文档库 最新最全的文档下载
当前位置:文档库 › Ansys-第33例瞬态热分析实例一水箱

Ansys-第33例瞬态热分析实例一水箱

Ansys-第33例瞬态热分析实例一水箱
Ansys-第33例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱

本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。

33.1概述

热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。

33.1.1 瞬态热分析的定义

瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。

33.1.2 嚼态热分析的步骤

瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。

1.建模

瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。

注意:瞬态热分析必须定义材料的导热系数、密度和比热。

2.施加载荷和求解

(1)指定分析类型,

Main Menu→Solution→Analysis Type→New Analysis,选择Transient。

(2)获得瞬态热分析的初始条件。

定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu→Solution→Define Loads→Apply→Thermal→Temperature命令施加的温度在整个瞬态热分析过程中均不变,应注意二者的区别。

定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads →Apply→Initial Condit'n→Define即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。

注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts →Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步,Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step。

(3)设置载荷步选项。

普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step.

非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay.

输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→DB/Results File.

(4)如果均匀的初始温度场是通过稳态分析施加的,则须删除稳态分析时施加的温度载荷,选择Main Menu →Solution→Define Loads→Delete→Thermal→Temperature。

(5)求解。

3.查看结果

可以用POST26或POST1查看结果。

33.2问题描述

图33-1所示为一个温度为500℃的铁块和一个温度为400℃的铜块,突然放入温度为20℃的完全绝热的水箱中。忽略水的流动,试分析1h后铜块和铁块的最高温度,以及铜块和铁块的温度变化情况。

材料热物理性能参数如表33-1所示。

图33-1 水箱示意图

表33-1 材料热物理性能参数

33.3分析步骤

33.3.1改变任务名

拾取菜单Utility Menu→File→Change Jobname,在所弹出对话框的“[/FILNAM]”文本框中输入EXAMPLE33,单击“OK”按钮。

图33-2 改变任务名对话框

33.3.2选择单元类型

拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图33-3所示的对话框,单击“Add…”按钮,弹出如图33-4所示的对话框,在左侧列表中选“Thermal Solid”,在右侧列表中选“8node 77”,单击“OK”按钮,返回到如图33-3所示的对话框,单击“Close”按钮关闭对话框。

图33-3 单元类型对话框

图33-4 单元类型库对话框

33.3.3定义村料模型

拾取菜单Main Menu→Preprocessor→Material Props→Material Models,弹出如图33-5所示的对话框,在右侧列表中依次拾取“Thermal”、“Conductivity”、“Isotropic”,弹出如图33-6所示的对话框,在“KXX”文本框中输入383(导热系数),单击“OK”按钮;再次拾取如图33-5所示对话框中右侧列表的“Specific Heat”项,弹出如图33-7所示的对话框,在“C”文本框中输入390(比热),单击“OK”按钮;再次拾取如图33-5所示对话框中右侧列表的“Density”项,弹出如图33-8所示的对话框,在“DENS”文本框中输入8889(密度),单击“OK”按钮,于是定义好了材料模型1(铜)。

单击如图33-5所示对话框的菜单项Material--New Model,单击弹出的“Define Material TD”对话框中的“OK”按钮,然后重复定义材料模型1时的各步骤,定义材料模型2(铁)的导热系数为70,比热为448,密度为7833。重复定义材料模型2时的各步骤,定义材料模型3(水)的导热系数为2,比热为4185,密度为996。最后关闭如图33-5所示的对话框。

图33-5 材料模型对话框

图33-6 定义导热系数对话框

图33-7 定义比热对话框

33.3.4创建矩形面,模拟铜块、铁块和水箱

拾取菜单Main Menu→Preprocessor→Modeling→Create→Areas→Rectangle→By Dimension,弹出如图33-9所示的对话框,在“X1,X2”文本框中分别输入0,0.6,在“Y1,Y2”文本框中分别输入0,0.5,单击“Apply”按钮,再次弹出如图33-9所示的对话框,在“Xl, X2”文本框中分别输入0.15, 0.225,在“Y1, Y2”文本框中分别输入(0.225,0.27),单击“Apply”按钮,再次弹出如图33-9所示的对话框,在“Xl,X2”文本框中分别输入0.342,0.42),在“Y1,Y2”文本框中分别输入0.225,0.27,单击“OK”按钮。

33.3.5显示面号

拾取菜单Utility Menu→PlotCtrls→Numbering,在弹出的"Plot Numbering Controls "对话框中,将Area numbers (面号)打开,单击“OK”按钮。

图33-8 定义密度对话框

图33-9 创建矩形对话框

33.3.6交叠面

拾取菜单Main Menu→Preprocessor→Modeling→Operate→Booleans→Overlap→Areas,弹出拾取窗口,单击“Pick All”按钮。

33.3.7划分单元

拾取菜单Main Menu→Preprocessor→Meshing→MeshTool,弹出如图33-10所示的对话框。选择“Element Attributes”的下拉列表框为“Areas”,单击下拉列表框后面的“Set”按钮,弹出拾取窗口,选择面2,单击拾取

