文档库 最新最全的文档下载
当前位置:文档库 › 课内第七章习题

课内第七章习题

课内第七章习题
课内第七章习题

第七章习题

(一)

1. 求2w z =在z=I 处的伸缩率和旋转角。问此变换将经过点z=i 且平行于实宙正方向的曲线的切线方向变换成w 平面上哪一个方向?并用图。

2. 试利用保域定理7.1简捷地证明第二章习题(一)6(3)、(4)。

3. 在整线性变换w iz =下,下列图形分别变成什么图形?

(1)以123,1,1z i z z ==-=为顶点的三角形;

(2)闭圆|1|1z -≤.

4. 下列各题中,给出了三对对应点112233,,z w z w z w ???的具体数值,写出相应的分式线性变换,并指出此变换把通过z 1,z 2,z 3的圆周的内部,或直线左边(顺着z 1,z 2,z 3观察)变成什么区域。

(1)11,0,1i i ??-?-;

(2)1,1,10i ?∞?--?;

(3)0,,0i i ∞???∞;

(4)0,01,1∞???∞.

5. z 平面上有三个互相外切的圆周,切点之一在原点,函数1w z

=

将此三个圆周所围成的区域变成w 平面上什么区域?

6. 如az b w cz d +=+将单位圆周变成直线,其系数应满足什么条件?

7. 分别求将上半z 平面Im 0z >共形映射成单位圆 ||1w <的分式线性变换()w L z =,使符合条件:

(1)()0,()0L i L i '=>;

(2)()0,arg ()2L i L i π

'==.

8. 分别求将单位圆 ||1z <共形映射成单位圆||1w <的分式线性变换()w L z =,使

符合条件:

(1)10,(1)12L L ??==- ???

; (2)110,arg 222L L π????'==- ? ?????

. 9. 求出将圆 |4|2z i -<变成半平面v u >的共形映射,使得圆心变到-4,而圆周上的点2i 变到0.w =

10. 求出将上半z 平面Im 0z >共形映射成圆||w R <的分式线性变换()w L z =,使符合条件()0L i =;如果再要求()1L i '=,此变换是否存在?

11. 求将圆||z ρ<共形映射成圆||w R <的分式线性变换,使(||)z a a ρ=<变成w=0。

12. 求出圆||2z <到半平面Re 0w >的共形映射()w f z =,使符合条件

(0)1arg (0)2f f π

'==.

13. 试求以下各区域(除去阴影部分)到上半平面的一个共形映射。

(1)||2,Im 0z i z +<>(图7.20)。

(2)|||z i z i +>-7.21)。

(3)||2,|1|1z z <->(图7.22)。

14. 求出角形区域0arg 4z π

<<到单位圆||1w <的一个共形映射。

15.求出将上半单位圆变成上半平面的共形映射,使z=1,-1,0分别变成1,1,w =-∞。

16. 求出第一象限到上半平面的共形映射,使,,1z θ=对应地变成0,, 1.w =∞-

17. 将扩充z 平面割去1+I 到2+2i 的线段后剩下的区域共形映射成上半平面。

18. 将单位圆割去0到1的半径后剩下的区域共形映射成上半平面。

19. 将一个从中心起沿实轴上的半径割开了的单位圆共形映射成单位圆,使符合条件:割疑寂岸的1变成1,割缝下岸的1变成-1,0变成-i 。

(二)

1.证明定理7.3 (只须就00z =的情形证明)

提示:不妨假设(0)0f =,否则,代替f(z)总可以考虑()()(0),F z f z f =-而(0)0,(0)(0)0F F f ''==≠;接着可以应用儒歇定理。

2. 如果单叶解析函数()w f z =把z 平面上可求面积的区域D 共形映射成w 平面上的区域G ,试证G 的面积

2|()|,()D

A f z dxdy z x iy '==+??. 3. 求证:1w z z

=+把圆周||z c =变成椭圆周 11cos ,sin (02)u c v c c c θθθπ????=+=-≤≤ ? ????

