是稳定流体流过某一个通道的流线。从图中可以看到,截面宽的地方流线系,截面窄的地方流线密。由于流线只能在通道中流动,在单位时间内通过通道上任何截面的流体质量都是相等的。因此,连续性原理可以用下式表示:

ρυ

S

=

常数

S,截假设流体是不可压缩的,也就是说流体密度ρ保持不变,截面1的面积是

1

面2的面积是2S ,通过截面1时流体速度是1υ,通过截面2时流体速度是2υ,于是有:

2211S υS υ=

由公式和图可以看到,截面窄、流线密的地方,流体的流速快,截面宽、流线稀的地方,流体的流速慢。通过以上分析就很容易解释窄水流快,路面窄风速大的现象了。

3、伯努利定律

如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。然后用嘴向这两张薄纸中间吹起,如图2-3所示。你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出来的气体速度越大,两张纸就越靠近。这是为什么呢?这就是由于伯努利定律的作用。简单的说流体的速度越大,静压力越小,速度越小,静压力越大,这里说的流体一般是指空气或水,这就是伯努利定律。伯努利定律是空气动力最重要的公式。

图2-3 伯努利定律 从这个现象可以看出,当两张纸中间有空气流过的时候,中间空气流动的速度快,压强便小了,纸外压强比纸内大,内外的压强差就把两张纸往中间压去,中间空气流动的速度越快,纸内纸外的压强也就越大。

伯努利定理是能量守恒定律在流体中的应用。当气体水平运动的时候,它包括两种能量:一种是垂直作用在物体表面的静压强的能量,另一种是由于气体运动而具有的动压强的能量,这两种能量的和是一个常数。

静压强度就是通常讲的压强,用p 表示,单位是2/m Kgf ,动压强用22

1ρυ表示,其中ρ是空气密度,单位是42/m Kgs (因为密度ρ和比重γ的单位关系是g ργ=,重力的单位是Kgf ,γ的单位是3/m Kgf ,g 的单位是2/s m ,所以空气密度的单位是

42/m Kgs )

。如果忽略气体的压缩性以及温度变化的影响,伯努利定理可以用下式表示:ρ

常数=+p 22

1ρυ

用伯努利定理研究前述截面情况,就有:

1212222

121p p +=+ρυρυ 从上式可以得知,在ρ不变的情况下,由于截面2处的流速2υ大于截面1处的流速1υ,所以阶面2处的静压强2p 小于截面1处的静压强1p 。

伯努利定律在日常生活上也常常应用,最常见的可能是喷雾器(如图2-4),当压缩空气朝A 点喷去,A 点附近的空气速度增大静压力减小,B 点的大气压力就把液体压到出口,刚好被压缩空气喷出成雾状,读者可以在家里用杯子跟吸管来试验,压缩空气就靠你的肺了,表演时吸管不要成90度,倾斜一点点,以免空气直接吹进管内造成皮托管效应,效果会更好。

图2-4 伯努利定律的应用

第三节 机翼的翼型和升力

飞机为什么能够像鸟一样在天空中滑翔?其实很早人们都在惊奇鸟的飞翔了。《诗经》在大雅中就有“鸢飞戾天,鱼跃于水”的诗句。显示出人对飞鸟游鱼的羡慕以及人类的无奈。

一、翼型

航空先驱们正是从研究鸟的飞行原理开始学习飞翔的。人们发现,鸟的翅膀在飞行使羽毛能够展开,并且翅膀下面是内凹而上方是凸起的。

1903年,美国的莱恃兄弟研制的有人动力飞机、 1908年法国的昂利·法尔门操纵的巴然·法尔门飞机都是双冀机,机翼也都是蒙布的并且具有薄的带有正弯度的翼型,它们都很象鸟翼的截面。现在所研制的飞机基本上也是这种截面,都具有一定的

向上凸起弧度,为什么机翼要做成这种形状呢?

图2-5 翼型与机翼的剖面

机翼横截面的轮廓叫翼型或翼剖面。截面取法有的和飞机对称平面平行,有的垂直于机翼横梁。直升机的旋翼和螺旋桨叶片的截面也叫翼型。

翼型的特性对飞机性能有很大影响,选用最能满足设计要求,其中也包括结构、强度方面要求的翼型.是非常重要的。

为了适应各种不同的需要,航空前辈们发展了各种不同的翼型,从适用超音速飞机到手掷滑翔机的翼型都有。100年来有相当多的单位及个人作有系统的研究,与模型有关的方面比较重要的发展机构及个人有:

1、NACA:国家航空咨询委员会即美国太空总署(NASA)的前身,有一系列之翼型研究,比较有名的翼型是”四位数”翼型及”六位数”翼型,其中”六位数”翼

型是层流翼。

2、易卜拉:易卜拉原先发展滑翔机翼型,后期改研发模型飞机翼型。

3、渥特曼:渥特曼教授对现今真滑翔机翼型有重大贡献。

4、哥庭根:德国一次大战后被禁止发展飞机,但滑翔机没在禁止之列,所以哥庭根大学对低速(低雷诺数)飞机翼型有一系列的研究,对遥控滑翔机及自由飞(无遥控)模型非常适用。

5、班奈狄克:匈牙利的班奈狄克翼型是专门针对自由飞模型,有很多翼型可供选择。

图2-6 翼型各部分的名称

翼型各部分的名称如图2-6所示。一般翼型的前端圆钝,后端尖锐,下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两端点之间的连线叫做翼弦。

其中影响翼型性能最大的是中弧线的形状、翼型的厚度的分布。中弧线是翼型上弧线与下弧线之间的内切圆圆心的连线。翼弦是指连接翼型中弧线前后端点的直线,它是翼型的一条基准线。

翼型前缘半径决定了翼型前部的“尖”或“钝”,前缘半径小,在大迎角下气流容易分离,使模型飞机的稳定性变坏;前缘半径大对稳定性有好处,但阻力又会增加。

如果中弧线是一根直线,与翼弦重合,那就表示这翼型上表面和下表面的弯曲情况完全一样,这种翼型称为对称翼型。普通翼型的中弧线总是弯的,S翼型的中弧线是横放的S型(图2-7 a)。

翼型的厚度、中弧线的弯度、翼型最高点在什么地方等通常都是用翼弦长度的百分数来表示的。中弧线最大弯度用中弧线最高点到翼弦的距离来表示。中弧线最高点的翼弦的距离一般是翼弦长的4%~8%。中弧线最高点位置同机翼上表面边界的特性有很大关系。竞速模型飞机翼型的中弧线最高点到前缘的距离一般是翼弦的25%~50%。

翼型的最大厚度是指上弧线同下弧线之间内切圆的最大直径,一般来说,厚度越大,阻力也越大。而且在低雷诺数情况下,机翼表面容易保持层流边界层。因此,竞速模型要采用较薄的翼型。翼型最大厚度一般是翼弦的6%~8%。但是,线操纵特技模型飞机例外,它的翼型最大厚度可以达到翼弦的12%~18%。翼型最大厚度位置对机翼上表面边界层特性也有很大影响。

翼型命名:

适合于模型飞机上使用的翼型现在已有百种以上,每种翼型的形状都各不相同。为了确切地表示出每种翼型的形状,现在都用外形座标表表示。如NACA2412,第一个数字2代表中弧线最大弧高是2%,第二个数字4代表最大弧高在前缘算起40%的

位置,第三、四数字12代表最大厚度是弦长的12%,所以NACA0010,因第一、二个数字都是0,代表对称翼,最大厚度是弦长的10%,但要注意每家命名方式都不同,有些只是单纯的编号。

因为翼型实在太多种类了,一般人如只知编号没有座标也搞不清楚到底长什么样,所以在模型飞机界称呼翼型一般常分成以下几类

图2-7 翼型的分类 1、全对称翼:图2-7 b ,上下弧线均凸且对称。3D 花样特技模型直升机的旋翼模型就是这样的。

2、半对称翼:图2-7 d ,上下弧线均凸但不对称。有的3D 花样特技模型直升机的旋翼模型也是这样的。

3、克拉克Y 翼:图2-7 a ,下弧线为一直线,其实应叫平凸翼,有很多其他平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y 翼,但要注意克拉克Y 翼也有好几种。

4、S 型翼:图2-7 e ,中弧线是一个平躺的S 型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。

5、内凹翼:图2-7 c ,下弧线在翼弦线上,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。

6、其他特种翼型。 如图2-7 f 、g 的最大厚度点在60%弦长处的“层流翼型“,

(a)

(b)

(c)

(d)

(e) (f) (g)

(h)

(i)

(j)

