文档库 最新最全的文档下载
当前位置:文档库 › 大学物理论文 电磁感应原理原理的应用

大学物理论文 电磁感应原理原理的应用

大学物理论文 电磁感应原理原理的应用
大学物理论文 电磁感应原理原理的应用

电磁感应原理原理的应用——电磁炮

姓名:朱子凡

摘要:电磁炮利用了电磁感应原理,具有稳定性好,初速度大,经济等特点,可以广泛的运用在军事,航空航天,交通运输等方面。本文首先介绍了电磁炮的基本原理及特点,其次提出电磁炮的几种可行的实现方案,之后又讨论了电磁炮在航空航天方面如何应用,最后提出了我们还需要克服的问题。

关键词:电磁感应,电磁加速器,稳定性,电磁炮应用

引言:电影《变形金刚》中有这样一个片段:一艘美国巡洋舰,对金字塔上面的机器人进行攻击,一击命中。没错他们用的武器就是电磁炮。美国人设想在外星人强大的火力下,电磁炮将是和外星人作战的最有利武器。

一、电磁炮的基本原理

电磁炮运用基本原理的就是法拉第电磁感应定律。19世纪,英国科学家法拉第发现,位于磁场中的导线在通电时会受到一个力的作用。如果让导线在磁场中作切割磁感线的运动,导线上也将会产生电流。这就是著名的法拉第电磁感应定律。也就是根据这一定律人们发明了发电机和电动机,它也是电磁炮的基本原理,电磁炮本质上来说就是一种比较特殊的电动机,电磁炮中做直线加速运动的炮弹就相当于电动机中旋转的转子。

但是问题是如何产生驱动炮弹的磁场,并让电流经过炮弹,让它能做直线加速运动呢?在1980年,美国西屋公司为《星球大战》建造的实验电磁炮给出了我们这样一个设计:用两根导体制成轨道,中间放置炮弹,使电流可以通过导体轨道和炮弹形成回路。把这个装置放在磁场中,当给炮弹通电时,炮弹相当于磁场中的导线,它会受到一个力的作用,由于这个力的作用,炮弹将会做加速运动,最后发射出去。

二、电磁炮的特点

1、弹丸初速度大

电磁脉冲发射的动力大约为普通火炮发射力的10倍,所以用它发射的弹丸速度将比普通炮弹的速度快很多。一般火炮的射击速度约为0.8千米/秒,步枪子弹的射击速度为l千米/秒。而电磁炮可将3克重的弹丸加速到11千米/秒,将300克的弹丸加速到4千米/秒。有的专家甚至预言,将来的速度可达100千米/秒。

2、发射速度可调

根据目标的大小,距离,可以通过调节磁场的大小或者调节通过炮弹的电流大小来调节弹丸发射的初速度。

3、稳定性好

由于弹丸受到磁场力的作用,受力均匀,而且受力大小可以通过计算机精确控制。而且由于是电磁驱动,没有后坐力,所以稳定性非常的高。

4、隐蔽性好

在不考虑由于目前技术限制使发射装置很大的情况下,电磁炮在发射时不产生明火和烟雾,也没有冲击波,所以十分具有隐蔽性。

三、电磁炮的实现

1、轨道式

前面已经介绍轨道式电磁炮,用两根导体制成轨道,中间放置炮弹,使电流可以通过导体轨道和炮弹形成回路。把这个装置放在强磁场中。

2、线圈式

在炮管中和炮弹上分别固定线圈,当在炮管上的线圈中通入交变电流时,就会在炮弹的线圈中产生感应电流,感应电流产生的磁场和炮管上线圈产生的磁场相互作用,从而能使炮弹加速。

3、螺旋加速器式

首先使弹丸带有一定量的电荷,在回旋加速器里增加两个半圆形磁场,使带电粒子不再沿着直线运动,而沿着近似于平面螺旋线的轨道运动,这种改造使得加速器的电场不至于如此之长而导致电场能损失。两个磁场之间是真空室。里面装有两个半圆形空盒状的金属电极,通称为“D形电极”。D形电极接在高频电源的输出端上,2个D 形电极之间的空隙(加速间隙)有高频电场产生。弹丸安装在真空室中心的加速间隙中。D形电极内部没有高频电场,粒子进入D形电极之内就不再被加速,在恒定的主导磁场作用下做圆周运动。只要粒子回旋半圆的时间等于加速电压半周期的奇整数倍,就能够将弹丸加速加速。

