文档库 最新最全的文档下载
当前位置:文档库 › 水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和内力计算
水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和内力计算

5.1 水平地震作用下框架结构的侧移验算

5.1.1抗震计算单元

计算单元:选取6号轴线横向三跨的一榀框架作为计算单元。 5.1.2横向框架侧移刚度计算

1、梁的线刚度:

b /l I E i b

c b = (5-1)

式中:E c —混凝土弹性模量s I b —梁截面惯性矩 l b —梁的计算跨度

I 0—梁矩形部分的截面惯性矩

根据《多层及高层钢筋混凝土结构设计释疑》,在框架结构中有现浇层的楼面可以作为梁的有效翼缘,增大梁的有效侧移刚度,减少框架侧移,为考虑这一有利因素,梁截面惯性矩按下列规定取,对于现浇楼面,中框架梁Ib=2.0Io,,边框架梁Ib=1.5Io ,具体规定是:现浇楼板每侧翼缘的有效宽度取板厚的6倍。

2、柱的线刚度: c c c c

h I E i /= (5-2)

式中:Ic —柱截面惯性矩 hc —柱计算高度

一品框架计算简图:

3、横向框架柱侧移刚度D 值计算: 212c

c c h i

D α= (5-3)

式中:c α—柱抗侧移刚度修正系数

K K c +=

2α(一般层);K

K

c ++=25.0α(底层) K —梁柱线刚度比,c b K K K 2∑=

(一般层);c

b K K K ∑=(底层)

① 底层柱的侧移刚度: 边柱侧移刚度:

A 、E 轴柱:68.010

5.61045.41010=??==∑c b i i K 中柱侧移刚度:

C 、

D 轴柱:18.1105.6102.345.410

10

=??+==

∑)(c b

i i K ② 标准层的侧移刚度 边柱的侧移刚度:

A 、E 轴柱:51.010

72.821045.4221010=????==∑c b i i K 中柱侧移刚度:

C 、

D 轴柱:88.010

72.82102.345.42210

10

=???+?==

∑)(c

b

i i K

因为

7.08.070172

55960

5

21

>==

∑∑-D

D ,所以满足条件。 5.1.3 框架自振周期

采用能量法计算基本周期。

计算公式:

∑∑==?

?

=n

i i

i n

i i

i T

G G T 1

1212ψ (5-4)

式中:T 1—基本自振周期

T μ—计算结构基本自振周期时的结构顶点假想位移m ),即假想把集中在各层楼面处的重力荷载代表值Gi 作为水平荷载而得到的结构顶点位移;

T ψ—结构基本自振周期考虑非承重墙影响系数,本框架结构设计中取0.8 G i —集中在各层楼面处的重力集中荷载代表值

Δi —假想把集中在各层楼面处的重力荷载代表值G i 作为水平荷载而算得的结构各层楼面处位移。

m

1096.46

1

??=?

=N G i i

i

2

621

m 1049.0??=?

=N G i

i i

s

G G T n

i i i n

i i

i T

49.01021.51049.08.0226

6

1

121=????=??

=∑∑==ψ 5.1.4 水平地震作用力及楼层地震剪力计算

根据《抗震规范》,包头属于地震分组第一组,抗震设防烈度为8度,设计基本地震加速度值为0.20g ,且设计场地类别为二类,结构的特征周期T g =0.35s ,水平地震影响系数16.0max =α。

该工程重量和刚度沿高度分布比较均匀,高度不超过40m ,变形以剪切变形为主,位移以基本阵型为主,基本阵型接近直线,符合底部剪力法适用范围,故采用底部剪力法对结构水平地震作用进行计算

因为T 1=0.49s ≤1.4T g =1.4×0.35=0.49s ,所以不考虑顶部附加地震作用。 结构水平地震作用计算采用底部剪力法计算:

因为T g

.01

1)(ααT T g =,(按ξ=0.05时计算):则

12.016.0)49.035.0()(9

.0max 9.011=?==ααT T g

水平地震力标准值:

G G F eq EK ??=?=ξαα11 (5-5)

式中:1α—相应于结构基本周期的水平地震影响系数 G —结构总重力荷载,

ξ—等效重力荷载系数,《抗震规范》规定ξ=0.85 则:

kN

19.5527)02.90965.111645.111645.111649.11871(85.012.01=++++??=??=G F EK ξαEK n

i i i i i F H G H G F ?=∑=)/(1

式中:F EK —结构总水平地震作用标准值 F i — 质点i 水平地震作用标准值

其中i i i H G ∑=1

=681762.8kN ?m

5.1.5 水平地震作用下的位移验算

根据《建筑抗震设计》第二册,对于所有框架都要进行验算,钢筋混凝土结构构件的截面刚度可采用弹性刚度。

各质点水平地震作用及楼层剪力沿房屋高度的分布如图5-2

图5-2 各质点水平地震作用及楼层剪力沿房屋高度分布图

∑==

?n

i ik

i

ei D

V 1

μ (5-6)

顶点位移 ∑=?=n

i ei i 1

μμ (5-7)

式中:i μ?—多遇地震作用标准值产生的层间弹性位移

k —楼层数

V i —多遇地震作用标准值产生的层间地震剪力

i

ei e

h μθ?= (5-8)