窗口中的“OK”按钮,弹出.”Areas Attributes"对话框,选择“MAT”下拉列表框为1,单击“Apply”按钮,再次弹出拾取窗口,选择面3,单击拾取窗口中的“OK”按钮,选择“Areas Attributes”对话框的“MAT”下拉列表框为2,单击“Apply”按钮,再次窗口,择面4,单击拾取窗口中的“OK”按钮,选择“Areas Attributes”对话框的“MAT”下拉列表框为3,单击"OK"按钮。

单击“Size Controls”区域中“Global”后面的“Set”按钮,弹出如图33-11所示的对话框,在“SIZE”文本中输入0.01,单击“OK”按钮;在如图33-10所示对话框的"Mesh"区域,选择单元形状为“Quad”(四边形),选择划分单元的方法为“Mapped”(映射),单击“Mesh”按钮,弹出拾取窗口,拾取面2和面3,单击“OK”按钮。

图33-10 划分单元工具对话框

图33-11 单元尺寸对话框

单击“Size Controls”区域中“Global”后面的“Set”按钮,弹出如图33-11所示的对话框,在" SIZE"文本框中输入0.03,单击“OK”按钮;在如图33-10所示对话框的“Mesh”区域,选择单元形状为"Quad "(四边形),选择划分单元的方法为“Free”(自由),单击“Mesh”按钮,弹出拾取窗口,拾取面4,单击“OK”按钮,关闭如图33-10所示的对话框。

33.3.8指定分析类型

拾取菜单Main Menu→Solution→Analysis Type→New Analysis,在弹出的对话框中选择“Type of Analysis”为“Transient”,单击“OK”按钮,在随后弹出的“Transient Analysis”对话框中,单击“OK”按钮。

以下步骤进行稳态分析,以得到初始温度场。

33.3.9设置时间积分为关闭,进行稳态分析,以得到瞬态分析的初始温度场

拾取菜单Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay,弹出如图33-12所示的对话框,将“TIMINT”关闭,单击“OK”按钮。

图33-12 时间积分控制对话框.

确定稳态分析的载荷步时间和吋间步长

拾取菜单Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step,弹出如图33-13所示的对话框,在“TIME”文本框中输入0.01,在“DELTIM Time step size”文本框中输入0.01,单击“OK”按钮。

图33-13 确定载荷步时间和时间步长对话框

施加温度载荷

拾取菜单Main Menu→Solution→Define Loads→Apply→Thermal→Temperature→On Areas,弹出拾取窗口,拾取面2,单击“OK”按钮,弹出如图33-14所示的对话框,在“Lab2”列表中选择“TEMP”,在“VALUE”文本框中输入400,单击“Apply”按钮。再次弹出拾取窗口,拾取面3,单击“OK”按钮,弹出如图33-14所示的对话框,在“VALUE”文本框中输入500,单击“Apply”按钮。再次弹出拾取窗口,拾取面4,单击“OK”按钮,弹出如图33-14所示的对话框,在“VALUE”文本框中输入20,单击"OK“按钮。

求解

拾取菜单Main Menu→Solution→Solve→Current LS,单击“Solve Current Load Step"对话框中的"OK”按钮。

图33-14 在面上施加温度载荷对话框

以下步骤进行瞬态分析。

确定瞬态分析的载荷步时间和时间步长

拾取菜单Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step,弹出如图33-13所示的对话框,在“TIME”文本框中输入3600,在“DELTIM Time step size”文本框中输入50,选择“AUTOTS”为“ON”,在“DELTIM Minimum time step size”文本框中输入10,在“DELTIM Maximum time step size”文本框中输入200,单击“OK”按钮。

打开吋间积分,进行瞬态分析

拾取菜单Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration-→Amplitude Decay,弹出如图33-12所示的对话框,将“TIMJNT”打开,单击“OK”按钮。

删除稳态分析吋施加的温度载荷

拾取菜单Main Menu→Solution→Define Loads→Delete→Thermal→Temperature →On Areas,弹出拾取窗口,单击“Pick All”按钮。

确定数据库和结果文件中所包含的内容

拾取菜单Main Menu→Solution→Load Step Opts→Output Ctrls→DB/Results File,弹出“Controls for Database and Results File Writing”对话框,选择下拉列表框“Item”为“All Items”,选中“Every substep”,单击“OK”按钮。

求解

菜单Main Menu→Solution→Solve→Current LS,单击”Solve Current Load Step”对话框中的“OK”按钮。以下步骤查看结果。

查看温度

拾取菜单Main Menu→General Postproc→Plot Results→Contour Plot→Nodal Solu,在列表中依次选择“Nodal Solution→DOF Solution→Nodal Temperature”,单击“OK”按钮,结果如图33-15所示。

图33-.15 3600 s后的温度分布情况

定义变量

拾取菜Main Menu→TimeHist Postpro→Define Variables,弹出“Defined Time-→History Variables “对话框,单击“Add…”按钮,弹出“Add Time-History Variables”对话框,选择“Type of Variable”为“Nodal DOF result”,单击“OK”按钮,弹出拾取窗口,在拾取窗口的文本窗口中输入106(位于铜块中心),单击“OK”按钮,弹出如图33-16所示的对话框,在“Name”文本框中输入TEMP_106,单击“OK”按钮。关闭“Defined Time-History Variables”对话框。