下表面后缘下弯翼增大机翼升力的“弯后缘翼型” ,;图2-7 h 的为了改善气流流过机翼尾部的情况,而将翼型尾部做成一块平板的“平板式后缘翼型”,;图2-7 I 的头部处比一般翼型多出一偏薄片,作为扰流装置以改善翼型上表面边界层状态的“鸟嘴式前缘翼型”,;以及图2-7 j 的下表面有凸出部分以增加机翼刚度的“增强翼型”等。

以上的分类只是一个粗糙的分类,在观察一个翼型的时候,最重要的是找出它的中弧线,然后再看它中弧线两旁厚度分布的情形,中弧线弯曲的方式、程度大至决定了翼型的特性,弧线越弯升力系数就越大,但一般来说光用眼睛看非常不可靠,克拉克Y 翼的中弧线就比很多内凹翼还弯。

二、升力的产生

当气流迎面流过机翼的时候,机翼同气流方向平行,原来是一股气流,由于机翼的插入,被分成上下两股。在翼剖面前缘附近,气流开始分为上、下两股的那一点的气流速度为零,其静压值达到最大。这个点在空气动力学上称为驻点。对于上下弧面不对称的翼剖面来说,这个驻点通常是在翼剖面的下表面。在驻点处气流分差后,上面的那股气流不得不想要绕过前缘,所以它需要以更快的速度流过上表面。由于机翼上表面拱起,使上方部那股气流的通道变窄,机翼上方的气流截面2S 要比机翼前方的气流截面1S 小,流线比较密,所以机翼上方的气流速度2υ大于机翼前方的气流速度1υ;而机翼下方是平的,机翼下方的流线疏密程度几乎没有变化,所以机翼下方那个的气流速度和机翼前方基本相同。通过机翼以后,气流在后缘又重新合成一股。根据气流连续性原理和伯努利定理可以得知,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。

图2-8 升力的产生 设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力(如图2-9),于是机翼就被往上推去,飞机就飞起来。以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合(如图2-10),经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点中流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘(如图2-11)。

图2-9 机翼上下两面受力

图2-10 早期理论的气流质点流过机翼的情况

图2-11 风洞试验得到的气流质点流过机翼的情况

在某杂志上曾经有某位作者说飞机产生升力是因为机翼有攻角,当气流通过时机翼的上缘产生“真空”,于是机翼被真空吸上去(如图2-12),可是真空为什么只把飞机往上吸,而不会把机翼往后吸呢?还有另一个常听到的错误理论有时叫做子弹理论,这理论认为空气的质点如同子弹一般打在机翼下缘,将动量传给机翼,这动量分成一个往上的分量于是产生升力,另一个分量往后于是产生阻力(如图2-12),可是克拉克Y翼及内凹翼在攻角零度时也有升力,而照这子弹理论该二种翼型没有攻角时只有上面“挨子弹”,应该产生向下的力才对啊,所以说机翼不是风筝当然上面也没有所谓真空。

图2-12 错误的“真空理论”

图2-13 错误的“子弹理论”

三、升力的计算

一般采用如下公式计算升力: C

S C Y Y 22

1ρυ= 式中Y 是机翼的升力,单位是千克力;ρ是空气密度,在海平面或低空飞行的情况下,ρ近似取42/125.0m Kgs ;υ是机翼同气流的相对速度,单位是s m /,S 是机翼面积,单位是2m ,是纸机翼上部向下看的机翼的投影面积,而不是翼剖面面积,也不是整个机翼外表面面积。Y C 是升力系数,没有单位,它同机翼的翼剖面形状、机翼的迎角等因素有关。它的数值用实验法求出,计算时可以从升力系数曲线中查到。

图2-14 迎角与无升力迎角 “真空”

阻力

升力

空气质点

图2-15 升力系数曲线

必须指出,伯努利定理和以上计算升力的公式,只有对完全没有粘性的流体来说才比较准确。事实上,空气也是由粘性的,由于粘性的作用,机翼的升力会受到影响,飞机飞行不仅会产生升力,而且会产生阻力。

升力系数曲线一般如图所示。从图上可看到,曲线的横座标代表迎角α,纵座标代表升力系数

C,提据一定的迎角便可查出它的升力系数。ɑ

Y

如果是机翼前缘稍上抬,翼弦同气流有一个不大的迎角α,如图所示。机翼产生的升力会更大些。所谓迎角就是相对气流与翼弦所成的角度。翼弦是指翼型前缘与后缘连成的直线。

一般上下不对称的翼型在迎角等于0度时,仍然产生一定的升力,因此升力系数在0度迎角时不为零,只有到负迎角时才使升力系数为零。对称翼型在0度迎角时不

α。从这个迎角开始,产生升力,升力系数为0。升力系数为零的迎角就是无升力迎角

迎角于升力系数成正比,升力系数曲线称为一根向上斜的直线。当迎角加大到一定程度以后,如图中16度时升力系数就开始下降。升力系数达到最大值的迎角称为临界

C表示。飞机飞行时,如果迎迎角。这时的升力系数称为最大升力系数,用符号

max

Y

角超过临界迎角,便会因为升力突然减少以至下坠,这种情况称为失速。

第四节飞行的阻力

飞机飞行时机翼上不仅有升力产生,同时还会由于空气的粘性会产生阻力。

1、空气的粘性和边界层与雷诺数

用两个非常接近,但有没有接触的圆盘做实验,其中一个用电动机带动,使它高速旋转;另一个用线吊起来,经过一段时间以后,那个用线吊起来的远方也会慢慢的旋转起来,这个实验可以证实空气是有粘性的。

图2-16 空气的粘度

由于空气粘性的影响,当空气流过物体表面的时候,贴近物体表面的空气质点粘附在物体表面上,它们的运动速度为零,随着同物体表面距离的增加,空气质点的速度也逐渐增大。远到一定的距离后,空气粘性的作用就不那么明显了。这一薄层空气叫做边界层或附面层。在模型飞机机翼表面,边界层大约有2~3毫米厚,在边界层内,如果空气流动是一层一层有规律的,叫做层流边界层;如果空气流动是杂乱无章的,叫做紊流边界层。

图2-17 层流和紊流

层流边界层的空气质点的流动可以认为使一层一层的,很有层次也很有规律。各层的空气都以一定的速度在流动,层与层之间的空气质点不会互相乱窜。所以在层流边界层空气粘性所产生的影响也较小。而紊流边界层却不然。在紊流边界层空气质点的运动规律正好与层流相反,是杂乱无章的。靠近最上面的那层速度比较大的空气质

点可能会跑到底下速度比较慢的地方来,而底下的质点也会跑到上面去。

边界层内空气质点流动的这些规律,也反映在这两种边界层内速度变化方面。虽然这两种边界层在最靠近物体得到那一点气流速度都是零,即相当于空气“粘”在物体表面一样;而在边界层外边的气流速度,都与没有粘性的情况相同。但是在从0变化到边界外边的速度之间,边界层内部的速度变化规律确实不同的。从图中可以看到,层流边界层内的速度变化比较激烈;而紊流边界层除了十分贴近物体表面的范围外,在其他地方速度变化并不大,所以紊流边界层内的空气质点具有的动能也比较大。当物体表面上形成紊流边界层时,空气质点的运动就很不容易停顿下来,层流边界层则相反。

刚才讲了边界层内空气质点运动速度的变化情况,那么边界层内的压强有没有变化呢?要注意,前面讲过的伯努利定理在边界层内已不再适用。因为伯努利定理中假定气流在通道中的能量是不变的。而在边界层中,由于粘性的影响消耗了空气质点的一部分动能,在物体表面上,由于粘性影响最大,空气质点的动能全部消耗殆尽。研究表明,尽管沿着边界层厚度方向空气质点的速度不同,但它们的静压确是相同的。

空气流过物体表面时,什么时候会产生层流边界层或者紊流边界层呢?产生不同边界层与哪些因素有关呢?