式中:e θ—层间弹性位移角 i h —计算楼层层高

e 所以各层层间位移角均满足要求。

5.2 水平地震作用下框架内力计算

选取主框架区任意一榀框架进行计算,即6号轴线所对应一榀横向框架作为计算单元。

5.2.1 各层柱端弯矩及剪力计算

采用D 值法进行如下计算,前面已经计算出了第i 层的层间剪力V i 。i 层j 柱分配到的剪力V ij 以及该柱上下端的弯矩分别按下列公式计算:

i

n j ij

ij ij

V D

D V ∑==1

(5-9)

式中:ij V —框架第i 层第j 根柱所分配的地震剪力; ij D —第i 层柱侧移刚度;

∑=n

j ij

D

1

—第i 层柱侧移刚度之和;

V i —第i 层地震剪力,∑==

n

i i i F V 1

按h'=(y 0+y 1+y 2+y 3)h 计算柱的反弯点高度。

根据V ij 和反弯点高度确定柱端弯矩,然后按节点弯矩平衡条件和梁的转动刚度确定梁端弯矩。

h y V M ij u

ij

)1(-= (5-10) y h V M ij b

ij

??= (5-11) 3210y y y y y +++= (5-12)

式中:y —框架柱的反弯点高度比;

h —柱的计算高度; y 0—标准反弯点高度比;

y 1—上下层梁线刚度变化时柱反弯点高度比的修正值(对于首层不考虑y1值);

y 2—上层层高与本层高度不同时,柱反弯点高度比修正值(对于顶层不考虑修正值); y 3—下层高度与本层高度不同时,柱反弯点高度比修正值(对于首层不考虑修正值)。

5.2.2 各层梁端弯矩、剪力及轴力计算

梁端弯矩:)/()(c c r

b l b l b u b l b i i i M M M ++= (5-13)

)/()(c c r b l b r b u b r b i i i M M M ++= (5-14) 梁端剪力:L M M V r

b l b b /)(+= (5-15)

柱轴力:∑=-=n

k r b l b i V V N 1

)( (5-16)

式中: r

b l

b M

M 、—分别表示节点左右梁的弯矩;

r

b

l b i i 、—分别表示节点左右梁的线刚度; N i —表示柱在第i 层的轴力,受压为正。

表5.8

图5-4 水平地震作用下一榀框架弯矩图(kN·m)

图5-4 水平地震作用下一榀框架梁端剪力及柱轴力图(kN)

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

5平地震作用下框架结构的位移和内力计算

第五章 横向地震作用下框架结构的位移和内力 5.1横向框架自振周期的计算 结构自震周期采用经验公式: 552.08.159.22035.022.0035.022.03 1=?+=?+=B H T s 5.2水平地震作用及楼层地震剪力的计算. 本办公楼楼的高度不超过40m ,质量和刚度沿高度分布比较均匀,变形以剪切变形为主,故可采用底部剪力法计算用。 结构等效总重力荷载为: kN 39485) 8259482825066(85.085.0eq =+?+?==∑i G G 兰州市,抗震设防烈度8度,设计基本地震加速度0.10g ,多遇地震下 08.0max =α。设计地震分组第一组,二类场地,场地特征周期为0.35s 053 .008 .01)55 .0035( )( 9 .0max 2g 1=??==αηαγT T 结构总水平地震作用标准值: kN 213839485 053.0eq 1Ek =?==G F α 因为:s 53.01=T >s 49.035.04.14.1g =?=T ,所以应考虑顶部附加水平地震作用。又因为:s 35.0g =T ≤0.35s ,故顶部附加地震作用系数为: 1142.007 .055.008.007.008.016=+?=+=T δ 顶部附加水平地震作用为: kN 24221381142.0Ek 66=?==?F F δ 各质点横向水平地震作用按下式计算:

()6Ek 6 1 1δ-= ∑=F H G H G F j j j i i i (=i 1,2, (6) 地震作用下各楼层水平地震层间剪力为: ∑==n i j j i F V (i =1,2, (6) 各质点的横向水平地震作用及楼层地震剪力计算见表12。 表5—1 楼层地震剪力计算表 图5-1水平地震作用分布图 图5-2楼层地震剪力剪力分布图

第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算 8.1 重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。 8.1.1第五层重力荷载代表值计算 层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重 (b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重 ()()kN m m m kN m m m kN m m m kN 16.1472 )25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=?-?+?-?+ +?+?-? 屋面梁自重:147.16KN 8.1.1.3 半层墙自重 顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=??? ? ??-???+? 带窗墙(190厚): ()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=??? ??? ???????-?+???-???? ??-???+? 墙自重:114.23 KN 女儿墙:()KN 04.376.66.1202.02019.025.14=????+? 8.1.1.4 屋面板自重 kN m m m m kN 78.780)326.7(6.6/5.62=+???