四、电磁炮的其它应用

电磁炮不仅仅可以用来作为武器,它是非常好的发射工具。可以用来发射航天器,或者放在航母上使飞机在短距离内具有起飞速度,减少飞机的起飞距离。

为了隐蔽性,武器一般需要严格限制大小,但由于目前的技术限制,无法将电磁炮做的较小。但是如果作为发射器,那么就没有那么多限制,可以将发射器做到几百甚至几千米都没有问题。而且如果把驱动线圈放在飞行器的内部,把发射线圈做成马鞍的形状,就可以把大型航天器固定在发射线圈上,这个如果装置用在航母或者飞机场就能缩短跑道,使飞机能很快起飞。而且用目前的燃料发射航天器进入太空费用要比电磁炮作为发射器费用高出很多。所以电磁炮在未来的发射器领域必将有一席之地。

五、目前面临的挑战

第一,目前电磁炮能够发射的炮弹质量仍然不大,这是加速能力不足造成的。加速炮弹的力与磁场和电流之积成正比,要获得足够强的加速磁场一般靠超导磁体。用超导线圈产生磁场已是相对成熟的技术,但超导磁体需要冷却到很低温度才能发挥作用,这对于军事应用是个问题,因为会大大降低发射装置的灵活性,但作为固定使用的航天发射装置,基本上可以不必考虑这些,而且如果高温超导强磁体能够研制成功,对

低温条件的要求也可放宽。

第二,由于目前没有足够强的发射磁场,那么只能够加大通过弹丸的电流来获取足够

的初速度,但是如果加大电流必然会发热造成弹丸的腐蚀,发生危险。

第三,由于电磁发射器加速度太大,将航天器加速到第一宇宙速度,加速度是重力加

速度的600倍,而人所能承受的是3呗重力加速度的长时间加速,显然是人类无法承受的,因此在载人航天方面还需要我们进行改进。

随着科技的发展,超导材料的逐渐成熟,相信我们一定能克服上述问题,电影将成为可能,电磁炮在未来将会扮演十分重要的角色。

参考文献:

(1)芶秉聪、胡海云主编《大学物理(下册)》,国防工业出版社,2011.1

(2)《GEEK》2011年10期

(3)《兵器知识》中国兵工协会,2011.6

(4)《电工技术杂志》科技部西南信息中心,2003年2期

大学物理(4电磁感应定律)

第10章 电磁感应定律 第一节 法拉第电磁感应定律 1.电动势 只有静电场不能维持稳恒电流。(如电容器放电就是在静电场的作用下,电流由大到小到0的衰变过程,不能维持稳恒的电流。) 要维持稳恒的电流,必须有非静电力作功,将其它形式的能量补充给电路,即电源。 在电源内部,非静电力使电荷从负极搬回到正极板。 电动势的定义:把单位正电荷从负极通过电源内部移到正极时,非静电力F k 所作的功。 把正电荷q 经电源内部由负极移到正极时,非静电力作的功为: k k A F dl + - =?? 电动势为: 1k k A F dl q q ε+- ==?? 例:5号电池的开路电压为1.5伏,充电电池的开路电压为1.2伏,这是由化学特性决定的。 在有电流输出时,电池两端的电压比开路电压低,原因是电源内部有电阻。无内阻的电源称为“理想电源”

2.法拉第定律 精确的实验表明: 导体回路中产生的感应电动势ξ的大小与穿过回路的磁通量 的变化率d Φ/dt 成正比。 d dt εΦ=- 实验1: 磁铁插入线圈中,使线圈中的 磁通量发生变化,从而在线圈 中产生感应电动势。 实验2: 内线圈通、断电的变化产生一个 变化的磁场,在外线圈中便产生 了感应电动势,其中没有任何移 动的部件,这样产生的电动势称 为感生电动势。 3.愣次定律 (解决感应电动势的方向问题) 闭合回路中,感应电流的方向总是使得它自身产生的磁通量反抗引起感应电流的磁通量的变化。或者表述为:感应电流产生的磁

电动势方向 0d dt Φ > d dt Φ < 0d dt Φ> 0d dt Φ < 0d dt Φ > 0d dt Φ < 0d dt Φ > 0d dt Φ < 。 。 。 。 。 。 。 。 。。。。。 。 。 。 。 。 。 。 。 。。。。。 × × × × × × × × ××××× × × × × × × × × ×××××

