文档库 最新最全的文档下载
当前位置:文档库 › 无机非金属材料实验论文流体综合实验论文:以“柏努利方程”为核心的流体力学综合实验的探索

无机非金属材料实验论文流体综合实验论文:以“柏努利方程”为核心的流体力学综合实验的探索

无机非金属材料实验论文流体综合实验论文:以“柏努利方程”为核心的流体力学综合实验的探索

摘要:在工程流体力学中,柏努利方程是描述牛顿型流体宏观流动规律最实用的方程。以柏努利方程为核心的流体综合实验是我校国家级精品课程“无机非金属材料实验”中的系列基础实验之一。本文所述的是在该流体综合实验中以及该实验授课过程中一些有益的创新与探索。

关键词:无机非金属材料实验;流体综合实验;柏努利方程;创新探索

1、前言

武汉理工大学材料学院所开设的“无机非金属材料实验”是一门国家级精品课程。在其基础系列实验中,包括了以柏努利方程为核心的流体综合实验。

柏努利方程(bernoulli’s theorem)因其由英国流体力学的先驱者柏努利推导出来而得名。其本质是自然界中普遍存在的能量守恒原理在流体力学中的具体应用。具体来说,该方程是关于在流体流动过程中,流体的势能、压力能、动能与因流动阻力造成的能量损失之间的转换与平衡关系。在工程流体力学及其实践中,该方程的使用十分有效,它几乎可以解释和解决工程流体力学中许多现象和问题。这也为我们讲解以柏努利方程为核心的流体力学综合实验的原理

以及解释所出现的各种流体流动现象提供了良好的理论基

础。

柏努利方程尽管在物理意义上具有能量的含义,但因其中的各项具有“高度”的量纲。因此,它又有几何的含义,由于英国人习惯用“头(head)”来表征高度,翻译成汉语就是“压头”的概念。因此,柏努利中的各项就是“压头”的集合,分别称为:几何压头、静压头、动压头和压头损失。

二、实验和实验授课过程中的创新探索

在本流体力学综合实验过程中,最重要的就是让学生深刻地弄清(压头)阻力损失的概念。早期流体力学家根据数学、物理学的基本原理,对于阻力损失进行过的分类,按照英语原文直译过来就是“摩擦阻力损失(friction loss)”和“局部阻力损失(minor loss)”。

关于摩擦阻力损失,它是指当流体流速的大小和方向均不改变时,纯粹因流体内部的速度差所导致的摩擦阻力而引起的能量损失(或称为:压头损失)。根据摩擦阻力损失的大小与流体经过的路程成正比的特点,我国国内普遍将其称为:沿程阻力损失。

关于局部阻力损失,它是指在流体流动过程中当遇到局部障碍时,流体流速的大小、方向至少有一个会发生改变。于是,因流体质点速度分布重组和撞击及其所引起的漩涡区而造成的、在障碍所在局部区域内的、除了原有沿程阻力损失之外的附加能量损失(压头损失)。弄清楚了以上概念及

问题的本质,教师讲课以及学生理解就相对容易许多。

本流体力学综合实验中的第一个实验是:关于流体局部阻力损失的实验。具体来说,就是流体在流经突扩管时,静压分布的变化规律表征、局部阻力系数的测量、在突扩管前后流体流速分布重组的情况以及有关涡旋区的形成原因。我们以实验中的静压分布变化规律来验证和加深这几项内容。这样也有利于通过实验环节来理解局部阻力损失的成因,从而加深理论课学习的效果和印象。

本流体力学综合实验的第二个实验是:关于柏努利方程效果的演示实验。图1就是我们根据真实实验装置所开发的实验模拟软件的一个截面图。通过该实验,可以直接明晰地呈现出流体流动因符合柏努利方程而产生的各种流动现象和效果。学生对该演示实验中所呈现的各种流型和规律的反映效果较好。在此基础上,我们又提出了在材料工程中、在日常生活中出现的各种流动现象,请同学们思考与并设法用柏努利方程来解释,然后进行适当的引导,这样有助于提高素质教育的结果。也就是说,有助于通过该实验的学习将流体流动中所体现的真实规律应用到具体的材料工程中,包括材料的制备、加工,以及制备加工所用有关设备内的某些结构。这也为学生毕业以后从事具体的工作中和技术革新活动而贮备一定的基础知识。

图1柏努利方程实验装置

恒定总流伯努利方程综合性实验

恒定总流伯努利方程综合性实验 一、实验目的和要求 1. 通过定性分析实验,提高对动水力学诸多水力现象的实验分析能力; 2. 通过定量测量实验,进一步掌握有压管流中动水力学的能量转换特性, 验证流体恒定总流的伯努利方程,掌握测压管水头线的实验测量技能与绘制方法; 3. 通过设计性实验,训练理论分析与实验研究相结合的科研能力。 二、实验原理 1.伯努利方程。在实验管路中沿管内水流方向取n 个过水断面,在恒定流动时,可以列出进口断面(1)至另一断面(i )的伯努利方程式(i =2,3…,n ) 22 1111w122i i i i i p p z z h g g g g ααρρ-++=+++v v 取1=2=n …=1,选好基准面,从已设置的各断面的测压管中读出p z g ρ+ 值,测出通过管路的流量,即可计算出断面平均流速v 及2 2g αv ,从而可得到各断 面测管水头和总水头。 2.过流断面性质。均匀流或渐变流断面流体动压强符合静压强的分布规律,即在同一断面上p z C g ρ+ =,但在不同过流断面上的测压管水头不同,1212p p z z g g ρρ+ ≠+;急变流断面上p z C g ρ+≠。 三、实验内容与方法 1.定性分析实验 (1) 验证同一静止液体的测压管水头线是根水平线。