8.1.1.5 第五层重量 48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN 8.1.2 第二至四层重力荷载代表值计算 层高H=3.9m ,楼面板厚h=100mm 8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重: ()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=?-?+?-?+ +?+?-? 8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN 8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为: ()KN G 61.111336.65.326.76.65.2%5056.9534-2=??+????+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=???+???)( 8.1.3 第一层重力荷载代表值计算 层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重: (b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN 8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ): ()()KN 14.3145.002.02019.025.142 8 .15.16.66.02 2.4202.02019.025.14=-?+???-??? ? ??-???+? 二层半墙自重(190mm ):27.66 KN 则墙自重为:(31.14+27.66)×4=235.2 KN

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

07第七讲 地震作用和抗震验算新规定

第七讲地震作用和抗震验算新规定 王亚勇赖明吕西林李英民杨溥郭子雄 (一)新的设计反应谱的主要特点 1、89规范的设计反应谱的主要特点 89规范的设计反应谱、即地震影响系数曲线,是根据大量实际地震加速度纪录的反应谱进行统计分析并结合工程经验和经济实力的综合结果。抗震设计反应谱通常用三个参数:最大地震影响系数αmax 、特征周期T g 和长周期段反应谱曲线的衰减指数γ来描述。而且不同阻尼比条件下的反应谱曲线也是不同的,89规范提供了考虑近、远震和不同场地条件下阻尼比为5 % 的标准设计反应谱,其最长周期为3秒。应该说,89规范的设计反应谱基本适应了我国八、九十年代工程建设抗震设防的要求,除房屋建筑外,各类工程设施及构筑物均参照它提出类似的设计反应谱。 2、加速度设计反应谱用于抗震设计的局限性 (1)强震地面运动长周期成分的存在 地震学研究和强震观测证明,强震情况下,地面运动确定存在长周期分量,其周期可以长达10秒甚至100秒,地震震级从5级到8级,其谱值在10秒周期处最大相差不超过50倍,在100秒周期处,不超过250倍。在震级M 5时,周期在3秒以内,信噪比已经大到可以满足工程使用要求了。同时还证明,谱曲线至少存在二个拐角周期。如图1和表1所示。 图1 不同震级下强震地面运动福里叶振幅谱

注:噪声指在强震加速度记录数据处理过程中引入的长周期误差 研究表明,地震动长周期分量与震源规模、震源距有关,由此可以推出与震级、烈度的关系,从而建立起具有工程实用意义的关系来。见公式(1) (M,R,T) PSV =f 1 =f (L,W,R,T) (1) 2 =f (I,R,T) 3 式中:PSV为拟速度反应谱,M为震级,R为震源距,L为断层长度,W为断层宽度,I 为烈度,T是反应谱周期。 (2)现有强震加速度记录中长周期成份的损失 由于强震仪频率响应范围的限制无法记录到超过10秒以上的地面运动成分,在超过5秒以上的成分中也存在失真,而且在对加速度记录进行误差修正时将数字化过程零线修正所产生的噪声滤出的同时也将地面运动长周期分量滤去了。 (3)关于加速度反应谱长周期段的二次衰减 反应谱理论证明,加速度反应谱曲线存在三个控制段,分别是:加速度、速度和位移控制,设计反应谱“平台段”是加速度控制段,速度控制段以1/T形式衰减,位移控制段则以1/T2形式衰减。这已成为地震工程界共同认可的常识。但是真正实用起来遇到问题,即长周期段的谱值太小,对抗震设计没有控制作用。为此,各国规范对此均作了不同程度的修正。且不说这种修正在理论上能否站得住脚,就是在工程实际应用中起多大作用?是否合理?也是值得商榷的。见图2 中国、美国、欧洲规范反应谱比较。 图2 考虑长周期分量的加速度反应谱

6 水平地震作用下框架的内力分析

57 6 水平地震作用下横向框架的内力分析(以A4~D4榀框架为例) 6.1 楼层剪力 由表4.5.9得水平地震作用下横向框架各楼层剪力如表6.1.1所示。 6.2 各柱抗侧刚度D 由表4.5.7得各柱抗侧刚度如表6.2.1所示。 46.3 各层各柱剪力的计算 由D 值法, j ji ji V D D V ∑= 各层各柱剪力的计算如表6.3.1所示。 表6.3.1 各层各柱剪力的计算 单位:kN

58 6.4 各层各柱反弯点高度的计算 由D 值法,查表得出各层各柱反弯点高度的计算如表6.4.1所示。 表6.4.1 各层各柱反弯点高度的计算 6.5 柱端弯矩的计算 _ ji l C V M y =, ) (V M _ ji u C y h i -= , y h y i =_ 。各层各柱柱端弯矩计算如表6.5.1所示。

59 表6.5.1 水平地震作用下柱端弯矩计算 单位:m 、kN 、m kN . 6.6 梁端弯矩的计算 由节点平衡条件,*()l l u l b b c c l r b b i M M M i i =++,*()r r u l b b c c l r b b i M M M i i =++,式中M 、 M b r 、M b l 为节点处的梁端的弯矩,M c u 、M c l 为节点处柱上下端弯矩,i b r 、i b l 为节点处左右梁的线刚度。以各个梁为脱离体,将梁的左右端弯矩之和除以该梁的跨长,便得到梁内的剪力,计算过程如表6.6.1所示。

kN.表6.6.1 水平地震作用下梁端弯矩计算单位:m 6.7 绘制水平地震作用下A4~D4榀框架的弯矩图 如图6.7所示。 6.8 绘制水平地震作用下A4~D4榀框架的剪力图 如图6.8所示。 6.9 绘制水平地震作用下A4~D4榀框架的轴力图 如图6.9所示。 60