大学物理电磁感应部分复习资料

71 电磁感应及电磁场理论 基本内容小结 一、 电磁感应的普遍规律 1、楞次定律 感应电流的方向总是企图使感应电流本身所产生的通过回路面积的磁通量去补偿或者说反抗引起感应电流的磁通量的改变。 感应电流总是阻止或减缓产生感应电流的各种变化(相对运动,转动……)。 2、电源电动势与非静电场强度 所有电源内部都由连接电源正负极的导体构成回路,它与电源外的导体(外电路)连成闭合回路。断路时整个回路处处无电流,通路时回路各截面电流强度相等——电流的连续性。电流通过导体时产生电势降落消耗电能,电源有维持两极电势差、把不同形式的能量转化为电能的能力,这种能力强弱用电动势ε表示,它的大小等于断路时电源两极的电势差,方向由电源负极经电源内部指向正极。 电源内部存在着不同于静电力的电场力称为“非静电力”k F r ,它能作用在 任何电荷上因而是“电场力”,它不是保守力故不是静电力。可引入非静电力强 度/k k E F q =r r 。断路时,在电源内部导体中处处有0k E E +=r r ,使电荷受力平 衡而非定向运动,因而没有电流,这时两电极之间的电势差即电动势为: l d E k i ρ ρ??= 正极 负极(内) ε [(内)表示经由内电路]

72 通路时k E r 并不改变:l d E l d E l d E l d E k k k k i ρ ρρρρρρρ????=?+ ?= ?= 负极 正极(外) 正极 负极(内) 正极 负极(内) ε 可见等于单位正电荷按电动势方向绕电路一周时电源非静电力所作功。 3、法拉第电磁感应定律 m i d dt εΦ=- 式中i ε 、m Φ分别是回路中的感应电动势、通过回路所围面积磁通量的代数值。使用该式时要规定电路的绕行正方向,由右手螺旋法则确定回路所围面 积的正法线方向。m Φ的正、负表示磁感应强度B r 方向与回路所围面积的法线 方向相同、相反;i ε的正、负表明电动势的方向与规定的电路绕行正方向相同、相反。 若线圈是多匝线圈的串联,m Φ称为磁通链,这时感应电动势是各单匝线圈感应电动势的串联,当通过各单匝线圈的磁通相等记为Φ时则m N Φ=Φ。 i d N dt εΦ =- 4、感应电流 当电路闭合时,通过回路截面的感应电流与磁通量的变化率成正比,即 1I m i d R dt Φ=- 5、感应电量 当通过回路的磁通由1Φ改变为2Φ时通过回路截面的电量(感应电量)q 与磁通变化的快慢无关,只与磁通改变量有关,即 121 ()q R =Φ-Φ。 二、 动生电动势 由于回路所围面积的变化或面积取向变化而引起的感应电动势,称为动生

大学物理吴百诗习题答案电磁感应

大学物理吴百诗习题答案 电磁感应 LELE was finally revised on the morning of December 16, 2020

法拉第电磁感应定律 10-1如图10-1所示,一半径a =,电阻R =×10-3Ω的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(42-?++=t t t B 求:(1)t =2s 时回路的感应电动势和感应电流; (2)最初2s 内通过回路截面的电量。 解:(1)θcos BS S B =?=Φ V 10)86(6.110)86()3 cos(d d cos d d 642--?+?-=?+?-=-=Φ- =t t a t B S t i π πθε s 2=t ,V 102.35-?-=i ε,A 102100.1102.32 3 5---?-=??-= =R I ε 负号表示i ε方向与确定n 的回路方向相反 (2)42 2123 112810 3.140.1()[(0)(2)]cos 4.410C 1102 i B B S q R R θ---???=Φ-Φ=-??==??? 10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。大回路中有电流I , 小的回路在大的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。若 v dt dx =等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路内的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。 解:(1)大回路电流I 在轴线上x 处的磁感应强度大小 2 02 232 2() IR B R x μ= +,方向竖直向上。 R x >>时,2 03 2IR B x μ= ,22 203 2IR r B S BS B r x πμπΦ=?==?= (2)224032i d dx IR r x dt dt πμε-Φ=-=,x NR =时,2024 32i Ir v R N πμε= 图 10-