(2) 观察不同流速下,某一断面上水力要素变化规律。 (3) 验证均匀流断面上,动水压强按静水压强规律分布。 (4) 观察沿流程总能坡线的变化规律。 (5) 观察测压管水头线的变化规律。 (6) 利用测压管水头线判断管道沿程压力分布。 2. 定量分析实验——伯努利方程验证与测压管水头线测量分析实验 实验方法与步骤:在恒定流条件下改变流量2次,其中一次阀门开度大到使○19号测管液面接近可读数范围的最低点,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕托管测点供演示用,不必测记读数)。实验数据处理与分析参考第五部分内容。 四、数据处理及成果要求 1.记录有关信息及实验常数 实验设备名称:伯努利方程实验仪实验台号: 实验者:___________A1组7人_____ 实验日期:_5月10日_ 均匀段d1= 10-2m 喉管段d2=10-2m 扩管段d3=10-2m 水箱液面高程 0= 10-2m 上管道轴线高程 z = 10-2m (基准面选在标尺的零点上) 2.实验数据记录及计算结果表1 管径记录表 测点编号①*② ③ ④⑤ ⑥* ⑦ ⑧* ⑨ ⑩ ○11 ○12* ○13 ○14* ○15 ○16* ○17 ○18* ○19 管径d /10-2m

伯努利方程应用测试题

1.有外加能量时以单位体积流体为基准的实际流体柏努利方程为,各项单位。 2.气体的粘度随温度升高而,水的粘度随温度升高而。 3.流体流动的连续性方程是;适用于圆形直管的不可压缩流体流动的连续性方程为。 4.当地大气压为745mmHg测得一容器内的绝对压强为350mmHg,则真空度为。测得另一容器内的表压强为1360 mmHg,则其绝对压强为。 5.20℃的空气在直径为800mm的水平管流过,现于管路中接一文丘里管,如本题附图所示,文丘里管的上游接一水银U管压差计,在直径为20mm的喉径处接一细管,其下部插入水槽中。空气流入文丘里管的能量损失可忽略不计,当U管压差计读数R=25mm,h=0.5m时,试求此时空气的流量为多少m3/h? 当地大气压强为101.33×103Pa。

6.如图所示,用泵将河水打入洗涤塔中,喷淋下来后流入下水道,已知道管道内径均为0.1m,流量为84.82m3/h,水在塔前管路中流动的总摩擦损失(从管子口至喷头进入管子的阻力忽略不计)为10J/kg,喷头处的压强较塔内压强高0.02MPa,水从塔中流到下水道的阻 力损失可忽略不计,泵的效率为65%,求泵所需的功率。

7.如图,一管路由两部分组成,一部分管内径为40mm,另一部分管内径为80mm,流体为水。在管路中的流量为13.57m3/h,两部分管上均有一测压点,测压管之间连一个倒U型管压差计,其间充以一定量的空气。若两测压点所在截面间的摩擦损失为260mm水柱。求 倒U型管压差计中水柱的高度R为多少为mm?

8、在φ45×3mm的管路上装一文丘里管,文丘里管上游接一压强表,其读数为137.5kPa,管内水的流速u1=1.3m/s,文丘里管的喉径为10mm,文丘里管喉部一内径为15mm的玻璃管,玻璃管下端插入水池中,池内水面到管中心线的垂直距离为3m,若将水视为理想流体, 试判断池中水能否被吸入管中?若能吸入,再求每小时吸入的水量为多少m3/h?

伯努利方程综合实验【能量方程实验】——推荐优质的流体力学实验仪器之一

以下是杭州源流科技毛根海教授团队研发的一系列实验仪器的简单介绍。 名称:自循环伯努利方程综合实验(能量方程实验) 型号:MGH-ZN 2-2-3 一、主要功能: 1、流量电测实时显示与手测功能并存,实验内容多功能。 2、定量测量实验——验证伯努利方程。 3、定性分析实验——演示测压板直接显示的总水头线与测压管水头线,均匀流与非均匀流断面上动压强分布以及沿程能量转换规律等。 4、设计性实验——变水位对喉管真空度影响。 5、验证等Re数下达西公式;验证局部水头损失公式;展示断面平均流速与点流速之间关系;文丘里流量计应用机理及实践。 二、主要配置及技术参数: 1、美国原装进口精密传感器,教学专用实时数显管道式流量仪,经重量法标定误差1%FS。 2、计算机型实验桌。 3、水泵采用ABS全封闭防水绝缘安全外壳,抗腐蚀机芯,安全耐用,功率

30W,扬程2m。有机玻璃蓄水箱与恒压供水器。 4、测流速毕托管7只,有12测点的变高程变管径的实验管道,强化了位能、压能、动能之间能量转换的直观效果。 5、自循环管阀,有滑尺与校准镜面的可调式19管测压计。 6、配套高教社出版的,并由公司董事长及技术领衔人毛根海教授主编的配套教材。 7、能自动绘制水头线的数据处理软件。 8、拥有原创自主知识产权。提供实验报告测试样本(可作调试验收标准)。 9、配套能量(伯努利)方程实验WEB网络版实验虚拟仿真CAI软件,基于互联网+,电脑、IPAD、手机都可通过其上的WEB浏览器访问做实验,不需下载APP,网上实验真正做到了24小时全开放,方便学生实验虚实结合,真实具有网络虚拟仿真测量,记录,后台强大的逻辑计算功能,随时随地进行实验预习和复习。 公司针对毛根海教授在浙江大学期间发明的系列流体力学水力学实验仪器