第五节 多自由度体系的水平地震作用

第五节 多自由度体系的水平地震作用 一、振型分解反应谱法 多质点弹性体系地震反应同单质点弹性体系一样,可以通过运动方程的建立和求解来实现。 假定建筑结构是线弹性的多自由度体系,利用振型分解和振型正交性原理,将求解n 个多自由度弹性体系的地震反应分析分解成n 个独立等效的单自由度体系的最大地震反应,分别利用标准反应谱,求得结构j 振型下,质点i 的F ,再按一般力学方法,求j 振型水平地震作用产生的作用效应(弯矩、剪力、轴力和变形),最后,按一定法则将各振型的作用效应进行组合,(但应注意,这种振型间作用效应的组合,并非简单的求代数和。)便可确定多自由度体系在水平地震作用下产生的作用效应。由于各个振型在总的地震效应中的贡献总是以自振周期最长的基本振型(第一振型)为最大,高振型的贡献随振型阶数增高而迅速减小。实际上,即使体系的自由度再多,也只计算对结构反应起控制作用的前k 个振型就够了,一般需考虑的振型个数k=2—3,即取前2—3个振型的地震作用效应进行组合,就可以得到精度很高的近似值,从而大胆减少计算工作量。 1、振型的最大地震作用 第j 振型I 质点最大地震作用 i ji j j ji G X F γα= 式中: j α —— 相应于第j 振型自振周期T 的地震影响系数 j γ —— j 振型的振型参与系数 ∑∑===n i ji i n i ji i j X m X m 121γ ji X —— j 振型i 质点的水平相对位移——振型位移 i G —— 集中于i 质点的重力荷载代表值 上述方法繁琐,工作量大,计算不方便,因此工程中为了简化计算,在满足一定条件下,可采用近似的计算法,即底部剪力法。 2、振型组合 (1)SRSS (平方和开方法) ∑=2 j S S (2)CQC (完整二次项组合法) 二、底部剪力法 1、 适用条件: (1) 高度不超过40m ; (2) 以剪切变形为主(房屋高宽比小于4) (3) 质量和刚度沿高度分布比较均匀 (4) 近似于单质点体系

(整理)地震作用下框架内力和侧移计算.

6 地震作用下框架内力和侧移计算 6.1刚度比计算 刚度比是指结构竖向不同楼层的侧向刚度的比值。为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。根据《建筑抗震设计规范》(GB50011-2010)第3.4.2条规定:抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第3.5.2条规定:对框架结构,楼层与其相邻上层的侧向刚度比计的比值不宜小于0.7,且与相邻上部三层刚度平均值的比值不宜小于0.8。计算刚度比时,要假设楼板在平面内刚度无限大,即刚性楼板假定。 7.0939.0/1136076/10669082 11 >== = ∑∑mm N mm N D D γ,满足规范要求; ()8.0939.0/113607611360761136076/1066908334 321 2>=++?=++=∑∑∑∑mm N mm N D D D D γ,满 足规范要求。 依据上述计算结果可知:刚度比满足要求,所以无竖向突变,无薄弱层,结构竖向规则,故可不考虑竖向地震作用。将上述不同情况下同层框架柱侧移刚度相加,框架各层层间侧移刚度∑i D ,见表6-4。 表5-4框架各层层间侧移刚度 楼层 1层 2层 3层 4层 5层 6层 突出屋面层 ∑i D 1066908 1136076 1136076 1136076 1136076 1136076 258396 6.2水平地震作用下的侧移计算 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)附录C 中第C.0.2条可知:对于质量和刚度沿高度分布比较均匀的框架结构、框架剪力墙结构和剪力墙结构,其基本周期可按公式6-1计算。 T T T μψ7.11= (6-1) 式中:1T ——框架的基本自振周期; T μ——计算结构基本自振周期的结构顶点假想位移,单位为m ; T ψ——基本自振周期考虑非承重砖墙影响的折减系数。