气流在刚开始作用于的物体时,在物体表面所形成的边界层是比较薄的,边界层内的流动也比较有层次。所以一般是层流边界层。空气质点流过的物体表面越长,边界层也越厚,这时边界层内的流动便开始混乱起来了。由于气流流过物体表面受到扰乱(不管物体表面多么光滑,对于空气质点来说,还是很粗糙的)。结果是空气质点的活动越来越活跃,边界层内的气流不再很有层次,边界层内的空气质点互相攒动,互相影响,物体表面的边界层也就变成了紊流边界层。

决定物体表面边界层到底是层流或是紊流,主要根据五个因素:(1)气流的相对速度;(2)气流流过的物体表面长度;(3)空气的粘性和密度;(4)气流本身的紊乱程度;(5)物体表面的光滑程度和形状。

气流的流速越大,流过物体表面的距离越长,或空气的密度越大(即每单位体积的空气分子越多),层流边界层变越容易变成紊流边界层。相反,如果气体的粘性越小,流动起来变越稳定,越不容易变成紊流边界层。在考虑层流边界层是否会变成紊流时,这些有关的因素都要估计在内。

空气同物体的相对速度υ越大,空气流过物体表面的距离l (模型飞机的翼弦长)越长,空气的密度越大,层流边界层就越容易变成紊流边界层。这三个因素相乘后同空气的粘性系数μ相比,比值就叫做雷诺数,用e R 表示:0.00000182Kgs/m 2

μ

ρυl R e = 式中υ的单位是s m /,l 的单位是m ,ρ近似取42/125.0m Kgs ,μ可取2/00000182.0m Kg s 。这样,雷诺数可以简化成:

l R e υ69000=

在空气动力学上,将层流边界层变成紊流边界层的雷诺数,称为临界雷诺数。如

果空气流过物体时的雷诺数小于临界雷诺数,那么在物体表面形成的边界层都是层流边界层;如果空气流过同一物体时的雷诺数超过临界雷诺数,那么在这个物体表面的层流边界层就开始变成紊流边界层。因此,临界雷诺数表示流体从层流向紊流过渡的转折点。一般模型飞机机翼翼型的临界雷诺数大约是50000。

必须指出,上式是对应于气温为15℃的海平面国际标准大气的条件下的。气温对空气粘性的影响比较大啊,加之模型飞机的飞行雷诺数本来就不大,所以气温对模型飞机的雷诺数的影响就显得更加严重。

图2-18 雷诺数随气温变化

做模型的风洞试验时,如果能使模型试验的雷诺数与实际飞行的雷诺数相等,那么仅就空气粘性这个因素而言,模型流场的流型与实物流场便相似了。这是流体力学的相似法之一。作低速实验时,这样取得的阻力系数便与实际飞行的相等了。

2、飞行的阻力

只要物体同空气有相对运动,必然有空气阻力作用在物体上。作用在模型飞机上的阻力主要有摩擦阻力,压差阻力和诱导阻力以及干扰阻力。

(1)摩擦阻力,当空气流过机翼表面的时候,由于空气的粘性作用,在空气和机翼表面之间会产生摩擦阻力。如果机翼表面的边界层是层流边界层,空气粘性所引起的摩擦阻力比较小;如果机翼表面的边界层是紊流边界层,空气粘性所引起的摩擦阻力就比较大。摩擦阻力的大小和粘性影响的大小、物体表面的光滑程度以及物体与

空气接触面积(称为浸润面积)等因素有关。模型飞机暴露在空气中的面积越大、摩擦阻力也愈大。

为了减少摩擦阻力,可以减少模型飞机同空气的接触面积,也可以把模型表面做光滑些,使表面产生层流层。但不是越光滑越好,因为表面太光滑,容易引起层流边界层,在模型飞机的低雷诺数条件下,层流边界层的气流容易分离,会使压差阻力大大增加。

而对于不产生升力的部件,还是设法把它的表面打磨得比较光滑一些,以减少它的摩擦阻力。

(2)压差阻力。一块平板,平行于气流运动阻力比较小,垂直于气流运动阻力比较大,如图所示。因为这种阻力是由于平板前后存在压力差而引起的,所以,我们把这种阻力叫做压差阻力。如果进行进一步的研究,可以看到,产生这个压力差的根本原因还是由于空气的粘性。

图2-19 压差阻力

图2-20 驻点与粘度对气流的流动影响

以圆球为例,当空气流动,假设空气没有粘性,则圆球前后、上下的压力分布分别相同,所以也没有上下方向的压力差——升力,也没有前后方向的压力差——压差阻力。只有当空气有粘性时,气流流过圆球表面会损失一些能量,使得在圆球的前端

——驻点处分叉成上下两股的气流,在绕过圆球后,不能够在圆球后端再汇合在一起向后平滑的流去,于是产生气流分离的现象。

压差阻力与物体的形状,物体在气流中的姿态以及物体的最大迎风面积等有关,其中最主要的是同物体的形状有关。如果在那块垂直于气流的平板前面和后面都加上尖球形的罩,成为流线型的形状。它的压差阻力就可以大大减少,有时可以减少80%。所以,一般模型飞机的部件都采用流线型的。

压差阻力还与物体表面的边界层状态也有很大的关系。如果边界层是层流的。边界层内的空气质点动能较小,受到影响后容易停留下来,这样气流就比较容易分离,尾流区的范围就比较大,压差阻力也就很大。如果边界层是紊流的,那么由于边界层内空气质点的动能比较大,所以气流流动时就不太容易停顿下来,使气流分离得比较晚,尾流区就比较小,压差阻力也就比较小。所以从减少压差阻力的观点看,边界层最好是紊流的。

(a) 层流 (b) 紊流

图2-21 物体表面状态对气流的影响 在通常的情况下,机翼的阻力主要就是压差阻力和摩擦阻力。两者之和几乎都是总的阻力,叫做翼形阻力。计算机翼阻力的公式如下:Cx

S C X x 22

1ρυ= 其中X 是机翼的阻力,单位是Kgf ,x C 是阻力系数

对于流线型物体,如模型飞机的机身所产生的阻力中,摩擦阻力占总阻力的大部分,而对于不流线型的物体,如平板、圆球等,压差阻力在总阻力中占主要成分。这两种阻力在总阻力中所占的比例随物体形状的不同而有所变化。

(3)诱导阻力:在机翼的两端,机翼下表面流速小而压力大,压力大的气流就会绕过翼尖,向机翼上表面的低压区流动,于是在翼端形成一股涡流,如图所示。它改变了翼端附近流经机翼的气流方向,引起了附加的阻力。因为它是升力诱导出来的,所以叫做诱导阻力。升力越大,诱导阻力也越大。但机翼升力为0时,这种阻力也减少到0,所以又称为升致阻力。

(a) (b)

图2-22 诱导阻力

图2-23 NASA的照片

这种现象在飞行表演时,飞机翼端如有喷烟时可看得非常清楚,你可以注意涡流旋转的方向(如图2-22 b),图2-23是NASA的照片,可看见壮观的涡流,因为这种涡流延伸至水平尾翼时,从水平尾翼的观点气流是从上往下吹,因此会减小水平尾翼的攻角,也就是说水平尾翼的攻角实际会比较小,图2-23只不过是一架小飞机,如像类似747这种大家伙起飞降落后,小飞机要隔一阵子才能起降,否则飞入这种涡流,后果不堪设想,这种阻力是因为涡流产生,所以也称涡流阻力。

减小诱导阻力的方法是增大展弦比。一般把机翼两翼端之间的距离叫做翼展。不论机翼的平面形状如何,是长方形的还是后掠形的,两翼尖端的最远距离就是翼展。翼展同翼弦的比叫做展弦比,如果机翼又细又长,即它的展弦比大。展弦比也大,诱导阻力也就越小。另外,还可以把机翼形状做成梯形或椭圆形,这两种形状机翼的诱导阻力比矩形机翼的诱导阻力小。

图2-24 改变机翼形状改善诱导阻力

(4)干扰阻力

对于整架模型飞机来说,产生升力的除机翼外,还有尾翼,产生阻力的除机翼外,还有机身、尾翼、起落架、发动机等部分。另外,飞机各个部件之间不同程度的相互衔接处也会产生附加阻力。整架飞机阻力于单独部件阻力总和之间的差值称为干扰阻力。

例如,在机翼与机身连接处气流容易发生分离,产生很大的干扰阻力,如果在翼身连接处加整流包皮,将二者的表面连成圆滑的过渡,就可以避免分离,这部分的干扰阻力也就大大减少。

干扰阻力

图2-25 干扰阻力

一般情况下,整架飞机的阻力总和要比各个部件阻力的总和来的大。但个别设计得好得飞机,其整机阻力身子有可能比各部件阻力的总和还小。前一种情况称为不利干扰,干扰阻力为正值,后一种情况称为有利干扰,干扰阻力是负值。

干扰的类型根据引起部件干扰作用的特点大致可以分为:涡流干扰、尾流干扰和压力干扰三种。

(1)涡流干扰是指能产生升力的物体对它后面部件的影响。例如螺旋桨滑流对滑流区域内部件的影响。由于涡流干扰的干扰源是产生升力的物体,所以它可以认为是一种升力干扰。升力干扰一般表现为不利干扰。但有时会表现为有利干扰。

大雁编队飞行就是利用有利干扰的一个例子。成群的大雁在飞行时常常编成人字形或者斜一字形,领队的大雁排在最前头,幼弱的小雁则在最外侧或最末尾,后面一只雁的翅膀正好处在前一只雁翅膀所形成的翼尖涡流中(这种涡流与前面讲诱导阻力是提到的翼尖涡流相类似),由于涡流呈螺旋形,它对于后面那只大雁的影响恰恰与诱导阻力的作用相反,能够产生助推的作用。因此领队的雁的体力消耗比较大,都是成年的强壮大雁担当。