流体流动部分作业及答案1

第一部分 概念题示例与分析 一 思考题 1-1 下图所示的两个U 形管压差计中,同一水平面上的两点A 、B 或C 、D 的压强是否相等? 答:在图1—1所示的倒U 形管压差计顶部划出一微小空气柱。 空气柱静止不动,说明两侧的压强相等,设为P 。 由流体静力学基本方程式: 11gh gh p p A 水空气 ρρ ++= 11gh gh p p B 空气空气ρρ++= 空气水ρρ> ∴B A p p > 即A 、B 两点压强不等。 而 1gh p p C 空气ρ+= 1gh p p D 空气ρ+= 也就是说,C p 、D p 都等于顶部的压强p 加上1h 高空气柱所引起的压强,所以C 、D 两点压强相等。 同理,左侧U 形管压差计中,B A p p ≠ 而D C p p =。 分析:等压面成立的条件—静止、等高、连通着的同一种流体。两个U 形管压差计的A 、B 两点虽然在静止流体的同一水平面上,但终因不满足连通着的同一种流体的条件而非等压。 1- 2 容器中的水静止不动。为了测量A 、B 两水平面的压差,安装一U 形管压差计。图示这种测量方法是否可行?为什么? 答:如图1—2,取1—1/ 为等压面。 水银 图1-1 1-1附图 121

由1' 1p p =可知: )(2H R g p O H B ++ρ =gR H h g p Hg O H A ρρ+++)(2 gh p p O H A B 2ρ+= 将其代入上式,整理得 0)(2=-gR O H Hg ρρ ∵02≠-O H Hg ρρ ∴0=R R 等于零,即压差计无读数,所以图示这种测量方法不可行。 分析:为什么压差计的读数为零?难道A 、B 两个截面间没有压差存在吗?显然这不符合事实。A 、B 两个截面间确有压差存在,即h 高的水柱所引起的压强。 问题出在这种测量方法上,是由于导管内充满了被测流体的缘故。连接A 平面测压口的导管中的水在下行过程中,位能不断地转化为静压能。此时,U 型管压差计所测得的并非单独压差,而是包括位能影响在内的“虚拟压强”之差。当该导管中的水引至B 平面时,B —B ’已为等压强面,再往下便可得到无数个等压面。压差计两侧的压强相等,R 当然等于零。 这个结论很重要,在以后的讨论中常遇到。 1-3一无变径管路由水平段、垂直段和倾斜段串联而成,在等长度的A 、B 、C 三段两端各安一U 形管压差计。设指示液和被测流体的密度分别为0ρ和ρ,当流体自下而上流过管路时,试问:(1)A 、B 、C 三段的流动阻力是否相同? (2)A 、B 、C 三段的压差是否相同? (3)3个压差计的读数A R 、B R 、C R 是否相同?试加以论证。 答:(1) 因流动阻力 2 2 u d l h f λ=,该管路A 、B 、C 3段的λ、l 、d 、u 均相同, ∴f B f A f h h h , ,,== (2)在A 、B 、C 三段的上、下游截面间列柏努利方程式: f h u p gZ u p gZ ++ + =++ 2 2 2 22 12 11 1ρ ρ 化简,得 Z g h p f ?+=?ρρ A 段: A f A h p p p ,21ρ=-=? (a) B 段: B B f B gl h p p p ρρ+=-=?,43 (b) 1’ 图1-2 1-2 附图

伯努利方程实验

伯努利方程实验 一、目的和要求 1、 熟悉流体流动中各种能量和压头的概念及其相互转换关系,在此基础上,掌握柏努利方程; 2、 观察流速变化的规律; 3、观察各项压头变化的规律。 二、实验原理 1、流体在流动中具有三种机械能:位能、动能、静压能。当管路条件如管道位置高低、管径大小等发生变化时,这三种机械能就会相应改变以及相互转换。 2、如图所示,不可压缩流体在导管中做稳态流动,由界面1-1’流入,经粗细不同或位置高低不同的管道,由截面2-2’流出:以单位质量流体为基准,机械能衡算式为: 式中:u l 、u 2一分别为液体管道上游的某截面和下游某截面处的流速,m /s ; P 1、P 2一分别为流体在管道上游截面和下游截面处的压强,Pa ; z l 、z 2一分别为流体在管道上游截面和下游截面中心至基准水平的垂直距离,m; ρ一流体密度,Kg /m 3 ; g 一重力加速度,m /s 2 ; ∑h f 一流体两截面之间消耗的能量,J /Kg 。 3、∑h f 是流体在流动过程中损失的机械能,对于实际流体,由于存在内摩擦,流体在流动中总有一部分机械能随摩擦和碰撞转化为热能损耗(不能恢复),因此各截面上的机械能总和不相等,两者之差就是流体在这两截面之间流动时损失的机械能。 4、对于理想流体(实际上并不存在真正的理想流体,而是一种假设,对解决工程实际问题有重要意义),不存在因摩擦而产生的机械能损失,因此在管内稳定流动时,若无外加能量,得伯努利方程: 22112212 22u p u p z g z g ρρ ++=++式② 表示1kg 理想流体在各截面上所具有的总机械能相等,但各截面上每一种形式的机械能并不一定相等,各种形式的机械能可以相互转换。式①时伯努利方程的引伸,习惯上也称为伯努利方程(工程伯努利方程)。 5、流体静止,此时得到静力学方程式: 1 2 1221 () p p z g z g P P gh ρρ ρ + =+ =+或式③ 所以流体静止状态仅为流动状态一种特殊形式。 6、将式①中每项除以g ,可得以单位重量流体为基准的机械能守恒方程: 22 112212 22f u p u p z g z g h ρρ ++=+++∑式① 22112212 f u p u p z z H ++=+++式④