8 地震作用内力计算

八地震作用内力计算 (一)重力荷载代表值计算 1.屋面雪荷载标准值 Q sk=0.65×[7.8×6×(7.2×2+3.0)+3.9×(3.0+7.2)+7.8×7.2×2+10.1× 3.9+3.9×7.2]=0.65×1034=787kN 2.楼面活荷载标准值 Q1k=Q2k=2.5×[3.0×7.8×6+3.9×(3.0+7.2)+3.9×(7.2×3+10.1) +3.9× 7.2]+2.0×(7.8×7.2×12+3.9×7.2 +7.8×10.1)=2.5×332+2.0×781=2397kN Q3k=Q4k=2.5×332+2.0×(7.8×7.2×12+3.9×7.2)=2.5×332+2.0×702=2239kN 3.屋盖、楼盖自重 G5k=25×{1034×0.1+0.2×(0.6-0.1)×(7.2×12+3.9×2)+0.3×(0.8-0.1)×[3.9+(3.9×3+7.8×6)×2+(7.8×6+3.9)×2+3.9×3)+(7.2×5+10.1×2+(7.2 ×2+3.0)×7+3.0+7.2)]}+( 20×0.02+7×(0.08+0.16)/2+17×0.02)×1034=25 ×201.48+1.58×1034=6666kN G4k=25×201.48+(20×0.02+17×0.02+0.65)×1034=6470kN G1k=G2k=25×{(332+781)×0.1+0.2×(0.6-0.1)×(7.2×12+3.9×2+7.8×2) +0.3×(0.8-0.1)×[(3.9+(3.9×3+7.8×6)×2+(7.8×6+3.9)×2+3.9× 3)+(7.2×5+10.1×2+(7.2×2+3.0)×7+3.0+7.2)+10.1+7.8]}+ (20×0.02+17 ×0.02+0.65)×(332+781)=25×214.70+1.39×1113=6871kN 4.女儿墙自重 G’=1.0×[(3.9×3+7.8×6+3.9)×2+(10.1+7.2+3.0+7.2)×2]×(18×0.24+17 ×0.02×2)=179.8×4.66=835kN 5.三~五层墙柱等自重 柱自重 (0.6×0.6×3.6×25+4×0.6×3.6×0.02×17)×39=1378kN 门面积 2.6×1.0×25=65m2 窗面积 2.3×1.8×24+10.1×1.8×2=136m2 门窗自重 65×0.2+136×0.4=67kN 墙体自重 {3.6×[7.8×24+7.2×14+3.9×2+8.7+3.9×2+(7.8+7.2)×2+3.9× 2+4.2×2+10.1×2]-(136+65)}×0.24×18=(3.6×378.4-201)×4.32=5017kN 小计6462kN 6.二层墙柱等自重

一、荷载与地震作用

附件:“PKPM上部结构设计软件常见问题释疑”研讨班授课大纲 一、荷载与地震作用 1、现浇板、悬挑板、组合楼板、斜板等在确定面荷载时有哪些注意事项?05与08版在处理上 有何不同?荷载方向如何确定,可否输入负值? 2、08版新增梁上的荷载类型“无截面设计”是何意,如何正确应用? 3、哪些节点上可以加节点荷载?对于一根梁上任加一点后,在此节点上加节点荷载05与08版 软件在处理上有何不同? 4、楼面梁是如何进行活荷载折减的,程序的处理与规范有何不同? 5、对于“柱、墙及基础活荷载折减”程序的处理05版及08版有哪些不同,结果如何查询? 6、活荷载的输入对人防荷载的计算有何影响?08版有何改动? 7、PK、SATWE进行活荷载不利布置计算时有何不同?应注意哪些相关参数? 8、何为“互斥活荷载”?怎样通过此功能来实现规范中的相应条款? 9、05及08版程序是如何进行“普通风荷载”计算的,其中与风荷载计算相关的参数该如何确定, 受风面面积及荷载作用点如何确定?“普通风荷载”计算后荷载如何分配,它作用的效应程序做了怎样的处理? 10、05版特殊风荷载是如何计算的,有哪些不足?08版特殊风荷载是如何计算的,如何灵活应 用? 11、广义层方式建立的模型是否均可以直接用软件自动计算的风荷载? 12、05、08版吊车荷载输入方法有哪些异同? 13、对于排架柱计算长度系数的计算不同模块有何不同,该如何选用? 14、近期多层人防的计算程序做了哪些重大调整?不同版本为何结果会相差如此悬殊? 15、局部有人防荷载时如何处理? 16、如何确定地下室外墙平面外的受力?如何计算地下室外墙平面外的配筋?不同版本输出结果 有何不同?程序对于地下室外墙能否正确识别? 17、如何实现人防构件的弹塑性设计? 18、何时需要考虑“双向地震”及“偶然偏心”?如果两项同时选择程序如何处理? 19、如何正确确定与地震力计算相关的一些参数?如:计算振型个数、周期折减系数。 20、如何理解“水平力与整体坐标夹角”与“斜交抗侧力构件方向附加地震数,相应角度”? 21、“按中震(或大震)不屈服做结构设计”如何应用? 22、0。2Q0调整,不同时期版本,程度处理有何不同,原来有哪些局限?如何解决? 23、08版地下室信息中“土层水平抗力系数的比例系数”是何意,该如何取值? 二、构件设计 1、对于层间的支撑在计算时05、08版软件的处理有何不同? 2、越层支撑在与梁墙相交时05、08版在处理上有何不同? 3、08版对于柱被层间支撑打断后是如何进行内力及配筋计算的? 4、如何人为指定支撑是否参与导荷,它的导荷原则是如何定的? 5、08版支撑的计算长度系数如何确定? 6、支撑对于楼层指标的贡献05与08版在计算上有何异同? 7、刚性梁有哪些具体应用? 8、如何用两种方法输入连梁模型?两种方式输入的连梁在计算上有哪些不同? 9、如何合理填取与连梁计算相关的参数信息,如连梁刚度折减系数、墙梁转框架梁控制跨高比? 10、程序是如何实现“《抗震规范》(2008局部修订版)第3.6.6.1条” 的? 11、在输入楼梯构件时应注意的事项有哪些? 12、按主梁或次梁不同的方式输入时,在导荷、计算、施工图处理上有何不同?