图33-16 定义节点数据对话框

用曲线图显示温度变化情况

拾取菜单Main Menu→TimeHist Postpro→Graph Variables,弹出“Graph Time-History Variables”对话框,在“NVAR1”文本框中输入2,单击“OK”按钮,结果如图33-17所示。

图33-17节点106处的温度变化情况

第34例在结构上直接施加温度载荷进行热应力分析实例

------双金属簧片

本例介绍了在结构单元上直接施加温度载荷进行热应力分析的方法和步骤,并使用解析解对有限元分析结果进行了验证。

34.1概述

当一个结构发生温度变化时,它会发生膨胀或收缩。如果其膨胀或收缩受到限制,或者由于温度分布不均而导致膨胀和收缩的程度不同,就会产生热应力。

ANSYS提供了三种计算热应力的方法,即在结构上直接施加温度载荷、间接法和直接法。本例介绍第一种方法,该方法主要用于结构温度场为已知且均匀分布的场合。分析类型为静力学分析,温度场的施加采用Main Menu →Solution→Define Loads→Apply→Structural→Temperature命令。此时,节点温度作为静力学分析的体载荷而不是节点自由度。

34.2问题描述及解析解

温度调节器所使用的双金属簧片的计算简图如图34-1所示。两簧片等厚度、等宽度,材料不同,二者紧密连成一体,其左端可视为固定端。第1个金属片为钢制,其弹性模量E1=2x1011Pa,线膨胀系数,α1=10x10-6/℃;第2个金属片为铜制,其弹性模量E2=1.1 x1011Pa,线膨胀系数a2=16xl0-'/℃。簧片各部分尺寸为长度L=40mm,高度h=0.5mm。试分析当温度升高△t=l00℃时,簧片自由端的挠度。

图34-1 双金属簧片

根据材料力学的知识,容易得出簧片自由端的挠度为

=7.038×10-4m

?()

()

34.3 分析步骤

34.3.1改变任务名

拾取菜单Utility Menu→File→Change Jobname,在所弹出对话框的“[/FILNAM]”文本框中输入EXAMPLE34,单击“OK”按钮。

34.3.2选择单元类型

拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图34-2所示的对话框,单击

“Add…”按钮,弹出如图34-3所示的对话框,在左侧列表中选“Structural Solid”,在右侧列表中选“20node 186”,单击“OK”按钮,返回到如图34-2所示的对话框,单击“Close”按钮。

图34-2 单元类型对话框

图34-3 单元类型库对话框

34.3.3定义村料模型

拾取菜单Main Menu→Preprocessor→Material Props→Material Models,弹出如图34-4所示的对话框,在右侧列表中依次拾取“Structural”、“Linear”、“Elastic”、”Isotropic”,弹出如图34-5所示的对话框,在“EX”文本框中输入2e11(弹性模量),在“PRXY”文本框中输入0.3(泊松比),单击“OK”按钮;再在图34-4所示对话框的右侧列表中依次拾取,Structural下面的“Thenual Expansion”、“Secant Coefficient”、“Isotropic”,弹出如图34-6所示的对话框,在“ALPX”文本框中输入10e-6(线膨胀系数),单击“OK”按钮。单击如图34-4所示对话框的菜单项Material→New Model,单击所弹出“Define Material ID”对话框中的“OK”按钮,然后重复定义材料模型1时的各步骤,定义材料模型2的弹性模量为1.1e11,泊松比为0.34,线膨胀系数为16e-6,最后关闭如图34-4所示的对话框。

图34-4 材料模型对话框

图34-5 材料特性对话框(一)

图34-6 材料特性对话框(二)

34.3.4创建块

拾取菜单Main Menu→Preprocessor→Modeling→Create→Volumes→Block→By Dimension,弹出如图34-7所示的对话框,在“X1,X2”文本框中分别输入0,0.04,在“Y1,Y2”文本框中分别输入0,0.000 5,在“21,22”文本框中分别输入0,0.005,单击“Apply”按钮。再次弹出如图34-7所示的对话框,在“X1,X2”文本框中分别输入0,0.04,在“Y1,Y2”文本框中分别输入0.0005,0.00l,在“Z1,22”文本框中分别输入0,0.005,单击“OK”按钮。

图34-7 创建块对话框

34.3 5黏结体

拾取菜单Main Menu→Preprocessor→Modeling →Operate→Booleans →Glue→Volumes.弹出拾取窗口,单击“Pick All”按钮。

34.3.6划分单元

拾取菜单Main Menu→Pteprocessor→Meshing→MeshTool,弹出如图34-8所示的对话框。选择“Element Attributes”的下拉列表框为“Volumes”,单击列表框后面的“Set”按钮,弹出拾取窗口.选择上面的六面体,单击拾取窗口中的“OK”按钮,弹出“Volume Attributes”对话框,选择“MAT”下拉列表框为1,单击“Apply”按钮,再次弹出拾取窗口,选择下面的六面体,单击拾取窗口中的“OK”按钮,选择“Volume Attributes”对话框的“MAT”下拉列表框为2,单击“OK”按钮。

单击“Size Controls”区域中“Global”后面的“Set”按钮,弹出如图34-9所示的对话框,在“SIZE”文本框中输入0.0005,单击“OK”按钮。