流体机械能转换实验

流体机械能转换实验 一、实验目的 熟悉流动流体中各种能量和压头的概念及其互相转换关系,在此基础上掌握柏努利方程。 二、实验原理 1. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。当管路条件改变时(如位置高低,管径大小),它们会自行转换。如果是粘度为零的理想流体,由于不存在机械能损失,因此在同一管路的任何二个截面上,尽管三种机械能彼此不一定相等,但这三种机械能的总和是相等的。 2. 对实际流体来说,则因为存在内摩擦,流动过程中总有一部分机械能因摩擦和碰撞而消失,即转化成了热能。而转化为热能的机械能,在管路中是不能恢复的。对实际流体来说,这部分机械能相当于是被损失掉了,亦即两个截面上的机械能的总和是不相等的,两者的差额就是流体在这两个截面之间因摩擦和碰撞转换成为热的机械能。因此在进行机械能衡算时,就必须将这部分消失的机械能加到下游截面上,其和才等于流体在上游截面上的机械能总和。 3. 上述几种机械能都可以用测压管中的一段液体柱的高度来表示。在流体力学中,把表示各种机械能的流体柱高度称之为“压头”。表示位能的,称为位压头;表示动能的,称为动压头(或速度头);表示压力的,称为静压头;已消失的机械能,称为损失压头(或摩擦压头)。这里所谓的“压头”系指单位重量的流体所具有的能量。 4. 当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)即为静压头,它反映测压点处液体的压强大小。测压孔处液体的位压头则由测压孔的几何高度决定。 5. 当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。这时测压管内液位总高度则为静压头与动压头之和,我们称之为“总压头”。

能量方程实验报告

姓名:邹志焱学号: 25 班级: 实验装置台号:7 时间:2014年4月9日11时21分 实验名称:能量方程实验 一、实验目的 1、验证流体恒定总流的能量方程; 2、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性; 3、掌握流速、流量、压强等动水力学水力要素的实验量测技能。 二、实验方法与步骤 1、熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。 2、打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。如不平 则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。 3、打开阀13,观察思考(1)测压水头线和总水头线的变化趋势;(2)位置水头、压强水头之 间的相互关系;(3)测点(2)、(3)测管水头同否为什么(4)测点(12)、(13)测管水头是否不同为什么(5)流量增加或减少时测管水头如何变化 4、调节阀13开度,待流量稳定后,测计各测压管液面读数,同时测计实验流量(毕托管供演示用, 不必测记读数)。 5、改变流量2次,重复上述测量。其中一次阀门开度大到使19号测管液面接近标尺零点。 三、实验数据 位置高度1:0cm 位置高度2:0cm 位置高度3:0cm 管径1: 14cm 管径2: 30cm 管径3: 14cm 四、实验结论

12 22 21(72.15813010)3.8910 6.55229.8v h cm g --?+=?+=? 2 222 2 2(15.71443710)3.8010 3.93229.8v h cm g --?+=?+=? 222 233(72.15813010)3.4510 6.11229.8v h cm g --?+=?+=? 在不考虑水头损失的情况下,1,2,3处的总水头约相等。加上水头损失,1,2,3处的水头相 等,即能量守恒:2 12P v Z g γ++=常数

伯努利方程-实验报告

伯努利方程仪实验报告 实验人 XXX 合作者 XXX 合作者 XXX XX年X月XX日 一、实验目的 1.观察流体流经能量方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对能量方程的理解; 2.掌握一种测量流体流速的原理; 3.验证静压原理。 二、实验设备 本实验台由压差板、实验管道、水泵、实验桌和计量水箱等组成。 图- 1伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验细管 9. 实验粗管10.测压管11.调节阀12.接水箱14回水管15.实验桌 1

三、 实验前的准备工作: 1.全开溢流水阀门 2.稍开给水阀门 3.将回水管放于计量水箱的回水侧 4.接好各导压胶管 5.检验压差板是否与水平线垂直 6. 启动电泵,使水作冲出性循环,检查各处是否有漏水的现象。 四、 几种实验方法和要求: 1. 验证静压原理: 启动电泵,关闭给水阀,此时能量方程试验管上各个测压管的液柱高度相同,因管内的水不流动没有流动损失,因此静水头的连线为一平行基准线的水平线,即在静止不可压缩均匀重力流体中,任意点单位重量的位势能和压力势能之和(总势能)保持不变,测点的高度和测点位置的前后无关,记下四组数据于表-2的最下方格中。从表-2中可以看出,当水没有流动时,测得的的静水压头基本上都是35.5cm ,验证了同一水平面上静压相等。 2. 测速: 能量方程试验管上的四组测压管的任一组都相当于一个毕托管,可测得管内任一点的流体点速度,本试验已将测压管开口位置在能量方程试验管的轴心,故所测得的动压为轴心处的,即最大速度。 毕托管求点速度公式: gh V B 2= 利用这一公式和求平均流速公式(F Q V /=)计算某一工况(如表中工况2平均速度栏)各测点处的轴心速度和平均流速得到表-1 表- 1 注:该表中数据由表-2中第一行数据计算得到 从表-1中我可以看到在细管测得的速度大,在粗管测得的速度小;在细管中测得的点速度比平均速度小,这可能是比托管的管嘴没有放在玻璃管管中心,或者比托管管嘴没有正对液体流向,使得总压与静压的差值小于实际值;在粗管测得的点速度比平均速度大,可能是因为在粗管,比托管更容易放在玻璃管中心,测得的点速度比平均速度大是正常的,因为如果是层流的话,流速沿半径方向呈抛物线分布。