(2)尾流干扰任何突出在飞机表面上的物体或多或少的都有形状阻力,也就是压差阻力。压差阻力与物体后面的尾流区有关。这种尾流区不仅给这个物体本身带来压差阻力,而且尾流还会顺流而下影响它后面物体的气流流动情况。由于尾流与压差阻力是密切相关的,所以这种干扰也可称为阻力干扰。很显然,阻力干扰总是一种不利干扰。

(3)压力干扰气流流过物体时,在物体表面上会受到分布的空气压力,这种

压力分布于物体形状密切相关。所以在飞行中,飞机各个部件表面的压力分布是各不相同的。在飞机上任何两个互相连接的部件(例如:机身与机翼,机身与尾翼等)的接合处,不同部件的压力分布会互相影响,从而影响到部件结合部位附近的流动状态,严重的还会导致气流分离。

一般模型飞机,水平尾翼产生的升力只有机翼的5%左右,可以忽略不计。整架飞机的阻力可以通过把各部分的阻力系数综合成一个总的阻力系数,在考虑诱导阻力和由于干扰造成的附加阻力而估算出来。由于估算不是十分准确的,还需要通过试飞才能确定下来。尽量改善模型飞机各部件之间的配置,争取把这种干扰影响减到最小。

4、升阻比

阻力系数的大小与物体的形状、表面状况以及它与相对气流之间的相对位置等因素有关。

评价一架飞机或者一个机翼的好坏,不能只看升力有多大,还要看它的阻力有多大。升力大,阻力小,才是好的。为此,引入升阻比这个概念,升阻比用K 表示,它是升力Y 同阻力X 的比:

X

Y K = 对于一个机翼来说,升阻比还可以表示成升力系数同阻力系数的比:

X Y X Y C C S C S C X Y K ===)2

1()21(22ρυρυ 飞机的机翼,其弧线在一定范围内,弯度越大,升阻比越大。但超过这个范围,阻力增加很快,升阻比反而下降。

5、失速

在机翼迎角较小的范围内,升力随着迎角的加大而增加,但当迎角加大到某一定值时,升力就不再增加了。这时的迎角叫做临界迎角。超过临界迎角后,迎角在加大,阻力增加,升力反而减小,就产生了失速现象。

图2-26 正常流经翼面的气流

图2-27 失速时流经翼面的气流

图2-28 失速时气流在机翼表面的分离

产生失速的原因是:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。空气在向后流动的过程中,边界层内的空气质点的流速将随着气流减速而开始减慢,加上粘性的影响,又会在机翼上表面附近消耗一部分动能,而且越靠近机翼表面动能消耗得越多。这样流动的结果,是边界层内最靠近机翼表面的那部分空气质点在没有到达后缘以前已经流不动了。特别是超过临界迎角以后,气流在流过机翼的最高点不远就从翼表面上分离了。于是外面的气流为了填补“真空”,发生反流现象,边界层外的气流也不再按着机翼上表面形状流动了。在这些气流与机翼上表面之间,气体翼面打转形成漩涡,翼面向后流动,在翼面后半部分产生很大的涡流,造成阻力增大,升力减小。边界层内空气质点刚开始停止运动,并出现反流现象的那一点,称为分离点。

图2-29 可克服高度和应克服高度

航模兴趣小组活动方案

航空航天模型兴趣小组活动方案 为提高我校学生的创新能力,培养科技后备人才,学校非常重视航模活动的开展。为了真正做到以人为本、一切为了学生、为了学生的一切,以及确保本项活动开展的生机活泼、井然有序,结合学生实际特制定如下活动方案: 一、指导思想: 1、活跃校内学生科技气氛。以在全校营造浓厚的学术氛围为目的,以航空模型运动为基础,建立并逐步完善一套层次清晰、结构分明且行之有效的学生科技创新工作的组织机制,领导校内学生的科技创新活动。 2、培养学生的科技创新意识,提高学生动手、动脑、想象能力,引导学生将所学知识应用于实践,为学生成长为具有创新精神的人才奠定基础。 3、通过航模课外活动的展开,在校内广泛开展科普宣传活动,向全校学生宣传航空航天知识,使全校逐渐形成学科学、爱科学、用科学的氛围。 二、成立领导小组及科普教育基地 组长:郑老师 成员:乔晓娟、王红利 队员:各年级自愿报名参加的学生。 航空航天模型教育基地:学校微机室、操场 三、具体做法: 1、将继续加强综合实践活动理念、航模教学方法、实践技能的学习和掌握,保证在活动中有效指导学生操作试飞。 2、继续加强对活动课程的开发,规范校本课程内容;并在实践中不断的完善教学方案。 3、请有关航模专家来与教师进行交流,辅导学生进行航模活动,与外校教师多多进行交流等。以保证课程开展的丰富多彩,有章有法。 4、在学校教育网上,进行一些航模基础教育的宣传,与同学们加强交流。 5、加强管理力度,使航模活动健康有序的开展。 6、积极的参与各级举行的各项比赛活动,争取多为学校争取荣誉。 7、在航模教学活动中,锻炼学生的动手能力、动脑能力、团队协作以及交流能力。 8、在教学中,有意识的采用探究式教学,如飞机的飞行原理等,就完全可以让学生们自己思考讨论试验。 9、鼓励学生自主学习,利用多媒体以及学校购买的航模书籍杂志、航模模具开展自学并且了解航模活动的最新动态。 四、航模教学计划 (一)木制飞机组

航模相关书籍

电子版图书详细目录: 《10类航模飞机制作》 作者:边莫行编页数:113 科学普及出版社,1988 《21世纪学校科技活动创新设计与探索全书》 作者:朴哲松等主编页数:3145页内蒙古少年儿童出版社,1999 《1954年国际航空模型竞赛》 作者:(苏)巴巴耶夫(Н.Бабаев)等著黄永良,程乾译页数:103页人民体育出版社,1956 《1978年全国航海模型比赛中学科技特辑》 作者:《中学科技》编辑部编辑国家体委军体局审定页数:111页上海教育出版社,1979 《1978年全国航空模型比赛》 作者:《中学科技》编辑部编辑页数:198页上海教育出版社,1979 《产品模型制作》 作者:谢大康编著页数:178页化学工业出版社,2003 《车模精品鉴赏手册》 作者:蔡葵编著页数:161 福建科学技术出版社,2003 《初级无线电操纵模型飞机第二版》 作者:陶考德编著页数:119页人民体育出版社,1962 《初级无线电操纵模型飞机》 作者:陶考德编著页数:90页人民体育出版社,1958 《船舰模型的无线电远距离控制》 作者:(苏)布鲁因斯马(А.Х.Бруинсма)著页数:62页国防工业出版社,1958 《创纪录模型飞机》 作者:(苏)考斯钦科,(苏)密基尔吐莫夫著中央国防体育俱乐部编页数:1册人民体育出版社,1956 《弹射滑翔》 作者:体育运动委员会航空运动司编著页数:39 人民体育出版社,1960 《弹射模型飞机》 作者:周嵚著页数:36 青年出版社,1952 《电动模型车》 作者:冯立编著页数:97 万里书店,1978 《电动模型制作》 作者:伯章编著页数:112页上海人民出版社,1975 《电动起重机模型》 作者:伯章编著页数:78 少年儿童出版社,1961 《飞机模型制造法》 作者:(苏)考斯钦克) 页数:1册开明书店,1952 《飞机模型制造法》 作者:毕云编译页数:1册中国文化事业社,1952 《飞机潜艇及其他模型制作法》 作者:(苏)阿柏拉摩尔著符其珣译页数:95页开明书店,1949 《光电控制模型》 作者:谢耀德译页数:130 华联出版社,1978 《航海模型》

航模知识题参考答案汇总

航模基础知识题参考答案 一、选择题 1. 航模包括 ( A ) A)航空模型航天模型B)航空模型航天模型及车模船模 C)航空模型航天模型和船模 D)航空模型 2. 相同上反角以下布局稳定性最大的是(A ) A)上单翼 B) 中单翼 C)下单翼D) A和C 3. 电动航模最常采用哪种电池提供动力( B ) A) 镍氢电池 B) 锂电池C) 铅蓄电池 D) 干电池 4.垂尾的作用是什么( A ) A)控制航向 B) 减小阻力 C) 增加阻力 D) 控制飞机俯仰5.下列那种形式的飞机最省电( D ) A) 涵道飞机 B) 3D飞机 C)腰推飞机 D)滑翔机 6.常见的飞机的可靠转向方式是什么?( C ) A. 副翼 B.方向舵 C.副翼+升降舵 D.差速 7.锂电池1S在充满电的情况下正常电压是多少( C ) A)1.2V B)3.8V C)4.2V D)12V 8.常规飞机的升力中心大概在哪个位置( A ) A) 机翼前三分之一平均弦长处 B) 机翼后缘处 C) 机身二分之一处D) 机翼前缘处 9 .电子调速器需要与哪些设备连接( D ) A)电池 B)电机 C) 接收机 D) ABC