图34-8 划分单元工具对话框

图34-9 单元尺寸对话框

在图34-8所示对话框的“Mesh”区域,选择单元形状为“Hex”(六面体),选择划分单元的方法为“Mapped”(映射),单击“Mesh”按钮,弹出拾取窗口,单击“Pick All”按钮,最后单击如图34-8所示对话框中的“Close”按钮。

34.3.7改变视点

拾取菜单Utility Menu→PlotCtrls→Pan Zoom Rotate,在弹出的对话框中,依次单击“Iso”、“Fit”按钮,或者单击图形窗口右侧显示控制工具条上的剧按钮。

34.3.8施加约束

拾取菜单Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Areas,弹出拾取窗口,拾取x=0平面,单击“OK”按钮,弹出如图34-10所示的对话框,在列表中选择“All DOF”,单击“OK”按钮。

图34-10 在面上施加约束对话框

34.3.9施加温度载荷

拾取菜单Main Menu→Solution→Define Loads→Apply→Structural→Temperature→On Volumes,弹出拾取窗口,单击“Pick All”按钮,弹出如图34-11所示的对话框,在“VAL1”文本框中输入100,单击“OK”按钮。

图34-11 在体上施加温度载荷对话框

定义参考温度

拾取菜单Main Menu→Solution→Define Loads→Settings-→Reference Temp,弹出如图34-12所示的对话框,在“TREF”文本框中输入0,单击“OK”按钮。

图34-12 定义参考温度对话框

计算热膨胀大小,温度差等于步骤34.3.9所定义的节点温度减去参考温度,参考温度的默认值为0。

求解

拾取菜单Main Menu→Solution→Solve→Current LS,单击”Solve Current Load Step "对话框中的“OK”按钮,当出现“Solution is done!”提示时,求解结束,即可查看结果。

查看结果,显示变形

拾取菜单Main Menu→General Postproc→Plot Results→Deformed Shape,弹出如图34-13所示的对话框,选中“Def+undef edge”(变形+未变形的模型边界),单击“OK”按钮,结果如图34-14所示。

图34-13 显示变形对话框

图34-14 簧片的变形

可见,簧片自由端的位移即簧片的最大位移为7.33 x 10-4mm,与理论解基本一致,从而,证明有限元解具有

较高的精度.

第35例基于实测温度场进行热应力

分析实例----转炉托圈

本例通过实例介绍了利用ANSYS参数化设计语言( APDL)编制程序,将实测温度场施加到有限元模型上,并对结构的热应力进行有限元分析,得到了结构各部分热应力的精确分布。

35.1概述

托圈是转炉的重要传动和承载部件,工作过程中的热物理过程十分复杂,其温度场分布通过解析法或数值法进行计算几乎是不可能的,通常托圈的温度场只能是通过现场测试得到,但由于托圈结构比较复杂,其热应力计算一般都是用有限元方法进行的,因此存在着如何将实测得到的温度场施加到有限元模型上的问题。

某转炉托圈形状可近似为如图35-l (a)所示的回转体,图35-1(b)为其横截面形状,已知r0=4.3185m、r1= 5.1535m、h=2.5m,经测量托圈在0、90。、180。、270。四个横截面处A、B、C、D四点的溫度如表35-1所示,沿托圈圆周和横截面高度方向温度近似线性分布,现计算其热应力。

图35-1 转炉托圈的横截面

表35-1 托圈温度分布

由于托圈的温度按线性规律分布,所以有限元分析时可以由0、90°、180°、270°四个横截面的温度值通过线性插值得到其他截面上A、B、C、D四点的温度值,再由该截面上A、B、C、D四点的温度值线性插值得到截面上其他点的温度值。于是,由若干个测量点的温度值插值得到整个托圈上所有点的温度值。使用ANSYS对托圈热应力进行分析时,可以利用其参数化设计语言(APDL)编制程序来模拟上述线性插值过程,然后把所计算得到的各个节点的温度值作为载荷施加到有限元模型上。程序框图如图35-2所示。