实验一流体流动阻力

实验一流体流动阻力的测定 一、实验目的 1.了解流体流过直管或管件阻力的测定方法。 2.掌握直管摩擦系数λ与雷诺数Re之间关系的变化规律。 3.熟悉液柱压差计和转子流量计的使用方法。 4.测定流体流过阀门、变径管件(突然扩大、突然缩小)的局部阻力系数ξ。 二、实验内容 1.测定流体流经直管(不锈钢管、镀锌管)时摩擦系数λ与雷诺数Re之间关系。2.测定全开截止阀、突然扩大及突然缩小的阻力系数ξ。 三、基本原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地引起流体压力的损失。流体在流动时所产生的阻力有直管摩擦阻力(又称沿程阻力)和管件的局部阻力。这两种阻力,一般都是用流体的压头损失h f或压强降?P f表示。 1.直管阻力 直管摩擦阻力h f与摩擦系数λ之间关系(范宁公式)如下: h f=λ·l d · u2 2 (1—1) 式中h f——直管阻力损失, J/kg; l——直管长度, m; d——直管内径, m; u——流体平均速度, m/s; λ——摩擦系数,无因次。 其中摩擦系数λ是雷诺数Re和管壁相对粗糙度ε/d的函数,即λ=f(Re,ε/d)。对一定相对粗糙度而言,λ=f(Re);λ随ε/d和Re的变化规律与流体流动的类型有关。层流时,λ仅随Re变化,即λ=f(Re);湍流时,λ既随Re变化又随相对粗糙度ε/d改变,即λ=f(Re,ε/d)。 据柏努利方程式可知阻力损失hf的计算如下: h f=(Z1-Z2)g+ ρ2 1p p- + 2 2 2 2 1u u- (1—2) 当流体在等直径的水平管中流动时,产生的摩擦阻力可由式(1—2)化简而得:

h f =p p 12 -ρ=?p ρ=ρf p ? (1—3) 式中 ρ——流体的平均密度, kg/m 3; p 1——上游测压截面的压强, Pa ; p 2——下游测压截面的压强, Pa ; ?p ——两测压点之间的压强差, Pa ; ?p f ——单位体积的流体所损失的机械能, Pa 。 其中压强差?p 的大小采用液柱压差计来测量,即在实验设备上于待测直管的两端或管件两侧各安装一个测压孔,并使之与压差计相连,便可测出相应压差?p 的大小。本实验的工作介质为水,在一定的管路中流体流动阻力的大小与流体流速密切相关。流速大,产生的阻力大,相应的压差大;流速小,阻力损失小,对应的压差也小。为扩大测量范围,提高测量的准确度,小流量下用水—空气∏型压差计;大流量下用水—水银U 型压差计。据流体静力学原理,对水—空气∏型压差计,压差?p 为 ?p=(ρ-ρ空气)g ?R ≈ρg ?R (1—4) 式中 ?R ——压差计的读数, mH 2O ; g ——重力加速度, m/s 2; ρ空气——空气在操作条件下的密度, Kg/m 3。 对于水—水银U 型压差计,有 ?p=(ρHg —ρ)g ?R (1—5) 式中 ρHg ——水银的密度, kg/m 3。 其余符号的意义同式(1—4)。 整理(1—1)和(1—3)两式得: λ=ρ ρp u d ???22 (1—6) 而 Re=du ρμ (1—7) 式中 μ——流体的平均粘度, Pa ·s 。 在实验设备中,管长l 与管内径d 已固定,用水进行实验,若水温不变,则ρ与μ也是定值。所以该实验即为测定直管段的流动阻力引起压强降?P 与流速的关系。流量V h 的测定用转子流量计,据管内径的大小可算出流速u 的值。调节一系列的流量就可测定和计算一系列的λ与Re 值,在双对数坐标中绘出—Re 关系曲线。 2.局部阻力 局 化,流体受到干扰和冲击,涡流现象加剧而造成的。局部阻力通常有两种表示方法,即当

能量方程实验报告

姓名:邹志焱学号:1002123125班级:10021231 实验装置台号:7时间:2014年4月9日11时21分 实验名称:能量方程实验 一、实验目的 1、验证流体恒定总流的能量方程; 2、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转 换特性; 3、掌握流速、流量、压强等动水力学水力要素的实验量测技能。 二、实验方法与步骤 1、熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区 别。 2、打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。 如不平 则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。 3、打开阀13,观察思考(1)测压水头线和总水头线的变化趋势;(2)位置水头、压强水头之 间的相互关系;(3)测点(2)、(3)测管水头同否?为什么?(4)测点(12)、(13) 测管水头是否不同?为什么?(5)流量增加或减少时测管水头如何变化? 4、调节阀13开度,待流量稳定后,测计各测压管液面读数,同时测计实验流量(毕托管 供演示用, 不必测记读数)。 5、改变流量2次,重复上述测量。其中一次阀门开度大到使19号测管液面接近标尺零点。 三、实验数据 位置高度 1 :0cm位置高度2: 0cm位置高度3: 0cm 管径 1:14cm管径 2:30cm管径 3:14cm 点速度 (cm/s)平均速度 (cm/s)序号总压 (cm)静压 (cm) h(cm) 1 4.150000 3.8900000.26000022.57432272.158130 2 3.840000 3.8000000.0400008.85437715.714437 3 3.750000 3.4500000.30000024.24871172.158130

伯努利方程实验报告

不可压缩流体能量方程(伯努利方程)实验 一、实验目的要求: 1、掌握流速、流量、压强等动水力学水力要素的实验量测技术; 2、验证流体定常流的能量方程; 3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。 本实验的装置如图所示,图中: 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调节阀 三、实验原理: 在实验管路中沿水流方向取n个过水截面。可以列出进口截面(1)至截面(i)的能量方程式 1

2 (i=2,3,.....,,n) W i h g g p Z g g p Z i i i -+++=++1222 2111νρν ρ 选好基准面,从已设置的各截面的测压管中读出 g p Z ρ+ 值,测出通过管路的流量,即可计 算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 四、实验方法与步骤: 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的 相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。 5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。 五、实验结果及要求: 1、把有关常数记入表2.1。 2、量测( g p Z ρ+ )并记入表2.2。 3、计算流速水头和总水头。 表2.1 有关常数计录表水箱液面高程0?___cm ,上管道轴线高程z ?_____cm .