?. 4. i w z

=把半带形 Re 0,0Im 1z z ><

5. 求分式线性变换w=L(z),使点1变到∞,点I 是二重不动点。

6. 证明:有二相异有限不动点p ,q 的分式线性变换可写成

w p z p k w q z q

--=--,k 是非零复常数. 7. 证明:只有一个不动点(二重有限)p 的分式线性变换可写成

11,k k w p z p

=+--是非零复常数. 8. 证明:以p ,q 为对称点的圆周的方程为

0.z p k z q

-=>- 当k=1时,退化为以p,q 为对称点的直线。

9. 求分式线性变换

,0az b w ad bc cz d

+=-≠+ 使扩弃z 平面上的由三圆弧所围成的三角形与扩充w 平面上的直线三角形相对

应的充要条件.

10. 设函数()w f z =在|z|<1内解析,且是将| z| <1共形映射成| w |<1的分式线性变换。试证

(1)2

2

1|()||()|(||1)1||f z f z z z -'=<-; (2)21|()|1||

f a a '=-, 其中a 在单位圆| z|<1内,f(a)=0。

11. 若()w f z =是将| z |<1共形映射成| w | <1的单叶解析函数,且

(0)0,arg (0)0f f '==.

试证:这个变换只能是恒等变换,即()f z z ≡.

12. 设函数()w f z =在| z |<1内单叶解析,且将| z| <1共形映射成| w |<1,试证()w f z =必是分式线性函数.

13. 设在| z |<1内f(z)解析,且| f(z) |<1;但()0(||1).f a a =<试证:在||1z <内。

|()|1z a f z az

-≤-. 提示:应用例7.8及施瓦茨引理.

14. 应用施瓦茨引理证明:把| z |<1变成||1w <,且把(||1)a a <变成0的共形映射一定有下列形状

1i z a w e az

θ-=-, 这里θ是实常数.

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

哈工大2007材料分析方法秋考题--A

哈工大 2007年 秋 季学期 材料分析测试方法 试题 一、回答下列问题(每题5分,共50分) 1. 阐述特征X 射线产生的物理机制 答 当外来电子动能足够大时,可将原子内层(K 壳层)中某个电子击出去,于 是在原来的位置出现空位,原子系统的能量因此而升高,处于激发态,为使系统能量趋于稳定,由外层电子向内层跃迁。由于外层电子能量高于内层电子能量,在跃迁过程中,其剩余能量就要释放出来,形成特征X 射线。 2. 衍射矢量与倒易矢量 在正点阵中,选定原点O ,由原点指向任意阵点的矢量g 为衍射矢量。 在倒易点阵中,由原点O*指向任意坐标为(h,k,l )的阵点的矢量g hkl 称为倒 易矢量。表示为g hkl =ha*+kb*+lc*。它有以下几个特点:a )垂直于正点阵中相应的(h,k,l )平面,或平行于它的法向N hkl —;b )其矢量长度等于正点阵中相应晶面间距的倒数,即g hkl=1/d hkl ;c )倒易矢量g hkl 与相应指数的晶向[hkl]平行。 3. 结构因子的定义 结构因子是指一个单胞对X 射线的散射强度,其表达式为: )(21j j j lz ky hx i n j j hkl e f F ++=∑=π 由于衍射强度正比于结构因子模的平方,消光即相当于衍射线没有强度,因 此可通过结构因子是否为0来研究消光规律。 4. 衍射峰半高峰宽的含义及与晶粒尺寸的关系 在理想条件下,衍射峰强度只有一条线,但是在实际测量过程中,衍射峰总 是有一定宽度的。定义在衍射峰强度I=Imax/2处的强度峰宽度为半高峰宽。主要影响因素为晶粒尺寸,晶粒大小对衍射强度的影响可用θλ2sin 3 c V I =来表示。 5. 给出物相定性与定量分析的基本原理 定性相分析原理:每一种结晶物质都有其特定的结构参数,包括点阵类型、 晶胞大小、单胞中原子的数目及其位置等等,这些参数在X 射线衍射花样上均有所反映,到目前为止还没找到两种衍射花样完全相同的物质;对于多种物相的X 射线谱,其衍射花样互不干扰,只是机械地叠加;物相定性分析是一种间接的方法,需利用现有的数据库进行物相检索。 定量相分析原理:各相的衍射线强度随该相含量的增加而提高。 6. 内应力的分类及对X 射线衍射线条的影响规律