10. 在航模飞行之前,正确的操作是( A ) A) 先打开遥控再接通动力电源 B) 先接通动力电源再打开遥控 C) 同时打开遥控接通动力电源 D) 都不对 11.当航模出现意外炸机时对于设备的操作正确的是( A ) A) 先拔掉电源B) 先关掉遥控 C) 先检查飞机 D) 先收完油门 12.常用锂电池飞行电压一般不得低于( B ) A)2.8V B)3.7V C) 4.0V D)4.2V 13.下列那种设计适用于高速飞机( D )。 A) 直翼飞机B)下单翼飞机 C) 双凸翼形的飞机 D) 后掠角大的飞机 14.翼尖涡流产生的原因是什么( B ) A)飞机飞行速度过快 B)机翼上下表面的压力差 C)螺旋桨气流影响 D)机翼上下表面的粗糙度差距 15.襟翼的基本效用是什么?( B ) A) 减速 B) 增加升力 C)增加稳定性 D) 增加机动性 16.下了说法正确的是( A ) A)无刷电机配备无刷电子调速器 B)有刷电机配备无刷电子调速器 C)无刷电机配备有刷电子调速器 D)都可以混合使用 17.现在你在用KT板作为材料制作一架飞机,在综合考虑强度和重量

乡村学校少年宫手册

乡村学校少年宫基本知识解答 1、乡村学校少年宫的概念 乡村学校少年宫是指依托农村中小学校现有场地、教室和设施,进行修缮并配备必要的设备器材,依靠教师和志愿者进行管理,在课余时间和节假日组织开展普及性课外活动的公益性活动场所。建设乡村学校少年宫,为农村未成年人开展实践活动、提高综合素质创造条件,是改善农村未成年人课外活动场所薄弱状况的重要举措,是加强新形势下农村未成年人思想道德建设的基本途径,是未成年人思想道德建设的基础性、长期性工程。 乡村学校少年宫的建设使用要坚持三个原则: 一是公益性原则。免费为未成年人提供文化服务,组织道德实践活动,不开展任何赢利性的经营活动,不开办收费特长班、培训班,坚决避免成为应试教育的第二课堂。 二是普及性原则。对未成年人普遍进行兴趣爱好和基本技能的培养,结合民族优秀文化和地域文化形成特色。 三是资源整合原则。充分利用学校现有资源、周边公共设施和社会各界力量,实现资源整合,切实服务农村未成年人。 2、乡村学校少年宫的主要特点 “覆盖广、花钱少、抓得住”,这是乡村学校少年宫的主要特点,也是实际推进乡村学校少年宫建设过程中的基本思路和工作要领。 一是“覆盖广”,即场所布局与学校合二为一,做到哪里有学校,哪里就有活动场所,农村孩子们都可以就地、就近、就便参加课外活动。

二是“花钱少”,即充分依托农村学校现有资源,通过修缮、改造、置换、共享等办法,闲置利用、一室多用,教室就是活动室,操场就是活动场,课桌就是活动台,不另起炉灶、不重新建设。同时,善于调动和运用社会力量支持,在设施、技术、人才等方面提供帮助。不仅建设花钱少,运行花钱也少,符合当前农村经济社会发展水平,办得成、做得到。 三是“抓得住”,即工作项目抓得住、服务对象抓得住、农村未成年人思想道德建设工作抓得住。工作项目抓得住,主要指乡村学校少年宫依托学校进行建设,实行学校管理体制,由校长兼任主任,学校老师兼任辅导员和管理人员,“一师两用、一表双用”,实行课外活动制度化管理,有阵地、师资保证,能够确保组织到位、长期开展。服务对象抓得住,主要指乡村学校少年宫面向本校和周边学校学生开展活动,工作对象集中,能够吸引未成年人主动参与,有效解决农村未成年人放学后、节假日无处可去、无事可干的问题,使农村未成年人的课外时间由分散状态转变为有组织状态,为我们进行正面教育引导提供有力抓手。农村未成年人思想道德建设工作抓得住,主要指通过抓乡村学校少年宫这个载体,能够努力改善农村未成年人思想道德建设的基础条件,壮大农村未成年人工作队伍,丰富农村未成年人精神文化生活,切实加强农村“留守儿童”教育管理,推动农村未成年人思想道德建设工作不断深入。 3、乡村学校少年宫的活动内容和功能定位 乡村学校少年宫的活动内容包括三类: 一是开展丰富多彩的文体娱乐活动,以乐促智。要针对未成年人的身心特点,因地制宜,广泛开展未成年人喜闻乐见、乐于参与的歌咏、乐器、舞蹈、绘画等艺术活动,球类、武术、棋艺、跳绳等体育活动,以及滚铁环、猜灯谜、放风筝、舞龙灯等乡土文化特色活动,使文体娱乐活动成为乡村学校少年宫最普遍开展、最基

航模DIY-群基础知识(翼型)

机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是机翼的截面形 状。现代模型飞机所用的翼型 一般可分为六类:平凸型、对 称型、凹凸型、双凸型、S型和 特种型,如图3-1所示。这六种 翼型各有各的特点,每种翼型 一般能符合某几种模型飞机的 要求。 翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧 线是翼型上弧线与下 弧线之间的距离中点 的连线。如果中弧线是 一根直线与翼弦重合, 那就表示这个翼型上 表面和下表面的弯曲 情况完全一样,这种翼 型称为对称翼型。普通 翼型中弧线总是向上 弯的,S翼型的中弧线 成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。 下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。 (一)翼型的画法 适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某翼型坐标见表3-1。

小学生的简易航空模型地制作

简易航空模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

2015年航模活动方案

南川区丁家嘴小学 2015年“放飞梦想,创造未来”航模竞赛活动方案 一、指导思想 坚持面向全体学生,坚持课内与课外相结合,全面实施素质教育,提高学生的科技素质、科学创新精神,鼓励学生通过参与、体验、实践与动手制作等方式提高科学素质。着力提高学生勇于探索的创新精神和善于解决问题的实践能力,促进学生科学文化素质的提高。 二、活动主题:低碳生活,创造未来。 三、活动时间:2015年4月——5月 四、活动对象:三至六年级学生 五、活动口号:插上科学的翅膀飞翔 六、活动要求: 1、坚持全员参与。既要让每个学生都在活动中得到锻炼,在活动中得到发展,又要注意参赛项目的质量,确保本次竞赛顺利进行。 2、体现特色、突出个性。各班在组织活动时,要根据学生实际、注重实效,做到以班为本,以学生为本,注意充分调动每个学生参与的积极性和发挥创造性、能动性,突出每个班级的个性特色。 3、做到分工负责、责任明确、准备工作充分、宣传到位、发动有力、体现协作精神。各个项目的负责人要尽职尽力,筹划好赛程,有始有终。确保本次竞赛圆满、成功的进行和完成。 4、整个竞赛活动要有序的开展和进行,各项目的负责人要关注过程,确保活动过程的安全。

七、活动内容: (一)、飞机知识讲座: 每班选拔20人参加知识讲座,并组织本班学习。 主要培训内容:模型飞机的分类:手掷飞机、直升机、弹射飞机机翼产生升力的原理 将理论知识运用到实践中,指导如何制作和调试本次竞赛机型。 解读航模竞赛的规则 (二)、学生裁判员培训班 主要学习:设计记录表格、竞赛规则、裁判员守则 竞赛规则: 第一类、手掷模型飞机直线比赛规则: 1、运动员参赛前必须对参赛飞机按要求编号。 2、模型起飞前应向裁判报班级、姓名、编号,得到许可后方能起飞。擅自起飞者本轮成绩视作无效。 3、比赛中模型不得借用、互换。一经发现个人成绩及团体成绩均视作无效。 4、比赛分为两轮。参赛者以两轮模型直线距离最远作为个人成绩。第二类、飞机留空竞赛规则: 留空竞赛分为手掷飞机、小直升飞机、弹射飞机三类 1、基本要求同上, 2、计分以留空时间为准,两轮中时间长的为最好成绩。 3、请部分老师作为计时员。飞机离手开始计时,飞机落地结束。(三)、竞赛准备 1、校内宣传、班级动员