能量方程伯努利方程实验

第3章 能量方程(伯努利方程)实验 3.1 实验目的 1) 掌握用测压管测量流体静压强的技能。 2) 验证不可压缩流体静力学基本方程, 通过对诸多流体静力学现象的实验分析,进一步加深对基本概念的理解,提高解决静力学实际问题的能力。 3) 掌握流速、流量等动水力学水力要素的实验量测技能。 3.2 实验装置 能量方程(伯努利方程)实验装置见图3.1。 图3.1 能量方程(伯努利方程)实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道(共有三种不同内径的管道)、测压计、实验台等组成,流体在管道内流动时通过分布在实验管道各处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意图见图3.2),用于测量皮托管 探头对准点的总水头H ’(=2g u 2 ++r p Z ),其余为普通测压管(示意图见图3.3),用于测量测压管水头。 图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图 3.3 实验原理 当流量调节阀旋到一定位置后,实验管道内的水流以恒定流速流动,在实验管道中沿管内水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为: 2g v 2111++r p Z =f i i h r p Z +++2g v 2 i =常数 (3.1) 式中:i=2,3,······ ,n ; Z ──位置水头; r p ──压强水头; 2g v 2 ──速度水头; f h ──进口断面(1)至另一个断面(i )的损失水头。 从测压计中读出各断面的测压管水头(r p Z + ),通过体积时间法或重量时间法测出管道流量,计算不同管道内径时过水断面平均速度v 及速度水头2g v 2 ,从而得到各断面的测压管水头和总水头。 3.4 实验方法与步骤 1) 观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。观察管道内径的大小,并记录各测点管径至表3.1。 2) 打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管内气体或测压管内的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。如不平,则用吸气球将测压管中气泡排出或检查连通管内是否有异物堵塞。确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。 3) 打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。待测压管液面保持不变后,观察皮托管测点1、6、8、12、14、16和18的读数(即总水头,取标尺零点为基准面,下同)变化趋势:沿管道流动方向,总水头只降不升。而普通测压管2、3、4、5、7、9、10、11、13、15、17、19的读数(即测压管水头)沿程可升可降。观察直管均匀流同一断面上两个测点2、3测压管水头是否相同?验证均匀流断面上静水压强按动水压强规律分布。弯管急变流断面上两个测点10、11测压管水头是否相同?分析急变流断面是否满足能力方程应用条件?记录测压管液面读数,并测记实验流量至表3.2、表3.3。

化工原理例题

柏努利方程应用 例题: 1、20℃的空气在直径为80mm 的水平管流过。现于管路中接一文丘里管,如图:文丘里管的上游接一水银U 管压差计,在直径为20mm 的喉颈处接一细管,其下部插入水槽中。空气流过文求里管的能量损失可忽略不计。当U 管压差计读数R=25mm ,h=0.5m 时,试求此时空气的流量为若干m 3/h 。当地大气压强为101.33kPa 。 文丘里管上游测压口处的表压强为 p 1=ρHg g R =13600×9.81×0.025 =3335Pa(表压) 喉颈处的表压强为 p 2=-ρgh =-1000×9.81×0.5=-4905Pa (表压) 空气流经截面1-1'与2-2'的压强变化为(绝对压强) ()()%20%9.7079.03335101330490510133033351013301 21<==+--+=-p p p 故可按不可压缩流体来处理。 两截面间的空气平均密度为

()300 1.20kg/m 101330 29349053335211013302734.22294.22=???????-+?===Tp p T M m m ρρ 在截面1-1'与2-2'之间列柏努利方程式,以管道中心线作基准水平面。两截面间无外功加入,即W e =0;能量损失可忽略,即f h ∑=0。 据此,柏努利方程式可写为: ρρ2222121122p u gZ p u gZ ++=++ 式中 Z 1=Z 2=0 所以 2.1490522.1333522221-=+u u 简化得 1373 32122=-u u (a ) 据连续性方程 u 1A 1=u 2A 2 得 2 12211211202.008.0??? ??=???? ??==u d d u A A u u u 2=16u 1 (b ) 以式(b )代入式(a ),即(16u 1)2 -21u =13733 解得 u 1=7.34m/s 空气的流量为 /h m 8.13234.708.0436004360032121=???=?=ππu d Vs

流体力学三大方程的推导(优选.)

微分形式的连续性方程

连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。 重点讨论不同表现形式的流体连续方程。

用一个微六面体元控制体建立微分形式的连续性方程。 设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。 先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。 在x 轴方向流出与流入质量之差 ()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x x ρρρρ??+-=??

用同样的方法,可得在y 轴方向和z 轴方向的流出与流入 质量之差分别为 ()y u dxdydzdt y ρ??() z u dxdydzdt z ρ??这样,在dt 时间内通过六面体的全部六个面净流出的质量为: ()()()[]y x z u u u dxdydzdt x x x ρρρ???++???