单质点地震作用计算的计算方法

单质点地震作用计算的计算方法 所谓单质点弹性体质,是指可以将结构参与振动的全部质量集中于一点,用无重量的弹性直杆支承于地面上的结构.例如水塔、单层房屋等建筑物,由于它们的质量大部分集中于结构的顶部,所以通常将这些结构简化成单质点体系.目前,计算弹性体系的反应时,一般假定地基不产生转动,而把地基的运动分解为一个竖向和两个水平向的分量,然后分别计算这些运动分量对结构的影响. 主要内容:1.单自由度弹性体系地震反应分析,主要是运动方程解的一般形式及水平地震作用的基本公式及计算方法。 2.计算水平地震作用关键在于求出地震系数k和动力系数β。 一、地震概述 地震是一种地质现象,就是人们常说的地动,它主要是由于地球的内力作用而产生的一种地壳振动现象。据统计,地球上每年约有15万次以上或大或小的地震。人们能感觉到的地震平均每年达三千次,具有很大破坏性的达100次。每次中等程度的地震就会造成重大损失和人员伤亡,研究地震的危害和抗震的方法极有必要,目前已经研究到了多质点体系地震作用和整体结构的地震作用,但这些研究都离不开单质点地震作用的计算,我们组准备理论研究并在现有的计算基础上做一点拓展。 二.地震危害直接 2005年2月15日新疆乌什发生6.2级地震,经济损失达15757.43万元,主要是土木结构的房屋破坏严重。近期,云南普洱发生严重的地震,震中位于人口稠密的县城,造成严重的财产损失和人员伤亡。目前,因灾受伤群众为300余人,其中3人死亡。全县各乡(镇)房屋受损严重,土木结构房屋墙体倒塌较多,砖混结构房屋普遍出现墙体开裂,承重柱移位。作为将来的结构工程师,抗震是我们拦路虎,必须加以重视,那我们先从基础理论着手。 三、单质点弹性体系的地震反应 目前,我国和其他许多国家的抗震设计规范都采用反应谱理论来确定地震作用。这种计算理论是根据地震时地面运动的实测纪录,通过计算分析所绘制的加速度(在计算中通常采用加速度相对值)反应谱曲线为依据的。所谓加速度反应谱曲线,就是单质点弹性体系在一定地震作用下,最大反应加速度与体系自振周期的函数曲线。如果已知体系的自振周期,那么利用加速度反应谱曲线或相应公式就可以很方便地确定体系的反应加速度,进而求出地震作用。 应用反应谱理论不仅可以解决单质点体系的地震反应计算问题,而且,在一定假设条件下,通过振型组合的方法还可以计算多质点体系的地震反应。 1.运动方程的建立 为了研究单质点弹性体系的地震反应,我们首先建立体系在地震作用下的运动方程。图2-1表示单质点弹性体系的计算简图。

第3章高层建筑结构的荷载和地震作用(精)

第3章 高层建筑结构的荷载和地震作用 [例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030?,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为六 个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结 构底部(一层)的剪力和筏形基础底面的弯矩。 解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=?== 222210m s kN 62.19.145.0T w ?=?= (2)风荷载体型系数:对于矩形平面,由附录1可求得 80.01=s μ 57040120030480L H 03 04802s .....-=??? ? ? ?+-=??? ??+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =?,i H 为第i 层标高;H 为建筑总高度。则由式(3.2.8)可求得风振系数为: H H 478050211H H 11i z i z ??+=?+=+=μμξνμ?νξβ.. z z z (4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为: ()z z z z ....)z (q βμβμ6624=40×570+80×450= 按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。 表3.2.4 风荷载作用下各区段合力的计算 (a ) (b ) (c ) 图3.2.4 高层结构外形尺寸及计算简图

2.7水平地震作用内力计算

2.7 水平地震作用内力计算 设计资料: 根据《建筑抗震设计规范》(GB50011—2001)第5.1.3条: 屋面重力荷载代表值Gi =屋面恒载+屋面活荷载+纵横梁自重+楼面下半层的柱及纵横墙 自重; 各楼层重力荷载代表值G i =楼面恒荷载+50%楼面活荷载+纵横梁自重+楼面上下各半层的 柱及纵横墙自重; 总重力荷载代表值∑== n i i G G 1 。 主梁与次梁截面尺寸估算: 主梁截面尺寸的确定:当跨度取8000L mm =,主梁高度应满足: 1111 (~)(~)8000667~1000812812 h L mm mm ==?=,考虑到跨度较大,取700h mm =, 则:1111 (~)(~)700233~3502323 b h mm mm ==?=,取350b mm =。 当跨度取6000L mm =,主梁高度应满足: 1111 (~)(~)6000500~750812812 h L mm mm ==?=,考虑到跨度较大,取500h mm =, 则:1111 (~)(~)500167~2502323 b h mm mm ==?=,取250b mm =。 一级次梁截面尺寸的确定:跨度取4800L mm =,次梁高度应满足: 1111 (~)(~)4800320~40012181218h L mm mm ==?=,考虑到跨度较大,取350h mm =,则: 1111 (~)(~)350117~1752323 b h mm mm ==?=,取200b mm =。 二级次梁截面尺寸的确定:跨度取3000L mm =,次梁高度应满足: 1111 (~)(~)3000167~25012181218h L mm mm ==?=,考虑到跨度较大,取300h mm =,则: 1111 (~)(~)300100~1502323 b h mm mm ==?=,取200b mm =。