电路分析试题库(有答案)77471

试题库(1)直流电路 一、填空题 1、电流所经过的路径叫做 电路 ,通常由 电源 、 负载 和 传输环节 三部分组成。 2、无源二端理想电路元件包括 电阻 元件、 电感 元件和 电容 元件。 3、通常我们把负载上的电压、电流方向(一致)称作 关联 方向;而把电源上的电压和电流方向(不一致)称为 非关联 方向。 4、 欧姆 定律体现了线性电路元件上电压、电流的约束关系,与电路的连接方式无关; 基尔霍夫 定律则是反映了电路的整体规律,其中 KCL 定律体现了电路中任意结点上汇集的所有 支路电流 的约束关系, KVL 定律体现了电路中任意回路上所有 元件上电压 的约束关系,具有普遍性。 5、理想电压源输出的 电压 值恒定,输出的 电流值 由它本身和外电路共同决定;理想电流源输出的 电流 值恒定,输出的 电压 由它本身和外电路共同决定。 6、电阻均为9Ω的Δ形电阻网络,若等效为Y 形网络,各电阻的阻值应为 3 Ω。 7、实际电压源模型“20V 、1Ω”等效为电流源模型时,其电流源=S I 20 A ,内阻=i R 1 Ω。 8、负载上获得最大功率的条件是 电源内阻 等于 负载电阻 ,获得的最大功率=min P U S 2/4R 0 。 9、在含有受控源的电路分析中,特别要注意:不能随意把 控制量 的支路消除掉。 三、单项选择题 1、当电路中电流的参考方向与电流的真实方向相反时,该电流( B ) A 、一定为正值 B 、一定为负值 C 、不能肯定是正值或负值 2、已知空间有a 、b 两点,电压U ab =10V ,a 点电位为V a =4V ,则b 点电位V b 为( B ) A 、6V B 、-6V C 、14V 3、当电阻R 上的u 、i 参考方向为非关联时,欧姆定律的表达式应为( B ) A 、Ri u = B 、Ri u -= C 、 i R u = 4、一电阻R 上u 、i 参考方向不一致,令u =-10V ,消耗功率为,

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

七年级地理下册 第七章 第二节 东南亚讲解与例题 (新版)新人教版(1)

第二节东南亚 1.“十字路口”的位置 (1)东南亚的范围和国家 ①范围 东南亚包括中南半岛和马来群岛两大部分。 中南半岛因位于中国以南而得名,北部与中国相连。 马来群岛在中南半岛的东南方,有大小岛屿2万多个,我们习惯上叫它南洋群岛。 ②国家 东南亚主要包括11个国家。 中南半岛上有5个国家:越南、老挝、柬埔寨、泰国、缅甸。 马来群岛上有6个国家:印度尼西亚、马来西亚、文莱、新加坡、菲律宾和东帝汶。 缅甸的首都是内比都,不是仰光。2005年,缅甸政府将首都迁到仰光以北390千米处的内比都。 东南亚与我国相邻的国家是越南、老挝、缅甸;唯一的内陆国是老挝;面积最大、人口最多的是印度尼西亚,其领土由1万多个岛屿组成,被称为“千岛之国”,是世界上最大的群岛国家。 印度尼西亚位于亚欧板块、太平洋板块与印度洋板块交界地带,多火山、地震,有“火山国”之称。 (2)东南亚的地理位置 ①纬度位置:东南亚大部分位于10°S~25°N之间,地处热带。 ②海陆位置:东南亚位于亚洲东南部,北靠中国大陆,南连大洋洲,东临太平洋,西临印度洋。 ③交通位置:东南亚位于亚洲和大洋洲、太平洋和印度洋之间的“十字路口”。 (3)地理位置的重要性 东南亚自古至今都是东西联系的交通要道,近代东南亚发展为世界海洋运输和航空运输的重要枢纽。其重要性主要体现在马六甲海峡位置的重要性上。