在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量 ()dxdydzdt t ρ?-?()()()[]y x z u u u dxdydzdt dxdydzdt x y z t ρρρρ ????++=-????()()()0y x z u u u x y z t ρρρρ ????+++=????这就是直角坐标系中流体运动的微分形式的连续性方程。 这就是直角坐标系中流体运动的微分形式的连续性方程。 代表单位时间内,单位体积的质量变化 代表单位时间内,单位体积内质量的净流出

不可压缩流体恒定流能量方程实验分析

中图分类号.. TV313 文献标识码.. A 文章编号.. 1672-4801 2007 01-79-030 前言体的各种能量之间的相互转换关系和规律而伯 流体动力学方程是研究流体的流动状态运努利方程实验的验证是理工科及相关专业实验 动规律能量转换以及流体与固体壁面间的相互课程必开的实验之一对于实验学生往往只侧作用力等问题的方程包括连续性方程伯努利重实验数据测量和记录忽略了对实验成果的分方程和动量方程等三大方程他们分别解释了流析讨论为便于教师指导和学生参考本文对 体的质量能量及动量的关系与规律其中伯以实验测量数据构成的图表进行分析帮助引 努利方程采用能量守恒定律解决了液体的流动导学生从更深层面去理解和掌握该方程所体现问题在液体动力学中占据十分重要的地位在的规律性 我系主要的专业基础课流体力学中讲述伯1 实验 努利方程占有相当多的篇幅该方程用来描述流1.1 实验装置.. 4 5 6 7 8 1 1 1 1 2 机电技术.. 2007年第.. 1期经验交流.. 不可压缩流体恒定流能量方程实验分析 蔡礼权 (福建工程学院环境与设备工程系福建福州 350007) 摘要通过自循环伯努利方程实验仪进行实验将测量的实验数据进行计算处理绘制测压管水头线和总水 头线并对实验成果进行分析指导和帮助学生实验更好地理解和掌握能量方程 关键词流体力学伯努利方程实验装置测压管水头总水头流速水头 123913 1.自循环供水器 2.实验台 3.可控硅无级调速器 4.溢流板 5.稳水孔板 6.恒压水箱 7.测压计8.滑动测量尺9.测压管.. 10.实验管道11.测压点12.毕托管13.实验流量调节阀图.. 1 自循环伯努利方程实验装置示意图

流体流动柏努利方程11、12

一、教学课题:第一章 流体流动 第三节 流体动力学 二、教学目的:通过学习,掌握实际流体定常流动时的机械能能恒算,掌握不同衡算基准不同的衡算式,即柏努利方程主要应用在哪些地方以及在实际生产中柏努利方程应注意的事项? 三、课时:2h ,第8次 第9周 10.31日 星期三C24(3.4节) 第8次 第9周 11.1日星期四 C23(1.2节) 四、课型:新课 五、教具:白板笔、多媒体、激光笔 六、教学重点:实际流体定常流动时的机械能能恒算,不同衡算基准不同的衡算式、实际生产中柏努利方程应注意事项 教学难点:实际流体定常流动时的机械能能恒算,不同衡算基准不同衡算式、 七、教学方法和手段:主要以讲授为主,图表教学为辅 八、主要内容: 同学们好!通过学习我们了解到第一章 第三节 流体动力学中的能量衡算是流体流动这一章的重点,上次课我们学习了理想流体定常流动时的机械能衡算,同学们来回忆下理想流体伯努利方程的各种形式。 今天请同学们翻到教材30页,我们共同来学习在化工生产生产中实际流体定常流动过程的机械能衡算—柏努利方程。 本次主要解决实际流体定常流动时的机械能能恒算(到底什么是柏努力方程?柏努利方程主要应用在哪些地方?以及柏努利方程应注意哪些。 同学们,我们知道工程实际问题中遇到的都是实际流体,即流体具有粘性,在流动过程中要克服各种阻力,使一部分机械能转变为热能而无法利用,这部分损失掉的机械能称为阻力损失。 令1kg 流体在通道的两截面间做定常流动的阻力损失用 表示,其单位为J/kg 。1kg 流体流经输送机械获得的机械能用 We 表示,其单位为J/kg 。 因此,在不可压缩的实际流体定常流动的管路系统(如图)中,按机械能守恒,应有 机械能的输入=机械能的输出+机械能损失 任意两截面间的机械能衡算式。 为 ∑f h ∑+++=+++f h p u gZ We p u gZ ρρ22 22121122

能量方程(伯努利方程)实验

. . . . 第3章 能量方程(伯努利方程)实验 3.1 实验目的 1) 掌握用测压管测量流体静压强的技能。 2) 验证不可压缩流体静力学基本方程, 通过对诸多流体静力学现象的实验分析,进一步加深对基本概念的理解,提高解决静力学实际问题的能力。 3) 掌握流速、流量等动水力学水力要素的实验量测技能。 3.2 实验装置 能量方程(伯努利方程)实验装置见图3.1。 图3.1 能量方程(伯努利方程)实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道(共有三种不同径的管道)、测压计、实验台等组成,流体在管道流动时通过分布在实验管道各处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意图见图 3.2),用于测量皮托管探头对准点的总水头H ’(=2g u 2 ++r p Z ),其余为普通测压管(示意图见 图3.3),用于测量测压管水头。