大学物理期末复习第八章电磁感应及电磁场

第八章 电磁感应与电磁场 §8-1电磁感应定律 一、电磁感应现象 电磁感应现象可通过两类实验来说明: 1.实验 1)磁场不变而线圈运动 2)磁场随时变化线圈不动 2.感应电动势 由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。 3.电动势的数学定义式 定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即 () ??=l K l d K :非静电力 ε (8-1) 说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为 表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正 极时,非静电力所做的功。 (2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:() ??=l K l d K :非静电力 ε (3)电动势是标量,和电势一样,将它规定一个方向,把从负极经 电源内部到正极的方向规定为电动势的方向。 二、电磁感应定律 1、定律表述

在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。数学表达式: 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有 dt d i Φ- =ε (8-2) 上式中“-”号说明方向。 2、i ε方向的确定 为确定i ε,首先在回路上取一个绕行方向。规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ -=ε计算i ε。 三、楞次定律 此外,感应电动势的方向也可用楞次定律来判断。 楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。 说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表 述。 (2)楞次定律是能量守恒定律的反映。 例8-1:设有矩形回路放在匀强磁场中,如图所示,AB 边也可以左右滑动,设 以匀速度向右运动,求回路中感应电动势。 解:取回路顺时针绕行,l AB =,x AD =, 则通过线圈磁通量为 由法拉第电磁感应定律有: “-”说明:i ε与l 绕行方向相反,即逆时针方向。由楞次定律也能得知,i ε沿逆时针方向。 讨论:(1)如果回路为N 匝,则?=ΦN (?为单匝线圈磁通量) (2)设回路电阻为R (视为常数),感应电流 dt d R R I i i Φ-==1ε 在1t —2t 内通过回路任一横截面的电量为 可知q 与(12ΦΦ-)成正比,与时间间隔无关。 例8-1中,只有一个边切割磁力线,回路中电动势即为上述产生的电动势。

大学物理习题17电磁感应

班级______________学号____________姓名________________ 练习 十七 一、选择题 1. 如图所示,有一边长为1m 的立方体,处于沿y 轴指 向的强度为0.2T 的均匀磁场中,导线a 、b 、c 都以50cm/s 的速度沿图中所示方向运动,则 ( ) (A)导线a 内等效非静电性场强的大小为0.1V/m ; (B)导线b 内等效非静电性场强的大小为零; (C)导线c 内等效非静电性场强的大小为0.2V/m ; (D)导线c 内等效非静电性场强的大小为0.1V/m 。 2. 如图所示,导线AB 在均匀磁场中作下列四种运动, (1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行 于磁场的转动。关于导线AB 的感应电动势哪个结 论是错误的? ( ) (A)(1)有感应电动势,A 端为高电势; (B)(2)有感应电动势,B 端为高电势; (C)(3)无感应电动势; (D)(4)无感应电动势。 3. 一“探测线圈”由50匝导线组成,截面积S =4cm 2,电阻R =25∧。若把探测线圈在磁场中迅速翻转?90,测得通过线圈的电荷量为C 1045-?=?q ,则磁感应强度B 的大小为 ( ) (A)0.01T ; (B)0.05T ; (C)0.1T ; (D)0.5T 。 4. 如图所示,一根长为1m 的细直棒ab ,绕垂直于棒且过其一端a 的轴以每秒2转的角速度旋转,棒的旋转平面垂直于0.5T 的均匀磁场,则在棒的中点,等效非静电性场强的大小和方向为( ) (A)314V/m ,方向由a 指向b ; (B)6.28 V/m ,方向由a 指向b ; (C)3.14 V/m ,方向由b 指向a ; (D)628 V/m ,方向由b 指向a 。 二、填空题 1. 电阻R =2Ω的闭合导体回路置于变化磁场中,通过回路包围面的磁通量与时间的关系为)Wb (10)285(3 2 -?-+=Φt t m ,则在t =2s 至t =3s 的时间内,流过回路导体横截面的感应电荷=i q C 。 (1) (2) (3) (4)

大学物理C-练习四稳恒电流的磁场、电磁感应定律

练 习 四 稳恒电流的磁场、电磁感应定律 一、填空题 1. 如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过 abod 面的磁通量为___0.024Wb ______,通过befo 面的磁通量为____0______, 通过aefd 面的磁通量为___0.024Wb ____。 2. 如图所示,两根无限长载流直导线相互平行,通过的电流分别为I 1和I 2。则 =??1 L l d B _____)(120I I -μ_______,=??2 L l d B _____)(120I I +μ_____。 3. 试写出下列两种情况的平面内的载流均匀导线在给定点P 处所产生的磁感强度的大小. (1) B = 08I R μ ; (2) B = 0 。 4. 感应电场是由 变化的磁场 产生的,它的电场线是 闭合曲线 。 5. 如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差 M N U U -________0ln 2Ig a l t a μπ+- ______________. 二、选择题 1. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管 单位长度上的匝数相等。两螺线管中的磁感应强度大小BR 和Br 应满足:( B) (A )BR=2Br (B )BR=Br (C )2BR=Br (D )BR=4Br 2. 磁场的高斯定理??=?0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; 301