马六甲海峡位于马来半岛和苏门答腊岛之间,是欧洲、非洲与东南亚、东亚各港口最短航线的必经之地,是连接太平洋与印度洋的重要海上通道。 马六甲海峡被称为亚洲与大洋洲、太平洋与印度洋联系的“咽喉”。 马六甲海峡是西亚、非洲石油运输到东亚的重要通道,被称为“海上生命线”。 歌谣记忆东南亚:“南洋”东南亚,国家十一个;最大群岛国,印度尼西亚。欧洲向东行,必经马六甲;印太两洋间,“十字路口”卡。半岛山河间,分布呈纵列。上游“V”字谷,流急水力富;下游宽且缓,冲积成平原;土肥灌溉便,人稠农业兴。群岛多火山,三大板块间;印度尼西亚,“火山国”名兼,农民不怕险,火山口种田。 【例1-1】有关东南亚的位置,下列说法不正确的是()。 A.被称为交通的“十字路口” B.从南北半球来看,完全处在北半球 C.从东西半球来看,完全位于东半球 D.印度洋与太平洋之间 解析:东南亚主要位于93°E~141.5°E,属东半球;绝大部分在25°N~10°S之间,地跨南北半球。东南亚北与中国接壤,南与澳大利亚大陆隔海相望,东临太平洋,西临印度洋,地处亚洲与大洋洲之间的“十字路口”,是联系两大洲的桥梁和连接两大洋的纽带。无论是历史上的亚洲、非洲、大洋洲各国人民的交往,西方国家对东方殖民地的侵略,还是现代世界各国之间的政治、经济、文化往来,都要经过这个“十字路口”。 思维流程图: 答案:B 【例1-2】读图,完成下列问题。 (1)填出图中字母代表的地理事物的名称。

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论第四章习题解答

第四章 随机变量的数字特征 I 教学基本要求 1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望; 2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差; 3、了解切比雪夫不等式及应用; 4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念; 5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理; 6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用. II 习题解答 A 组 1、离散型随机变量X 的概率分布为 求()E X 、(35)E X +、2 ()E X ? 解:()(2)0.4000.3020.300.2E X =-?+?+?=-; (35)3()5 4.4E X E X +=+=; 2222()(2)0.4000.3020.30 1.8E X =-?+?+?=. 2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元.求产品的平均价值? 解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为 则()80.1898100.80889.61E X =?+?≈(元). 3、设随机变量X 的分布函数为0 0()/40414x F x x x x ≤?? =<≤??>? .求()E X ?

解:由分布函数知X 的密度函数为 1/404 ()0 x f x <≤?=? ?其它 则4 ()()24 x E X xf x dx dx +∞ -∞ = ==? ? . 4、设随机变量X 服从几何分布,即1 ()(1)k p X k p p -==-(1,2,)k =L ,其中 01p <<是常数.求()E X ? 解:1 11 1 ()(1) (1)k k k k E X kp p p k p +∞ +∞ --=== -=-∑∑ 由级数 21 2 1123(1) k x x kx x -=+++++-L L (||1)x <,知 211 ()[1(1)]E X p p p =? =--. 5、若随机变量X 服从参数为λ的泊松分布,即 ()! k p X k e k λλ-== (0,1,2,)k =L 求()E X 、2 ()E X ? 解:1 00 ()!(1)!k k k k E X k e e e e k k λ λ λλλλλλλ-+∞ +∞ --- === ===-∑∑; 12 2 010 (1)()[]! (1)!!k k k k k k k k E X k e e e k k k λ λ λ λλλλλ-+∞ +∞ +∞ ---===+===-∑∑∑ 1 21 []()(1)! ! k k k k e e e e k k λ λλλλλλλλλλλ-+∞ +∞ --===+=+=+-∑ ∑ . 6、某工程队完成某项工程的时间X (单位:月)服从下述分布 (1) 求该工程队完成此项工程的平均时间; (2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1) ()100.4110.3120.2130.111E X =?+?+?+?=(月);

用矩阵方法使网孔分析法通解-电路分析基础课程设计

用矩阵方法使网孔分析法通解 黄明康 5030309754 F0303025 在网络电路的学习中,我们一般使用结点分析法与网孔分析法。我们知道他们有各自的用途,但其实如果使用得当,只用其中的一个方法就可以解所有目前已经可解得网络电路。而在我看来这得当的使用就是巧妙运用数学。之所以如此,我认为是因为结点分析法的基础KCL与网孔分析法的基础KVL是相容的,即可以用结点分析法的地方就可以用网孔分析法解题。 先来看个例子,从网孔分析法说起,如图(1)所示,是一个非常适合用结点分析法与网孔分析法解题的网络。 正如上课时所做的,我们用网孔分析法解之,以im1、im2、im3为支路电流列出回路的矩阵方程,方程如式(2)。