- 2 - 图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图 3.3 实验原理 当流量调节阀旋到一定位置后,实验管道的水流以恒定流速流动,在实验管道中沿管水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为: 2g v 2111++r p Z =f i i h r p Z +++2g v 2 i =常数 (3.1) 式中:i=2,3,······ ,n ; Z ──位置水头; r p ──压强水头; 2g v 2 ──速度水头; f h ──进口断面(1)至另一个断面(i )的损失水头。 从测压计中读出各断面的测压管水头(r p Z + ),通过体积时间法或重量时间法测出管道流量,计算不同管道径时过水断面平均速度v 及速度水头2g v 2 ,从而得到各断面的测压管水头和总水头。 3.4 实验方法与步骤 1) 观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。观察管道径的大小,并记录各测点管径至表3.1。 2) 打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管气体或测压管的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。如不平,则用吸气球将测压管中气泡排出或检查连通管是否有异物堵塞。确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。 3) 打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。待测压管液面保持不变后,观察皮托管测点1、6、8、12、14、16和18的读数(即总水头,取标尺零点为基准面,下同)变化趋势:沿管道流动方向,总水头只降不升。而普通测压管2、3、4、5、7、9、10、11、13、15、17、19的读数(即测压管水头)沿程可升可降。观察直管均匀流同一断面上两个测点2、3测压管水头是否相同?验证均匀流断面上静水压强按动水压强规律分布。弯管急变流断面上两个测点10、11测压管水头是否相同?分析急变流断面是否满足能力方程应用条件?记录测压管液面读数,并测记实验流量至表3.2、表3.3。 4) 继续增大流量,待流量稳定后测记第二组数据(普通测压管液面读数和测记实验流量)。 5) 重复第4步骤,测记第三组数据,要求19号测压管液面接近标尺零点。 6) 实验结束。关闭水箱开关,使实验管道水流逐渐排出。 7) 根据表3.1和表3.2数据计算各管道断面速度水头2g v 2和总水头(2g v 2 ++r p Z )(分别记录 于表3.4和表3.5)。 ★操作要领与注意事项:①、实验前必须排除管道及连通管中气体。②、流量调节阀不能完全打开,要保证第7根和第8根测压管液面在标尺刻度围。 3.5 实验成果与分析 1) 记录有关常数

伯努力方程仪(水力学实验)

伯努利方程仪 实 验 指 导 书 深圳大学土木工程学院 2011.05

伯努利方程仪(LBN-19) 实验指导书 一、实验目的 1、观察流体流经能量方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对能量方程的理解。 2、掌握一种测量流体流速的方法。 3、验证静压原理。 二、实验装置 实验装置如下图所示,在实验桌上方放有稳压水箱、实验管路、毕托管、测压管、压差板、控制阀门和计量水箱。实验桌的侧下方则放置有供水箱及水泵。 测压板三、实验原理 不停运动着的一切物质,所具有的能量也在不停转化。在转化过程中,能量只能从一种形式转化为另一种形式,即遵守能量守恒定律。流体和其他物质一样,也具有动能和势能两种机械能,流体的动能与势能之间,机械能与其它形式的能量之间,也可互相转化,其转化关系,同样遵守能量转换守恒定律。 当理想不可压缩流体在重力场中沿管线作定常流动时,流体的流动遵循伯努力里能量方程。即 常数 =2 u 2g +γp + Z 式中:z —位置水头

压力水头 速度水头p γ 2g u 2 实际流体都是有粘性的,因此在流动过程中由于磨擦而造成能量损失。此时的能量方程变为: 其中能量损失hw 是由沿程磨擦损失hf 和局部能量损失hj 两部分组成。 本实验就是通过观察和测量对流体在静止与流动时上述的能量转化与守恒定律的验证。 四、实验操作 1、验证静压原理:启动水泵,等水罐满管道后,关闭两端阀门,这时观察能量方程实验管上各个测压管的液柱高度相同,因管内的水不流动没有流动损失,因此静止不可压缩均布重力流体中,任意点单位重量的位势能和压力势能之和保持不变,测点的高度和测点的前后位置无关。 2、测速:能量方程实验管上的每一组测压管都相当于一个皮托管,可测得管内任意一点的流体点速度,本实验台已将测压管开口位置设在能量方程实验管的轴心,故所测得动压为轴心处的,即最大速度。 根据以上公式计算某一工况各测点处的轴心速度和平均流速添入表格,可验证出连续性方程。对于不可压缩流体稳定的流动,当流量一定时,管径粗的地方流速小,细的地方流速大。 3、观察和计算流体、流径,能量方程实验管对能量损失的情况:在能量方程实验管上布置四组测压管,每组能测出全压和静压,全开阀门,观察总压沿着水流方向的下降情况,说明流体的总势能沿着流体的流动方向是减少的,改变给水阀门的开度,同时计量不同阀门开度下

伯努利方程实验实验报告

伯努利方程实验 一、实验目的: 1.通过实验,加深对伯努利方程式及能量之间转换的了解。 2.观察水流沿程的能量变化,并了解其几何意义。 3.了解压头损失大小的影响因素。 二、实验原理: 在流体流动过程中,用带小孔的测压管测量管路中流体流动过程中各点的能量变化。当测压管的小孔正对着流体的流动方向时,此时测得的是管路中各点的 动压头和静压头的总和,即 以单位质量流体为衡算基来研究流体流动的能量守恒与转化规律。对于不可压缩流体,在导管内作稳态流动时,则对确定的系统即可列出机械能衡算方程: ∑+++=+++f e h p gZ p u Z ρ ωρ22 2212112u 2g 当测压管的小孔垂直于流体的流动方向时,此时测得的是管路中各点的静压 头的值,即 。 将在同一流量下测得的hA 、hB 值描在 坐标上,可以直观看出流速与管径的关系。 比较不同流量下的hA 值,可以直观看出沿程的能量损失,以及总能量损失与流量、流速的关系。通过hB 的关系曲线,可以得出在突然扩大、突然缩小处动能与静压能的转换。 三.实验装置

四.实验步骤 1.将低位槽灌有一定数量的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀和排气阀、排水阀,打开回水阀和循环水阀而后启动离心泵。 2.逐步开大离心泵出口上水阀当高位槽溢流管有液体溢流后,利用流量调节阀出水的流量。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复步骤。 5.分析讨论流体流过不同位置处的能量转换关系并得出结果。 6.关闭离心泵,实验结束。 五.实验注意事项: 1.测记压头读数时,必须保持水位恒定。 2.注意测压管内无气泡时,方可开始读数。 3.测压管液面有波动时,读数取平均值为宜。 4.阀门开关要缓慢,否则影响实验结果。 六.数据处理

相关文档