航模无刷电机调速器说明书

航模无刷电机调速器说明书 尊敬的用户:感谢您使用飞盈佳乐有限公司设计、制造的航模无刷马达智能动力控制器(ESC)。因本产品在启动使用时产生的功率强大,错误的使用及操作可能造成人身伤害和设备损坏,我们强烈建议客户在使用本产品前仔细阅读本使用手册,严格按操作规定使用。我们不承担因使用本产品而引起的的任何责任,包括但不限于附带损失或者间接损失的赔偿责任。同时,不承担使用人擅自拆装及修改本产品引起的任何责任和因第三方产品所造成的任何责任。 我们有权不预先通知变更产品,包括外观,性能参数及使用要求;对本产品是否适合使用者特定用途不作任何保证、申明或承诺。 一、航模无刷电机控制器主要特性: ●采用功能强大、高性能MCU处理器,用户可以针对自身需求设置使用功能,充分体现我们产品独具优势的智能特点 ●支持无刷电机无限制最高转速 ●支持定速功能。 ●精心的电路设计,抗干扰性超强 ●启动方式可设置,油门响应速度快,并具有非常平稳的调速线性,兼容固定翼飞机及直升飞机。 ●低压保护阀值可设置 ●内置SBEC,带舵机负载功率大 ●具备多种保护功能:输入电压异常保护/电池低压保护/过热保护/油门信号丢失降功率保护 ●通电安全性能好:接通电源时无论遥控器油门拉杆在任何位置不会立即启动电机 ●过温保护:控制器工作时温度到达120℃时功率输出会自动降低一半,低于120℃时功率输出自动恢复 ●兼容所有遥控器操作设置和支持编程卡设置 ●设置报警音判断通电后工作情况 ●本公司对此产品具备完整知识产权,产品可持续升级更新。并可根据客户的需求量身定制产品。 调速器产品规格 1)OPTO调速器没有内置BEC, 工作时需单独给舵机、接收机供电 2)S BEC调速器,给舵机供电是开关电源模式,输出电压5.5V,舵机可以带4A负载,瞬间2秒可达8A 3)UBEC调速器,给舵机供电是线性电源模式

翼型航模DIY基础知识

翼型航模DIY基础知识

翼型航模DIY基础知识 机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是 机翼的截面形 状。现代模型飞 机所用的翼型 一般可分为六类:平凸型、对称型、凹凸型、双凸型、S型和特种型,如图3-1所示。这六种翼型各有各的特

点,每种翼型一般能符合某几种模型飞机的要求。 翼型各 部分的名称 如图3-2所 示。其中影 响翼型性能 最大的是中 弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧线是翼型上弧线与下弧线之间的距离中点的连线。如果中弧线是一根直线与翼弦重合,那就表示这个翼型上表面和下表面的弯曲情况完全一样,这种翼型称为对称翼型。普通翼型中弧线总是向上弯的,S翼型的中弧线成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也

航空模型制作基础要点

航空模型制作基础 工具的使用 常用的工具有:尺、刀、刨、锯、锉、钻、钳子、剪子、扳手、笔、烙铁等。 各工具要正确使用,以发挥工具的作用,使模型制作的精度、准确度不断提高,制作出性能优良的模型飞机。 尺要注意平直度。刀要锋利使用时不要逆着木纹切削。刨用模型专用小刨,平整大模型的表面可以提高工作效率及制作精度。锯的使用,因制作模型用材料都不是很大很厚的材料,通常用齿比较小的锯条,可根据情况选择自己顺手的锯使用,还常使用到曲线锯。锉的使用,粗锉用于毛坯和加工余量大的工件,以提高效率;细锉用于精加工,以保证加工件的准确度;油光锉用于表面光滑度较高的精细工件。模型中制作最常用的是什锦锉。钻的使用,特别是遥控类模型制作中圆眼较多,在材料不厚的情况下可利用一些材料自制小棱钻和扁钻,较厚材料可采用电钻等工具进行,如果条件允许可采用小型台式电钻。 材料的选择 较常用的材料有桐木、松木、椴木、桦木、水松、轻木、层板等。 制作手掷、弹射模型时多选择桐木。对于构造式机翼的材料选择,如翼梁是细长的,又是主要受力件,就要选择强度较大纹理平直的松木。翼肋主要是保持翼型形状受力不大,可选重量轻有一定强度的桐木或轻木。翼根翼尖等整形填充件,受力很小做得越请越好,可选择比较轻的桐木、轻木或水松。在保证强度的前提下,应选择材质均匀、纹理平直、无疤节、比重轻的材料,以达到保证强度和减轻重量的要求。 桐木是最常用的模型材料,尤其是泡桐,具有比重轻、相对强度大、变形小、容易加工的特点。翼肋、蒙板、腹板、机身后段等应选用较轻的材料。后缘、尾翼梁、机身的纵梁等要用木质细密、纹理平直、强度较大的材料。

松木东北松纹理均匀,木质细密,比较轻,不易变形,易于加工并富有弹性,是做模型中细长受力件的好材料。 桦木材质坚硬,纹理均匀紧密,比重较大,是做螺旋桨的好材料。还可做发动机架等受力件。 椴木是制作向真模型好材料,也可用于硬壳机身、螺旋桨和发动机架等。 水松松软、纹理乱、易变形用作整形和填充。 轻木制作模型较桐木好,可提高飞行性能,但价钱较高。 木料在使用时要考虑强度、刚性等特性。我国早在800多年前宋朝时期,建筑工匠李诫就将建筑用材料断面高度与宽度比定为3∶2。到了十八世纪末十九世纪初,英汤姆士杨研究发现材料截面高与宽成3.46∶2时,刚性最大;高与宽成2.8∶2时强度最大;高度与宽度相等时,弹性最大。在使用时根据模型的大小、结构来选择合适材料。 层板椴木层板常用作机身隔框、上反角加强片等;桦木层板可做强度很大的蒙板,翼根部的翼肋、隔框和加强片等。 竹子也较常用在普及级模型上。 蒙皮传统工艺用棉纸和尼龙绢,后发展用无纺布以及新型材料热缩膜。在模型上根据需要也用桐木蒙皮,利用热缩膜可以节省一定资金但主要是大大简化制作程序,缩短了制作时间。 胶合剂较常用的有白乳胶、树脂胶、502等。 快干胶需自己配制,使用范围广,粘接较方便,缺点是有毒,不宜长期使用。白乳胶价格低廉,因固化时间太长,不利于模型的定型。易于定型的或利用工作台可以定型的模型及部件常使用白乳胶胶合。树脂胶因性能稳定、耐水、耐油、耐腐蚀而适用于发动机架等受力部件,要严格按胶合说明进行以保证胶

航模社团活动方案

旧铺实验小学航模社团活动方案 一、目的意义: 充分发掘学生的兴趣爱好和个性特长,培养学生的创新能力。充分利用学校现有条件,积极组织开展各项科技活动,在科技活动中以学生为中心,强调手脑结合,设置有利于学生主动探究学习的环境,提升科技教育的层次,达到全面提高广大学生科学文化素质的目的,树立献身祖国航空事业的理想。 二、活动内容:(航空模型、航海模型、车辆模型) 以航空模型为主 1.航空模型活动一般包括制作、放飞和比赛三种方式,也可据此划分为三个阶段。 2.制作活动的任务是完成模型制作和装配。通过制作活动对学生进行劳动观点、劳动习惯和劳动技能的教育。使他们学会使用工具,识别材料、掌握加工过程和得到动手能力的训练。 3.放飞是学生更加喜爱的活动,成功的放飞,可以大大提高他们的兴趣。放飞活动要精心辅导,要遵循放飞的程序,要介绍飞行调整的知识,要有示范和实际飞行情况的讲评。通过放飞对学生进行应用知识和身体素质的训练。 4.比赛可以把活动推向高潮,优胜者受到鼓舞,信心十足:失利者或得到教训,或不服输也会憋足劲头。是引导学生总结经验,激发创造性和不断进取精神的好形式。参加大型比赛将使他们得到极大的锻炼而终生不忘。 三、具体活动及时间安排 1.活动方式 社团主要以“专题讲座”和“项目实践”方式开展活动。每次活动后填写“社团活动记录表”备案。

2.社团小组日常活动内容: (1)理论学习:学习飞行原理,飞机的打磨、组装、调试、配重以及试飞。 (2)实践学习:飞机模型的手工制作,模型的操纵飞行,模型飞机的飞行调试。通过实践学习,培养学生的动脑和动手能力,促进学生的全面发展。(3)航空知识和科技知识的宣传:通过板面或校报,向全校师生宣传科技知识,宣传航模运动的意义。通过宣传在全校形成一种热爱科学和风气,形成一种积极向上的精神,从而在全校营造出一种良好的学习氛围。 3.活动时间 每周二、四中午12:00-13:30