35.2命令流

/CLEAR !清除数据库,新建分析

/FILNAME,EXAMPLE35 !定义任务名为”EXAMPLE35 “

R0=4.3185 !定义参数,尺寸

R1=5.1535

H=2.5

TH=0.1

/PREP7 !进入预处理器

ET, 1, PLANE182 !选择单元类型

ET, 2, SOLID185

MP,EX,1,2E11 !定义材料模型,弹性模量MP,PRXY,1,0.3 !泊松比

MP,ALPX,1,3.5E-6 !线膨胀系数

RECTING,R0,R0+TH,-H/2,H/2 !创建矩形面

RECTING,R1-TH,R1,-H/2,H/2

RECTING,R0,R1,H/2-TH,H/2

RECTING,R0,R1,-H/2+TH,-H/2

AOVLAP,ALL !交叠所有面

MSHAPE,0 !六面体单元

MSHKEY,1 !映射网格

ESIZE,0.05 !单元边长度

AMESH,ALL !对面划分单元

K,100 !创建关键点

K,101,0,1

EXTOPT, ESIZE,10 !挤出段数

EXTOPT, ACLEAR, 1 !挤出后清除面单元VROTAT,ALL,,,,,,100,101,360 !旋转挤出

FINI !退出预处理器

/SOLU !进入求解器

NSEL,S,LOC,X,0 !在选择的节点上施加位移约束D,ALL,UX

NSEL,S,LOC,Y,0

D,ALL,UY

NSEL,S,LOC,Z,0

D,ALL,UZ

ALLS !选择所有

TA_0=141 !定义参数,实测温度TB_0=88

TC_0=122

TD_0=80

TA_90=171

TB_90=115

TC_90=135

TD_90=89

TA_180=138

TB_180=90

TC_180=123

TD_180=79

TA_270=212

TB_270=142

TC_270=163

TD_270=135

*GET,NODE_MAX,NODE,0,NUM,MAX !获得最大节点号

CSYS,5 !切换活跃坐标系为全局圆柱坐标系(Y轴)*DO,I,1,NODE_MAX !循环开始,计算每一个节点的温度值

*GET,NR,NODE,I,LOC,X !获得节点I的r坐标

*GET,NSIT,NODE,I,LOC,Y !获得节点I的θ坐标

*GET,NZ,NODE,I,LOC,Z !获得节点I的z坐标

*IF,NSIT,GE,90,THEN

TA=TA_180-(TA_90-TA_180)/90*(NSIT-180) !计算节点I所在横截面上A、B、C、

!D四点的温度值

TB=TB_180-(TB_90-TB_180)/90*(NSIT-180)

TC=TC_180-(TC_90-TC_180)/90*(NSIT-180)

TD=TD_180-(TD_90-TD_180)/90*(NSIT-180)

*ELSEIF,NSIT,GE,0

TA=TA_90-(TA_0-TA_90)/90*(NSIT-90)

TB=TB_90-(TB_0-TB_90)/90*(NSIT-90)

TC=TC_90-(TC_0-TC_90)/90*(NSIT-90)

TD=TD_90-(TD_0-TD_90)/90*(NSIT-90)

*ELSEIF,NSIT,GE,-90

TA=TA_0-(TA_270-TA_0)/90*(NSIT-0)

TB=TB_0-(TB_270-TB_0)/90*(NSIT-0)

TC=TC_0-(TC_270-TC_0)/90*(NSIT-0)

TD=TD_0-(TD_270-TD_0)/90*(NSIT-0)

*ELSEIF,NSIT,GE,-180

TA=TA_270-(TA_180-TA_270)/90*(NSIT+90)

TB=TB_270-(TB_180-TB_270)/90*(NSIT+90)

TC=TC_270-(TC_180-TC_270)/90*(NSIT+90)

TD=TD_270-(TD_180-TD_270)/90*(NSIT+90)

*ENDIF

TP0=TA+(TC-TA)*(NR-R0)/(R1-R0) !由A、B, C, D四点的温度值计算P0和P1点的温度值TP1=TB+(TD-TB)*(NR-R0)/(R1-R0)

TP=TP1-(TP0-TP1)*(NZ-H/2)/H !由P0和P1点的温度值计算P点即节点P1的温度值BF,I,TEMP,TP !施加温度载荷

*ENDDO

SOLVE !求解

SAVE !保存数据库

FINISH !退出求解器

/POST1 !进入普通后处理器

PLNSOL, BFE,TEMP !显示温度分布,如图35-3所示

PLNSOL, U,SUM !显示变形,如图35-4所示

FINISH !退出普通后处理器

图35-3 温度分布

图35-4 变形情况

热分析的基础与应用

热分析的基础与分析 SII·Nano technology株式会社 应用技术部大九保信明 目录 1.引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2.热分析概要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2-1热分析的基本定义 2-2热分析技术的介绍 2-3热分析结果的主要 3.热分析技术的基本原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3-1 差热分析DTA原理 3-2 差热量热DSC原理 3-3 热重TG 原理 3-4 热机械分析TMA原理 4.应用篇。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 4-1DSC的应用例 4-1-1聚苯乙烯的玻璃化转变分析 4-1-2聚苯乙烯的融解温度分析 4-1-3比热容量分析 4-2TG/DTA的应用例 4-2-1聚合物的热分析测定 4-2-2橡胶样品的热分析测定 4-2-3反应活化能的解析 4-3TMA的应用例 4-3-1聚氯乙烯样品玻璃化温度的测定 4-3-2采用针入型探针对聚合物薄膜的测定 4-3-3热膨胀,热收缩的异向性解析 结束语。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 参考文献

1.前言 与其它分析方法相比,热分析方法研究的历史较为久远,1887年,勒夏特利埃(Le Chatelier)就着手研究差热分析,1915年,我国的本多光太郎开创了热重分析(热天平)。之后,随着电气、电子技术、机械技术的发展,热分析仪器迅速地得到了普及,加之,由于最近该仪器的自动化、计算机化程度的不断提高,热分析技术已作为通用的分析技术之一已被广泛的应用。 热分析技术涉及众多领域,以化学领域为首,热分析技术已广泛应用于物理学、地球科学、生物化学、药学等领域。起初,在这些领域中,热分析主要用于基础性研究。随着研究成果的不断积累、扩大,现已被用于应用开发、材料设计,以及制造工序中的各种条件的研究等生产技术方面。近年来,在日本工业标准/JIS等的试验标准、日本药典等的法定分析法中有些也采用了热分析技术。同时,在产品的出厂检验、产品的验收检查等质量管理、工艺管理领域,热分析也已成为最重要的分析方法之一。 作为热分析技术的最常用的方法,本章主要介绍差热分析(DTA)、差热量热分析(DSC)、热重分析(TG)及热机械分析(TMA)的基本原理以及各种测量技术的典型应用示例。 2.热分析的概要 2-1 热分析的定义 根据国际热分析协会(International Confederation for Thermal Analysis and Calorimetry:ICTA)的定义,热分析为: 热分析技术是在控制程序温度下,测量物质(或其反应生成物)的物理性质与温度(或时间)的关系的一类技术。 图1为根据该定义制作的热分析仪器的示意图。所谓热分析是指,如图1所示将试样放入加热炉中,检测使温度发生变化时所发生的各种性能变化的方法。根据要检测不同的物质性能的变化,热分析技术可以分类为几种不同的热分析技术。 图1热分析仪器的示意图