最左边的矩阵是各回路的电阻矩阵,解出此方程,再根据VCR就能得出整个网路电路的各个参数。由于篇幅所限,也由于这已是大家皆知的常规方法,对于为何使用这种方法及其可用性、使用方法等在此不再冗述。 而我关心的是,这种方法是在这么一个可以说是完美的电路网络中运用的,所以一旦电路中的某个器件变了,可能使这种方法不可用。而其实上课时已经提出了这种问题,也给出了改进了的解题方法——运用网路电路的一些性质化解电路成可用网孔分析法的电路。 但这种方法在解题中会使不熟练的我不经意中掉入“陷阱”。我更愿意用以下的方法用数学解题,这样可以使我们不必太过计较概念。 对于我的方法,也请先看一个例子,如图(3): 这样,这个电路就不能单纯的运用网孔分析法了。那么按之前所述,运用网路电路的一些性质化解电路成可用网孔分析法的电路,然后解之,正如图(4)

a 和图(4) b 中所示过程。 然后得出电阻网络矩阵方程,解出所要的量。 对于以上的例题,也有所谓的虚网孔电流法如式(5): 其实,虚网孔电流法仅仅只是根据我们在网孔分析法的引出中得出的规律重新又列出了简单的方程组,这跟我们最初想要使用结点分析法和网孔分析法的初衷不符,初衷是按给出的网络电路图直接写出矩阵方程。这样就使我们可以更好的应对复杂的网络。 当然,也正是虚网孔电流法使我想起了网孔分析法的一般矩阵解法。仍就看图(3):

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

材料分析方法部分课后习题集答案解析

第一章X 射线物理学基础 2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少? 答:1.5KW/35KV=0.043A。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶一个具有足够能量的χ射线光子从原子部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应。 第二章X 射线衍射方向 2、下面是某立方晶第物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(123),(100),(200),(311),(121),(111),(210),(220),(130),(030),(221),(110)。 答:立方晶系中三个边长度相等设为a,则晶面间距为d=a/ 则它们的面间距从大小到按次序是:(100)、(110)、(111)、(200)、(210)、(121)、(220)、(221)、(030)、(130)、

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

材料分析方法部分课后习题与答案

~ 第一章 X 射线物理学基础 2、若X 射线管的额定功率为,在管电压为35KV 时,容许的最大电流是多少 答:35KV=。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α =/g,μ mβ =290cm2/g,有公式,,,故:,解得:t= t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少激发出的荧光辐射的波长是多少 答:eVk=hc/λ Vk=×10-34××108/×10-19××10-10)=(kv) ¥ λ 0=v(nm)=(nm)=(nm) 其中 h为普郎克常数,其值等于×10-34 e为电子电荷,等于×10-19c 故需加的最低管电压应≥(kv),所发射的荧光辐射波长是纳米。 7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应 答:⑴ 当χ 射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵ 当χ 射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ 射线长的χ 射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶ 一个具有足够能量的χ 射线光子从原子内部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ 射线,这种由χ 射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ( ⑷ 指χ 射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ 称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应。 第二章 X 射线衍射方向

概率论习题解答(第4章)

概率论习题解答(第4章)

第4章习题答案 三、解答题 1. 设随机变量X 的分布律为 求)(X E ,)(2 X E ,)53(+X E . 解:E (X ) = ∑∞ =1 i i xp = ()2-4.0?+03.0?+23.0?= -0.2 E (X 2 ) = ∑∞ =1 2 i i p x = 44.0?+ 03.0?+ 43.0?= 2.8 E (3 X +5) =3 E (X ) +5 =3()2.0-?+5 = 4.4 2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为 6 ,,2,1,6/1}{Λ===i i X P 记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=28 3. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙

{}k X == λ λ-e k k ! ,k = 1,2,... 又P {}5=X =P {}6=X , 所以 λ λ λλ--= e e ! 6!56 5 解得 6=λ,所以 E (X ) = 6. 6. 设随机变量 X 的分布律为 ,,4,3,2,1,6 }{2 2Λ--== =k k k X P π问X 的数学期望是否存在? 解:因为级数∑∑∑∞ =+∞ =+∞ =+-=-=?-1 1 2 1 211 221 1 )1(6)6)1(()6) 1((k k k k k k k k k k πππ, 而 ∑∞ =11k k 发散,所以X 的数学期望不存在. 7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为 ?????>=-.0 ,0,9 1)(3 /其它x xe x f x 求一天的平均耗电量. 解:E (X ) =??? ∞ -∞ -∞∞ -==0 3/20 3/9191)(dx e x dx xe x dx x f x x x =6. 8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为 ?????>-=.0 , 5,25 1)(2 其它x x x F 求这种家电的平均寿命E (X ).