5.2 水平地震作用计算

5.2 水平地震作用计算 5.2.1采用底部剪力法时,各楼层可仅取一个自由度,结构的水平地震作用标准值,应按下列公式确定(图5.2.1): 式中FEk-结构总水平地震作用标准值; α1-相应于结构基本自振周期的水平地震影响系数值,应按本章第5.1.4条确定,多层砌体房屋、底部框架和多层内框架砖房,宜取水平地震影响系数最大值; Geq-结构等效总重力荷载,单质点应取总重力荷载代表值,多质点可取总重力荷载代表值的85%; Fi-质点i的水平地震作用标准值; Gi,Gj-分别为集中于质点i、j的重力荷载代表值,应按本章第5.1.3条确定; Hi,Hj-分别为质点i、j的计算高度; δn顶部附加地震作用系数,多层钢筋混凝土和钢结构房屋可按表 5.2.1采用,多层内框架砖房可采用0.2;其他房屋可采用0.0; ΔFn-顶部附加水平地震作用。

注:T1为结构基本自振周期。 5.2.2采用振型分解反应谱法时,不进行扭转耦联计算的结构,应按下列规定计算其地震作用和作用效应: 1 结构j振型i质点的水平地震作用标准值,应按下列公式确定:d 式中Fji-j振型i质点的水平地震作用标准值; αj-相应于j振型自振周期的地震影响系数,应按本章第5.1.4条确定; Xji-j振型i质点的水平相对位移; rj-j振型的参与系数。 2 水平地震作用效应(弯矩、剪力、轴向力和变形),应按下式确定: 式中SEk-水平地震作用标准值的效应; Sj-j振型水平地震作用标准值的效应,可只取前2~3个振型,当基本自振周期大于1.5s或房屋高宽比大于5时,振型个数应适当增加。 5.2.3 建筑结构估计水平地震作用扭转影响时,应按下列规定计算其地震作用和作用效应: 1 规则结构不进行扭转耦联计算时,平行于地震作用方向的两个边榀,其地震作用效应应乘以增大系数。一般情况下,短边可按1.15采用,长边可按1.05采用;当扭转刚度较小时宜按不小于1.3采用2扭转耦联振型分解法计算时各楼层可取两个正交的水平位移和一个转角共三个自由度并应按下列公式计算结构

水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和力计算 5.1 水平地震作用下框架结构的侧移验算 5.1.1抗震计算单元 计算单元:选取6号轴线横向三跨的一榀框架作为计算单元。 5.1.2横向框架侧移刚度计算 1、梁的线刚度: b /l I E i b c b = (5-1) 式中:E c —混凝土弹性模量s I b —梁截面惯性矩 l b —梁的计算跨度 I 0—梁矩形部分的截面惯性矩 根据《多层及高层钢筋混凝土结构设计释疑》,在框架结构中有现浇层的楼面可以作为梁的有效翼缘,增大梁的有效侧移刚度,减少框架侧移,为考虑这一有利因素,梁截面惯性矩按下列规定取,对于现浇楼面,中框架梁Ib=2.0Io,,边框架梁Ib=1.5Io ,具体规定是:现浇楼板每侧翼缘的有效宽度取板厚的6倍。 2、柱的线刚度: c c c c h I E i /= (5-2) 式中:Ic —柱截面惯性矩 hc —柱计算高度 一品框架计算简图: 3、横向框架柱侧移刚度D 值计算: 212c c c h i D α= (5-3) 式中:c α—柱抗侧移刚度修正系数

K K c +=2α(一般层);K K c ++=25.0α(底层) K —梁柱线刚度比,c b K K K 2∑= (一般层);c b K K K ∑=(底层) ① 底层柱的侧移刚度: 边柱侧移刚度: A 、E 轴柱:68.010 5.61045.41010=??==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:18.1105.6102.345.410 10=??+== ∑)(c b i i K ② 标准层的侧移刚度 边柱的侧移刚度: A 、E 轴柱:51.010 72.821045.4221010=????==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:88.01072.82102.345.42210 10 =???+?== ∑)(c b i i K

框架在地震作用下内力计算

框架在地震和重力作用下内力计算 学生姓名:张育霜 学号:20120322029 指导老师:

目录 1建筑说明 (1) 1.1 工程概况 (1) 1.2 设计资料 (1) 1.3 总平面设计 (1) 1.4 主要房间设计 (1) 1.5 辅助房间设计 (1) 1.6 交通联系空间的平面设计 (2) 1.7 剖面设计 (2) 1.8 立面设计 (3) 1.9 构造设计 (3) 2 框架结构布置 (3) 2.1 计算单元 (4) 2.2 框架截面尺寸 (4) 2.3 梁柱的计算高度(跨度) (4) 2.4 框架计算简图 (5) 3 恒荷载及其内力分析 (6) 3.1 屋面恒荷载 (6) 3.2 楼面恒荷载 (7) 3.3 构件自重 (7) 3.4 固端弯矩计算 (8)