ansys中的热分析

【转】热-结构耦合分析 知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换

ANSYS非稳态热分析及实例详解解析

本章向读者介绍非稳态热分析的基本知识, 主要包括非稳态热分析的应用、 非稳态热分析的基本步骤。 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 丄本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析 7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。 根据物体温度随着时间的推移而变化的 特性可本章要点 非稳态热分析单兀、

以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。 ANSYS 11.0 及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷 - 时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

ANSYS热应力分析经典例题

ANSYS热应力分析例题 实例1圆简内部热应力分折: 有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。 该问题属于轴对称问题。由于圆筒无限长,忽略圆筒端部的热损失。沿圆筒纵截面取宽度为10M的如图13—2所示的矩形截面作为几何模型。在求解过程中采用间接求解法和直接求解法两种方法进行求解。间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。 /filname,exercise1-jianjie /title,thermal stresses in a long /prep7 $Et,1,plane55 Keyopt,1,3,1 $Mp,kxx,1,70 Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2 Lesize, all,,,20 $Lsel,s,,,2,4,2 Lesize,all,,,5 $Amesh,1 $Finish /solu $Antype,static Lsel,s,,,4 $Nsll,s,1 $d,all,temp,200 lsel,s,,,2 $nsll,s,1 $d,all,temp,20 allsel $outpr,basic,all solve $finish /post1 $Set,last /plopts,info,on Plnsol,temp $Finish /prep7 $Etchg,tts Keyopt,1,3,1 $Keyopt,1,6,1 Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28 Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,all Lsel,s,,,2 $Nsll,s,1 $Cp,9,ux,all Allsel $Finish /solu $Antype,static D,all,uy,0 $Ldread,temp,,,,,,rth Allsel $Solve $Finish /post1 /title,radial stress contours Plnsol,s,x /title,axial stress contours Plnsol,s,y /title,circular stress contours Plnsol,s,z /title,equvialent stress contours Plnsol,s,eqv $finish

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

ansys热分析

第三章稳态热分析 3.1稳态传热的定义 ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和 ANSYS/Professional这些产品支持稳态热分析。稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。 稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。这些热载荷包括: 对流 辐射 热流率 热流密度(单位面积热流) 热生成率(单位体积热流) 固定温度的边界条件 稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。当然,如果在分析中考虑辐射,则分析也是非线性的。 3.2热分析的单元 ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。单元名采用大写,所有的单元都可用于稳态和瞬态热分析。其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。这些热分析单元如下: 表3-1二维实体单元 单元维数形状及特点自由度 PLANE35 二维六节点三角形单元温度(每个节点) PLANE55 二维四节点四边形单元温度(每个节点) PLANE75 二维四节点谐单元温度(每个节点) PLANE77 二维八节点四边形单元温度(每个节点) PLANE38 二维八节点谐单元温度(每个节点)

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

ANSYS瞬态分析实例

例题:一根钢梁支撑着集中质量并承受一个动态载荷(如图1所示)。钢梁长为L,支撑着一个集中质量M。这根梁承受着一个上升时间为t1的值为F1 的动态载荷F(t)。梁的质量可以忽略,确定产生最大位移响应时的时间t max 和响应y max。 图1 钢梁支撑集中质量的几何模型 材料特性:弹性模量为2e5MPa,质量为M=0.0215t,质量阻尼为8; 几何尺寸为:L=450mm,I=800.6mm4,h=18mm; 载荷为:F1=20N,t1=0.075s GUI操作方式: 1.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现一个对话框,单击“Add”,又出现一个对话框,在对话框左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择“2D elastic 3”,单击“Apply”,在对话框左面的列表栏中选择“Structural Mass”,在右边选择“3D mass 21”,单击“OK”,在单击“Options”,弹出对话框,设置K3为“2-D W/O rot iner”,单击“OK”,再单击“Close”。 2.设置实常数:Main Menu>Preprocessor>Real Constants> Add/Edit/Delete,出现对话框,单击“Add”,又弹出对话框,选择“Type1 BEAM3”,单击“OK”,