高代选讲第七章习题篇

高代选讲第七章 一﹑填空题 1.设σ是线性空间3R 的线性变换, ()()321323213212,,2,,x x x x x x x x x x x -++-+=σ 则)0(1-σ的维数是_____。 2.设σ是线性空间3R 的线性变换,()()12312323123,,,,2x x x x x x x x x x x σ=+-++- 则)(3R σ的维数是________。 3.设σ是数域P 上线性空间V 的线性变换,λ是σ的特征根,V ∈ξ且满足λξξσ=)(,则ξ_____定是σ的属于特征值λ的特征向量, (填一,或 不一)。 4.设A 是一个n 阶复矩阵,那么A 可以对角化的充分条件是_________。 5.已知矩阵A 与矩阵100230857B ?? ? = ? ??? 相似, 则矩阵A 的特征多项式为_________。 6.设A 是线性空间3P 中的一个线性变换, 321,,εεε是3P 的一组基, 且已知()11,1,0A ε=, ()20,1,1A ε=,()30,0,0A ε=,则A 的值域()3A P 的维数为( ), A 的核()10A -的维数为 _____。 7.设A 是线性空间3P 中的一个线性变换, ),,0,0,1(1=ε ),0,1,0(2=ε,),1,0,0(3=ε是3P 的一组基, 且1(5,7,9)A ε=, 2(3,0,1)A ε=, 3(0,1,1)A ε=, 那么A 在基321,,εεε下的矩阵为 _________。 8.设A 是数域P 上线性空间V 的线性变换, W 是 V 的子空间, 如果_________,就称W 是A 的不变子空间。 9.设A 是线性空间3P 中的一个线性变换, 321,,εεε是3P 的一组基, 且已知()11,1,0A ε=, ()20,1,1A ε=,()30,0,0A ε=,则A 的值域()3A P 的一个基为 ( ) , A 的核 ()10A -的一个基为_________。

概率论习题第四章答案

第四章 大数定律与中心极限定理 4.1 设D(x)为退化分布: D(x)=?? ?≤>, 0,00 ,1x x 讨论下列分布函数列的极限是否仍是分布函数? (1){D(x+n)}; (2){D(x+ n 1)}; (3){D(x-n 1 )},其中n=1,2,…。 解:(1)(2)不是;(3)是。 4.2 设分布函数列Fn(x)如下定义: Fn(x)=?? ?????>≤<-+-≤n x n x n n n x n x ,1 ,2 ,0 问F(x)=∞ →n lim Fn(x)是分布函数吗? 解:不是。 4.3 设分布函数列{ Fn(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{Fn(x)}在(∞∞-,)上一致收敛于F(x)。 证:对任意的ε>0,取M 充分大,使有 1-F(x)<ε,;M x ≥? F(x)<ε, ;M x ≤? 对上述取定的M ,因为F(x)在[-M ,M]上一致连续,故可取它的k 分点:x 1=MN 时有 <-)()(i i n x F x F ε,0≤i ≤k+1 (2) 成立,对任意的x ∈(∞∞-,),必存在某个i (0≤i ≤k ),使得],(1+∈i i x x x ,由(2)知当n>N 时有 +<≤++)()()(11i i n n x F x F x F ε, (3) ->≥)()()(i i n n x F x F x F ε, (4) 有(1),(3),(4)可得 +-<-+)()()()(1x F x F x F x F i n ε)()(1i i x F x F -≤++ε<2ε, )()(x F x F n ->--)()(x F x F i εε2)()(1->--≥+δi i x F x F , 即有<-)()(x F x F n 2ε成立,结论得证。

相关文档
相关文档 最新文档