3.5 节点分配系数μ计算 (9) 3.6 恒荷载作用下内力分析 (10) 4 活荷载及其内力分析 (13) 4.1 屋面活荷载 (13) 4.2 楼面活荷载 (13) 4.3 内力分析 (13) 5 重力荷载及水平振动计算 (17) 5.1 重力荷载代表值计算 (17) 5.2 水平地震作用计算 (17) 6 内力组合计算 (22) 6.1 框架梁内力组合 (22) 6.2 框架柱内力组合 (25) 7 截面设计 (31) 7.1 框架梁的配筋计算 (31) 7.2 框架柱的配筋计算 (40) 7.3 框架梁、柱配筋图 (52) 8 基础设计 (55) 8.1 对A柱基础配筋计算 (55) 8.2 对B柱基础配筋计算........................................................... 错误!未定义书签。 9 双向板的设计.................................................................................... 错误!未定义书签。 9.1 设计资料................................................................................. 错误!未定义书签。 9.2 荷载设计值............................................................................. 错误!未定义书签。

结构抗震验算

结构抗震变形验算 (一)多遇地震作用下的结构抗震变形验算 框架和框架—抗震墙结构宜进行多遇地震作用下结构的抗震变形验算,其层间弹性位移应符合下式要求: △u e≤〔θe〕H (2—5—3—67) 式中:△u e——多遇地震作用标准值产生的层间弹性位移,计算时,水平地震影响系数最大值应按表2—5—3—7采用,各作用分项系数均应采用1.0,钢筋混凝土构件可取弹性刚度; 〔θe〕——层间弹性位移角限值,可按表2—5—3—13采用; H——层高。 层间弹性位移角限值表2—5—3—13 图2—5—3—7 1.不考虑扭转影响时的弹性层间位移 底部剪力法:

△u i=V i/k (2—5—3—68) △u i=V i/k 振型分解反应谱法: (2—5—3—69) △u ji=u j,i-u j,i-1 〔K〕{u j}={F Ej} 式中:△ui——i层的弹性层间位移 V i——i层的地震剪力设计值(γE=1.0) K i——i层的弹性侧移刚度 △u ji——j振型i层的层间位移 u ji——j振型i层的侧向位移 〔K〕——结构弹性侧移刚度矩阵 {u j}——j振型侧移向量(由n个u ji分量组成) {F Ej}——j振型水平地震作用向量(由n个Fji分量组成) 2.考虑扭转影响的弹性层间位移 图2—5—3—8 (2—5—3—70) x方向构件u ji=u xji-ji s yi y方向构件u ji=u yji-ji s xi

斜向构件u ji=u xji cosθ+u yji sinθ+ji sθi 式中:{u xj}——j振型x方向质心位移向量(n个u xji组成); {u yi}——j振型y方向质心位移向量(n个u yji组成); {j}——j振动扭转角向量(n个ji组成); s yi——i层质心至x方向构件的垂直距离; S xi——i层质心至y方向构件的垂直距离; θ——斜向构件与x方向的夹角; sθi——i层质心至θ方向构件的垂直距离,当θ=0时; 图2—5—3—9 sθi=-s yi,θ=π/2时,sθi=s xi; {F j}——j振型地震作用向量(x、y和扭转角方向,3n阶); [K]——结构考虑扭转的刚度矩阵(3n×3n阶); ρjk——j振型与k振型的耦连系数。 3.平面结构考虑转角影响的弹性层间位移 (2—5—3—71) △u ji=u j,i-u j,i-1-θj,i-1h i

第3章高层建筑结构的荷载和地震作用.

第3章高层建筑结构的荷载和地震作用 [例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m,室外地面至檐口的高度为120m,平面尺寸为30m?40m,地下室采用筏形基础,埋置深度为12m,如图3.2.4(a)、(b)所示。已知基本风压为 w0=0.45kNm,建筑场地位于大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN。为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。 2 解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: T1=0.05n=0.05?38=1.90s w0T12=0.45?1.92=1.62kN?s2m2 (2)风荷载体型系数:对于矩形平面,由附录1可求得 μs1=0.80 H?120??? ?=- 0.48+0.03??=-0.57 L40???? (3)风振系数:由条件可知地面粗糙度类别为B类,由表3.2.2可查得脉动增大系数ξ=1.502。脉动影响系数ν根据H/B和建筑总高度H由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得ν=0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z与房屋高度H的比值,即?z=Hi/H,Hi为第i层标高;H为建筑总高度。则由式(3.2.8)可求得风振系数为: ξ ν ?zξνHi1.502?0.478Hi βz=1+=1+?=1+? μzμzHμzH (4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为: q(z)=0.45×(0.8+0.57)×40μzβz=24.66μzβz μs2=- 0.48+0.03 按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。 表3.2.4 风荷载作用下各区段合力的计算

相关文档
相关文档 最新文档