又弹出对话框,输入AREA为1,IZZ=800.6,HEIGHT=18,单击“OK”,在单击“Add”,选择Type 2 MASS21,单击“OK”,设置MASS为0.0215,单击“OK”,再单击“Close”。 3.定义材料属性:Main Menu>Preprocessor>Material Props>Material Modls,出现对话框,在“Material Models Available”下面的对话框中,双击打开“Structural>Linear>Elastic>Isotropic”,又出现一个对话框,输入弹性模量EX=2e5,泊松比PRXY=0,单击“OK”,单击“Materal>Exit”。 4.建立模型: 1)创建节点:依次单击Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS,在弹出对话框中,依次输入节点的编号1,节点坐标x=0,y =0,然后单击“Apply”,输入节点编号2,节点坐标x=450/2,y=0,然后单击“Apply”,输入节点编号3,节点坐标x=450,y=0。单击“OK”。2)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点1和2,2和3,单击“OK”。 3)指定单元实常数:Main Menu>Preprocessor>Modeling>Create>Elements> Elem Attributes,弹出对话框,设置TYPE为2,REAL为2,单击“OK”。4)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点2,单击“OK”。5.定义分析类型:Main Menu>Solution>Analysis Type>New Analysis,弹出对话框,选择Trasiernt,单击“OK”,又弹出对话框,选择Reduced,单击“OK”。6.设置分析选项:Main Menu>Solution>Analysis Type>Analysis Options,弹出对话框,单击“OK”。

ansys结构瞬态分析实例

第二日 练习主题:各种网格划分方法 输入实体模型尝试用映射、自由网格划分,并综合利用多种网格划分控制方法 一个瞬态分析的例子 练习目的:熟悉瞬态分析过程 练习过程:瞬态(FULL)完全法分析板-梁结构实例 如图1所示板-梁结构,板件上表面施加随时间变化的均布压力,计算在下列已知条件下结构的瞬态响应情况。 全部采用A3钢材料,特性: 杨氏模量=2e112 /m N 泊松比=0.3 密度=7.8e33/m Kg 板壳: 厚度=0.02m 四条腿(梁)的几何特性: 截面面积=2e-42m 惯性矩=2e-84m 宽度=0.01m 高度=0.02m 压力载荷与时间的关系曲线如图2所示。 图1 质量梁-板结构及载荷示意图 压力(N/m 2) 10000 5000 0 1 2 4 6 时间(s ) 图 2 板上压力-时间关系 分析过程 第1步:设置分析标题 1. 选取菜单途径Utility Menu>File>Change Title 。 2. 输入“ The Transient Analysis of the structure ”,然后单击OK 。 第2步:定义单元类型 单元类型1为SHELL63,单元类型2为BEAM4 第3步:定义单元实常数 实常数1为壳单元的实常数1,输入厚度为0.02(只需输入第一个值,即等78厚度壳)

实常数2为梁单元的实常数,输入AREA 为2e-4惯性矩IZZ=2e-8,IYY =2e-8宽度TKZ=0.01,高度TKY=0.02。 第5步:杨氏模量EX=2e112 /m N 泊松比NUXY=0.3 密度DENS=7.8e33/m Kg 第6步:建立有限元分析模型 1. 创建矩形,x1=0,x2=2,y1=0,y2=1 2. 将所有关键点沿Z 方向拷贝,输入DZ =-1 3. 连线。将关键点1,5;2,6;3,7;4,8分别连成直线。 4. 设置线的分割尺寸为0.1,首先给面划分网格;然后设置单元类型为2,实常数为2, 对线5到8划分网格。 第7步:瞬态动力分析 1. 选取菜单途径Main Menu>Solution>-Analysis Type-New Analysis ,弹出New Analysis 对话框。 2. 选择Transient ,然后单击OK ,在接下来的界面仍然单击OK 。 3. 选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Damping ,弹出 Damping Specifications 窗口。 4. 在Mass matrix multiplier 处输入5。单击OK 。 5. 选取菜单途径Main Menu > Solution > -Loads-Apply > -Structural- Displacement>On Nodes 。弹出拾取(Pick )窗口,在有限元模型上点取节点232、242、252和262,单击OK ,弹出Apply U,ROT on Nodes 对话框。 6. 在DOFS to be constrained 滚动框中,选种“All DOF ”(单击一次使其高亮度显示, 确保其它选项未被高亮度显示)。单击OK 。 7. 选取菜单途径Utility Menu>Select>Everything 。 8. 选取菜单途径Main Menu>Solution>-Load Step Opts-Output Ctrls>DB/Results File ,弹 出Controls for Database and Results File Writing 窗口。 9. 在Item to be controlled 滚动窗中选择All items ,下面的File write frequency 中选择 Every substep 。单击OK 。 10. 选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time – Time Step ,弹出Time – Time Step Options 窗口。 11. 在Time at end of load step 处输入1;在Time step size 处输入0.2;在Stepped or ramped b.c 处单击ramped ;单击Automatic time stepping 为on ;在Minimum time step size 处输入0.05;在Maximum time step size 处输入0.5。单击OK 。 12. 选取菜单途径Main Menu>Solution>-Loads-Apply>-Structure-Pressure>On Areas 。弹 出Apply PRES on Areas 拾取窗口。 13. 单击Pick All ,弹出Apply PRES on Areas 对话框。 14. 在pressure value 处输入10000。单击OK 15. 选取菜单途径Main menu>Solution>Write LS File ,弹出Write Load Step File 对话框。 16. 在Load step file number n 处输入1,单击OK 。 17. 选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time – Time Step ,弹出Time – Time Step Options 窗口。 18. 在Time at end of load step 处输入2。单击单击OK 。