航空模型发动机完全手册范本

航空模型发动机完全手册 前言 目前,航空模型上采用的动力装置主要有:橡筋条、活塞式发动机、喷气式发动机、电动式发动机和压缩气体发动机等数种。其中活塞式发动机按照混合气着火方法分为:压缩燃烧式(压燃式)、电热式(热火栓式)和电火花点燃式三种。 本书主要介绍在我国使用较广的压燃式发动机。最后在附录中简要介绍一下电热式和电火花点燃式发动机。 活塞式航空模型发动机是一种小型燃机,一般称为小发动机。它的基本组成部分和工作原理,与中学物理书上介绍的燃机(包括柴油机和汽油机)大体相同,也和日常见到的手扶拖拉机、摩托车或汽车上使用的发动机大体相同,不过要简单得多。小发动机的体积虽然很小,并且只有一、二十个零件,但它已经是一种精密机器了,必须很仔细地科学地去学习它和使用它。 航模爱好者在使用小发动机的过程中,要注意理论联系实际,将书本上学到的有关发动机的基本知识,运用到具体实践中去。要学懂小发动机的工作原理、燃料组成、起动步骤和调整方法,学会怎样排除故障,并注意养成正确的操作方法,为今后在农业机械化运动中,或在工矿和科学试验等工作中,更好地学习和运用各种机械设备打下良好的基础。 一构造和原理 (一)小发动机的构造: 图1是轴进气压燃式小发动机的解剖图。现将它的各个零件和功用分别说明如下: 1.气缸和活塞——气缸是燃料和空气的混合气体进行燃烧的地方,也是将燃料燃烧后放出来的热能转换为机械能的地方。气缸呈圆筒形,表面非常光滑,近似镜面。气缸的混合气体燃烧膨胀时,产生很高的压力,作用在活塞顶上,推动活塞向下运动;经过曲轴连杆机构,使曲轴转动并带动螺旋桨旋转,产生拉力使飞机前进。发动机转动时,活塞以很高的速度在气缸中来回运动。气缸壁上开有排气口和转气口等配气孔。活塞在气缸往复运动时,同时控制了排气口和转气口等配气孔的开闭。 气缸和活塞是小发动机上最主要也是最精密的零件,它们之间的配合非常精确,以保证密封和压缩性能。如果使用不当,或让灰沙等脏物进入气缸部,那就会使气缸和活塞很快磨损,影响密封性能,造成发动机转速下降,甚至不能起动等不良后果。 活塞在气缸来回运动时,由于受到曲臂长度的限制,有两个极限位置。活塞能达到的最高位置,即距曲轴旋转中心最远的位置,叫做上止点;最低的位置,叫做下止点(图2)。活塞从上止点移动到下止点(或从下止点移动到上止点)所经过的路程,也就是上止点至下止点之间的距离,叫做活塞行程(冲程)。当活塞在上止点时,由活塞顶面、反活塞的下表面和气缸周围侧壁所包含的容积,叫做燃烧室容积。活塞在下止点时,由活塞、反活塞和气

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

航模社团教案

航模制作教案 航模制作属于手、脑并用的综合性劳动教育技术。本项目所使用的材料是木条、木板和木片,其比例是依据飞机的比例缩小而制作的。以其知识性、实践性、趣味性深受参训学生的喜爱。 学情分析 本活动主要针对初一、初二学生。处于这个年龄段的学生正值喜欢探索事物,勇于挑战,愿意动手,他们同时也具备了一定的知识能力,但缺少展现自我和动手制作的机会。另外,随着人类航天事业的发展,越来越多的学生开始感兴趣于航天事业,针对学生这些特点,我们开设这项活动。 活动目标 ⑴简要介绍飞机发展史和认真分析飞机基本构造。 ⑵通过测量分析图形增强学生的识图能力,在动手操作中锻炼其动手能力,通过放飞,培养学生发现问题和解决问题的能力。 ⑶激发兴趣,培养合作精神。 活动方式 教、学相互交流探讨,学生分组合作。 活动重点、难点 重点:机翼的打磨及固定位置 难点:机翼打磨的程度 活动材料、工具 木条、木板、木片、锯、铅笔、锉、钢尺、砂纸、美工刀、101胶水。 材料工具图 活动过程组织设计

情境导入→了解原理→动手制作→放飞→总结 一、情境导入 教师讲解飞机发明人(莱特兄弟)的小故事,然后请学生谈谈感想? 教师思考:利用古人发明飞机的故事,激发学生在当前情况下,想要创作的激情,培养他们的挑战精神,使他们在目标驱动下更好的进行学习。二、了解原理 教师引导学生观察鸟飞行图,请学生分析其结构特征。然后再引导学生观察航模示意图,并分析其机构,两者对比分析,更明确飞机的基本组成部分:机身、机翼、尾翼(包括水平尾翼和垂直尾翼)。 鸟空中飞行图 翘翼航模示意图 总结各部分的作用: 机身:固定连接机翼、尾翼和起到承载作用 机翼:为飞行提供动力 尾翼:控制飞机飞行方向和保持飞机飞行平衡

组建航模制作室方案

组建航模制作室方案 一、活动目的:充分发掘学生的兴趣爱好和个性特长,培养学生的创新能力。充分利用学校现有条件,积极组织开展各项科技活动,在科技活动中以学生为中心,强调手脑结合,设置有利于学生主动探究学习的环境,提升科技创新教育的层次,达到全面提高广大学生科学文化素质的目的。 二、活动具体内容: 1、活动方式和辅导要点 航空模型活动一般包括制作、放飞和比赛三种方式,也可据此划分为三个阶段。制作活动的任务是完成模型制作和装配。通过制作活动对学生进行劳动观点、劳动习惯和劳动技能的教育。使他们学会使用工具,识别材料、掌握加工过程和得到动手能力的训练。 放飞是学生更加喜爱的活动,成功的放飞,可以大大提高他们的兴趣。放飞活动要精心辅导,要遵循放飞的程序,要介绍飞行调整的知识,要有示范和实际飞行情况的讲评。通过放飞对学生进行应用知识和身体素质的训练。 比赛可以把活动推向高潮,优胜者受到鼓舞,信心十足;失利者或得到教训,或不服输也会憋足劲头。是引导学生总结经验,激发创造性和不断进取精神的好形式。参加大型比赛将使他们得到极大的锻炼而终生不忘。 三、航模活动领导小组: 四、具体活动及时间安排 1.活动方式- 创新小组主要以“专题讲座”和“项目实践”方式开展活动。每次活动后填写“兴趣小组活动记录表”备案。航模兴趣小组日常活动内容: (1)理论学习:学习飞行原理,飞机的打磨、组装、调试、配重以及试飞。 (2)实践学习:飞机模型的手工制作,模型的操纵飞行,模型飞机的飞行调试。通过实践学习,培养学生的动脑和动手能力,促进学生的全面发展。 (3)航空知识和科技知识的宣传:通过板面或校报,向全校师生宣传科技知识,宣传航模运动的意义。通过宣传在全校形成一种热爱科学和风气,形成一种积极向上的精神,从而在全校营造出一种良好的学习氛围。

航模基础知识介绍

航模基础知识介绍一一航模培训理论课 航模概念:在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器”。1什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空模型。 航模飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架、发动机和控制系统六部分组成。 1机翼------- 是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧稳定。 2、尾翼----- 包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰稳 定,垂直尾翼保持模型飞机飞行时的方向稳定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。也有模型飞机使用V型尾翼,需要 混合控制,一般航模遥控器都有此功能。两片向外倾斜的尾翼联合控制方向舵与升降舵。最特殊的情况是机翼采用S翼型的无动力滑翔机,这类机只有垂直尾翼而没有水平尾翼。 3、机身----- 将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架------ 供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面各一个起落架叫前三点式,前部两面各一个起落架,后面一个起落架叫后三点式。 5、发动机------ 它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、 活塞式发动机、涡轮喷气式发动机、电动机。较少使用的有:脉冲喷气发动机(重量大,油耗大)、转子发动机(只有OS的一款)空气发动机(上世纪70年代用于室内模型与活塞 发动机类似。 6、太阳能板及各类电池也可作为模型飞机的动力来源。