ANSYS非稳态热分析及实例详解解析

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

ANSYS动力学瞬态分析完全法

完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。 §3.4 完全法瞬态动力学分析 首先,讲述完全法瞬态动力学分析过程,然后分别介绍模态叠加法和缩减法与完全法不相同的计算步骤。完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成: 1.建造模型 2.建立初始条件 3.设置求解控制 4.设置其他求解选项 5.施加载荷 6.存储当前载荷步的载荷设置 7.重复步骤3-6定义其他每个载荷步

8.备份数据库 9.开始瞬态分析 10.退出求解器 11.观察结果 § 型 在这一步中,首先要指定文件名和分析标题,然后用PREP7定义单元类型,单元实常数,材料性质及几何模型。这些工作在大多数分析中是相似的。<>详细地说明了如何进行这些工作。 对于完全法瞬态动力学分析,注意下面两点: ·可以用线性和非线性单元; ·必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量)。材料特性可以是线性的或非线性的、各向同性的或各向异性的、恒定的或和温度有关的。 划分合理的网格密度: ·网格密度应当密到足以确定感兴趣的最高阶振型; ·对应力或应变感兴趣的区域比只考察位移的区域的网格密度要细一些; ·如果要包含非线性特性,网格密度应当密到足以捕捉到非线性效应。例如,塑性分析要求在较大塑性变形梯度的区域有合理的积分点密度(即要求较密的网格); ·如果对波传播效果感兴趣(例如,一根棒的末端准确落地),网格密度应当密到足以解算出波动效应。基本准则是沿波的传播方向每一波长至少有20个单元。 § 在执行完全法瞬态动力学分析之前,用户需要正确理解建立初始条件和正确使用载荷步。 瞬态动力学分析顾名思义包含时间函数的载荷。为了定义这样的载荷,用户需要将载荷—时间关系曲线划分成合适的载荷步。载荷—时间曲线上的每个“拐角”对应一个载荷步,如图3.1所示。

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义 瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 瞬态动力学的基本运动方程是: 其中: [M] =质量矩阵 [C] =阻尼矩阵 [K] =刚度矩阵 {}=节点加速度向量 {}=节点速度向量 {u} =节点位移向量 在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和 阻尼力([C]{})的静力学平衡方程。ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。两个连续时间点间的时间增量称为积分时间步长(integration time step)。 §3.2学习瞬态动力学的预备工作 瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。例如,可以做以下预备工作:

1.首先分析一个较简单模型。创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。 2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。在某些场合,动力学分析中是没必要包括非线性特性的。 3.掌握结构动力学特性。通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。同时,固有频率对计算正确的积分时间步长十分有用。 4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。<<高级技术分指南>>中将讲述子结构。 §3.3三种求解方法 瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。ANSYS/Professional产品中只允许用模态叠加法。在研究如何实现这些方法之前,让我们先探讨一下各种方法的优点和缺点。 §3.3.1完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。

ansys热分析例题

问题描述:一个30公斤重、温度为70℃的铜块,以及一个20公斤重、温度为80℃的铁块,突然放入温度为20℃、盛满了300升水的、完全绝热的水箱中,如图所示。过了一个小时,求铜块与铁块的最高温度(假设忽略水的流动)。 材料热物理性能如下:热性能单位制 铜铁水 导热系数W/m℃ 383 37 密度Kg/m 8889 7833 996 比热J/kg℃ 390 448 4185 菜单操作过程: 一、设置分析标题 1、选择“Utility Menu>File>Change Jobname”,输入文件名Transient1。 2、选择“Utility Menu>File>Change Title”输入Thermal Transient Exercise 1。 二、定义单元类型 1、选择“Main Menu>Preprocessor”,进入前处理。 2、选择“Main Menu>Preprocesor>Element Type>Add/Edit/Delete”。选择热平面单元plane77。 三、定义材料属性 1、选择“Main Menu>Preprocessor>Material Props>Material Models”,在弹出的材料定义窗口中顺序双击Thermal选项。 2、点击Conductivity,Isotropic,在KXX框中输入383;点击Density,在DENS框中输入8898;点击Specific Heat,在C框中输入390。 3、在材料定义窗口中选择Material>New Model,定义第二种材料。 4、点击Conductivity,Isotropic,在KXX框中输入70;点击Density,在DENS框中输入7833;点击Specific Heat,在C框中输入448。 5、在材料定义窗口中选择Material>New Model,定义第三种材料。 6、点击Conductivity,Isotropic,在KXX框中输入.61;点击Density,在DENS框中输入996;点击Specific Heat,在C框中输入4185。 四、创建几何模型 1、选择“Main Menu>Preprocessor>-Modeling->Create>-Areas->Retangle>By Dimensions”,输入X1=0, Y1=0, X2=, Y2=, 点击Apply;输入X1=, Y1=, X2= ,Y2=, 点击Apply;输入X1= Y1=, X2= Y2=+, 选择OK。 2、选择“Main Menu>Preprocessor>-Modeling->Operate>Booleans>Overlap”,选择Pick All。 3、选择“Utility Menu>Plotctrls>Numbering>Areas, on”。 4、选择“Utility Menu>Plot>Areas”。 五、划分网格 1、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料1。 2、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小。 3、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铜块。 4、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料2。 5、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选

相关文档