航模兴趣小组活动方案

航空航天模型兴趣小组活动方案为提高我校学生的创新能力,培养科技后备人才,学校非常重视航模活动的开展。为了真正做到以人为本、一切为了学生、为了学生的一切,以及确保本项活动开展的生机活泼、井然有序,结合学生实际特制定如下活动方案: 一、指导思想: 1、活跃校内学生科技气氛。以在全校营造浓厚的学术氛围为目的,以航空模型运动为基础,建立并逐步完善一套层次清晰、结构分明且行之有效的学生科技创新工作的组织机制,领导校内学生的科技创新活动。 2、培养学生的科技创新意识,提高学生动手、动脑、想象能力,引导学生将所学知识应用于实践,为学生成长为具有创新精神的人才奠定基础。 3、通过航模课外活动的展开,在校内广泛开展科普宣传活动,向全校学生宣传航空航天知识,使全校逐渐形成学科学、爱科学、用科学的氛围。 二、成立领导小组及科普教育基地 组长:郑老师 成员:乔晓娟、王红利 队员:各年级自愿报名参加的学生。 航空航天模型教育基地:学校微机室、操场 三、具体做法: 1、将继续加强综合实践活动理念、航模教学方法、实践技能的学习与掌握,保证在活动中有效指导学生操作试飞。 2、继续加强对活动课程的开发,规范校本课程内容;并在实践中不断的完善教学方案。 3、请有关航模专家来与教师进行交流,辅导学生进行航模活动,与外校教师多多进行交流等。以保证课程开展的丰富多彩,有章有法。 4、在学校教育网上,进行一些航模基础教育的宣传,与同学们加强交流。 5、加强管理力度,使航模活动健康有序的开展。 6、积极的参与各级举行的各项比赛活动,争取多为学校争取荣誉。 7、在航模教学活动中,锻炼学生的动手能力、动脑能力、团队协作以及交流能力。 8、在教学中,有意识的采用探究式教学,如飞机的飞行原理等,就完全可以让学生们自己思考讨论试验。 9、鼓励学生自主学习,利用多媒体以及学校购买的航模书籍杂志、航模模具开展自学并且了解航模活动的最新动态。 四、航模教学计划 (一)木制飞机组 1、认知领域要求 ⑴了解模型的分类 ⑵知道制作的程序(包括调试、验证、竞技等) ⑶明白模型制作应用的广泛领域

中学生综合素质等级评价操作说明

郴州亚星学校学生综合素质评价 操作说明 初中学生综合素质评价是学生初中阶段发展的综合评价,其意义不仅在于评价学生的综合素质,促进学生全面发展,还在于通过对学生的评价完善教师的教学行为,促使教育教学质量的全面提高。综合素质评价是一项艰巨的、繁琐的工作,需要教师们具有足够的耐心和细心。下面是关于操作程序和评价细则的一些说明,希望对学校的具体操作有所帮助。 一、评价内容和结果呈现 六个维度(15个评价要素,38项主要表现):道德品质、公民素养、学习能力、合作与交流、审美与表现、运动与健康状况。评价结果以优、良、合格和不合格四个等级呈现,分别用A、B、C、D表示。 二、评价过程 学生自评——学生小组互评(同学互评)——教师小组评价(师评)——学校评价工作委员会审查、认定、签字——家长、学生认定签字。 三、评价前的准备 1、各方面的荣誉实证材料,小制作、艺术作品,活动记录,学习计划、总结、反思材料,作业本,校本课程学习考勤记录等。 2、《中学生成长记录册》由各县(市、区)自行制作,内容包含有:每期获奖情况、期末评语、各科学习期中和期末成绩等级、各科学习日常表现情况、社会实践活动参与情况、道德品质表现与公益活动参加情况、学生体质健康状况等。 3、自我评价报告。

四、操作说明 (一)自评 1、完成初中阶段的自我评价报告。学生根据六个维度的主要表现,搜集并整理相关资料,写出初中阶段自我评价报告,记入成长记录册。自我评价报告将作为同学互评和师评的依据之一。 2、自评过程:学生对照六个维度和评价标准逐项列出有关实证材料,并写上相应的评价等级。如“道德品质”一项,若某学生是下列情况:①活动参与率约98%;②两次评为“优秀学生干部”,一次评为“学雷锋标兵”;③《记录册》评价均为“优”。将上述情况在“实证材料”一栏中写明,然后在“评价结果”的“自评”栏中写上“A”。其它维度的评价同样。逐项评出等级。 (二)互评 1、小组成员:同学互评小组必须由8人组成,小组成员由抽签确定。每组推举一名组长负责组织和记录。互评时当事人回避。互评所列条件必须同时具备,经小组评议得出互评结果。 2、互评过程:①以主要表现、评价标准和实证材料为依据,依次对评价对象的六个维度逐项进行评价;②根据“评价标准”中的“同伴互评结果”控制条件,统一确定评价对象某维度最后的互评等级,填入“互评”栏右边的空格内。其它维度的评价同样,逐项评出等级。 (三)师评 1、小组成员及职责:①各班教师评价小组由该班班主任和四名科任教师组成(最好有英语教师、音体美教师代表、理化生教师代表、语政史地教师代表)。班主任任组长。②师评小组负责审核学生的实证材料,对全班学生进行综合素质等级评价并写出综合性评语。 2、评价过程:①以学生互评小组为单位,每次评价8人。②以评价标准、实证材料和学生的日常表现为依据,对互评小组成员逐一

第一讲航模基础知识

第一讲航模基础知识 什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模 型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100 克/ 平方分米; 活塞式发动机最大工作容积10 亳升。 1、什么叫飞机模型 般认为不能飞行的,以某种飞机的实际尺寸按 一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空 模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼——是模型飞机在飞行时产生升力的装 置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机——它是模型飞机产生飞行动力的装 置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。 穿过机身部分也计算在内)。 2、机身全长——模型飞机最前端到最末端的直线

遥控电动固定翼入门手册无水印

遥控电动固定翼 ——入门教程 任伟著

目录 前言 (3) 第1讲飞机为什么会飞 (4) 1.1飞机的组成部分 (4) 1.2飞机的组成部分 (7) 第2讲什么是航模 (10) 2.1航空模型运动 (10) 2.2航空运动 (10) 2.3航模 (10) 第3讲航模部件解析 (13) 3.1遥控器 (13) 3.2电机及桨 (14) 3.3电调 (16) 3.4舵机 (17) 3.5锂电池 (18) 3.5其他配件 (19) 第4讲kt板遥控纸飞机制作 (20) 4.1工具、材料及配件 (20) 4.2画图、裁板 (21) 4.3制作副翼 (22) 4.4喷漆上色 (23) 4.5组装模型 (24) 4.6装配件 (26) 4.7对码、调试 (29) 第5讲固定翼练习机制作 (31) 5.1工具、材料及配件 (31) 5.2认识图纸 (31) 5.3各部件的制作 (31) 第6讲飞行基础训练 (43) 6.1模拟飞行训练 (43) 6.1.1软件的安装和设置 (43) 6.1.2飞行操作方法 (47) 6.2实践训练 (49)

前言 当前国内的航模运动日趋普遍,随着航模的个人玩家和各类组织增多,相应的各类航模比赛也随之增多。针对青少年的全国比赛有全国青少年航模锦标赛、“飞向北京-飞行太空”全国青少年航空航天模型教育竞赛等,对应的各省、市也会有各类选拔赛,这些比赛都是教育行政部门认可的。加之航模比赛历经24年再次加入全运会,更进一步推动了航模运动的发展。 目前全国各地级市以上城市的大部分中小学及大学都有开始航模社团或者航模兴趣小组,以培养学生对于航空航天的兴趣,及动手能力和创新能力。而在县级的中小学就很少有关于航模的社团或者兴趣小组,个别小学只有一些基础的航模类器材应付上级检查。在我省(陕西省)只有个别县比较重视航模的发展,笔者所在的渭南市大荔县也只有同州中学有航模社团,虽然成立时间短,但是在校长及负责领导的大力支持下发展迅速,已在省赛中获奖。 航模运动对于学生的发展意义重大,在应试教育的阴霾暂未散去的情况下,航模的制作和操纵无疑是培养学生的人生规划意识、创新意识和动手能力最好的方式之一。很多学校或者家长可能认为学习航模对上高中、上大学没有用处,其实不然,很多高中都招收航模特长生,北航、南航等一些可自主招生航空类大学对航模特长生都有优惠政策,降分最大幅度可达到60分,这也是任何数学、英语类竞赛无法比拟的。 航模运动在县级中小学为什么难以普及?究其原因,总结为三点:一、学校经济紧张,航模的原材料和制作过程都是不断的花钱,虽然学生的模型是学生自己花钱,但是学校的资金投入也不少,并且模型种类繁多,价格上不封顶,选择哪一种还是多种,都是学校需要从经济投入方面考虑的问题。二、学校没有专门负责航模的老师,如果外聘,理由同第一条所述。笔者是在担任物理教师,完成正常课时量的前提下,利用课余时间进行航模训练的。这就需要老师有足够的兴趣,才能坚持下来。三、教育行政部门没有硬性要求。航模运动的推行需要一定的资金,学生花钱就需要和家长沟通,过程过于复杂,教育行政部门难以干涉。很多城市的航模运动也是在一些组织,如航模协会推广到一定能够程度了予以支持,如此就发展起来了。 笔者通过长时间的积累,包括航模制作、试飞、教学以及学生制作和试飞过程发现的问题,最后在考虑到学生家庭经济不宽裕的情况下,确定了两个模型的制作和飞行训练,通过这两个模型的制作和飞行训练,学生已基本掌握模型的制

相关文档
相关文档 最新文档