大学物理(吴百诗)习题答案10电磁感应

法拉第电磁感应定律 10-1如图10-1所示,一半径a =0.10m ,电阻R =1.0×10-3Ω的圆形导体回路置于均匀磁场中,磁场方向与 回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(4 2-?++=t t t B 求:(1)t =2s 时回路的感应电动势和感应电流; (2)最初2s 通过回路截面的电量。 解:(1)θcos BS S B =?=Φ V 10)86(6.110)86()3 cos(d d cos d d 642--?+?-=?+?-=-=Φ- =t t a t B S t i π πθε s 2=t ,V 102.35 -?-=i ε,A 10210 0.1102.323 5---?-=??-==R I ε 负号表示i ε方向与确定n 的回路方向相反 (2)422 123 112810 3.140.1()[(0)(2)]cos 4.410C 1102 i B B S q R R θ---???=Φ-Φ=-??==??? 10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。大回路中有电流I ,小的回路在大 的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。若 v dt dx =等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。 解:(1)大回路电流I 在轴线上x 处的磁感应强度大小 2 02232 2()IR B R x μ= +,方向竖直向上。 R x >>时,2 03 2IR B x μ= ,22 2 03 2IR r B S BS B r x πμπΦ=?==?= (2)224032i d dx IR r x dt dt πμε-Φ=-=,x NR =时,2024 32i Ir v R N πμε= (3)由楞次定律可知,小线圈中感应电流方向与I 相同。 动生电动势 10-3 一半径为R 的半圆形导线置于磁感应强度为B 的均匀磁场中,该导线以 速度v 沿水平方向向右平动,如图10-3所示,分别采用(1)法拉第电磁感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电势高? 解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向, 在x 处 2 1(2)2m Rx R B π=+Φ,∴22m d dx RB RBv dt dt εΦ=-=-=- 由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 2RBv ε=- 负号表示电动势方向为逆时针,即上端电势高。 图10-2

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

大学物理电磁学知识点汇总

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基础。)习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

大学物理 电磁感应习题

第6章 电磁感应 思考讨论题 1·判断下列情况下可否产生感应电动势,若产生,其方向如何确定? (1)图8.1a ,在均匀磁场中,线圈从圆形变为椭圆形; (2)图8.1b ,在磁铁产生的磁场中,线圈向右运动; (3)图8.1c ,在磁场中导线段AB 以过中点并与导线垂直的轴旋转; (4)图8.1d ,导线圆环绕着通过圆环直径长直电流转动(二者绝缘)。 解:(1)线圈面积变小,产生顺时针方向的感应电动势(俯视) (2)产生电动势,从左往右看顺时针方向。 (3)产生电动势,由B 指向A 。 (4)不产生电动势。 2·一段导体ab 置于水平面上的两条光滑金属导轨上(设导轨足够长),并以初速 v 0向右运 动,整个装置处于均匀磁场之中(如图8.2所示),在下列两种情况下判断导体ab 最终的运动状态。 解: 图 8.1a 图8.1b O 图8.1c 图8.1d 图8.2a 图8.2b

3·长直螺线管产生的磁场 B 随时间均匀增强, B 的方向垂直于纸面向里。判断如下几种情 况中,给定导体内的感应电动势的方向,并比较各段导体两端的电势高低: (1)图8.3a ,管内外垂直于 B 的平面上绝缘地放置三段导体ab 、cd 和ef ,其中ab 位于 直径位置,cd 位于弦的位置,ef 位于 管外切线的位置。 (2)图8.3b ,在管外共轴地套上一个导体圆环(环面垂直于 B ),但它由两段不同金属材 料的半圆环组成,电阻分别为R 1、R 2,且R R 12>,接点处为a 、b 两点。 解:(1)b a U U =,c d U U >,f e U U > (2)b a U U > 4·今有一木环,将一磁铁以一定的速度插入其中,环中是否有感应电流?是否有感应电动势?如换成一个尺寸完全相同的铝环,又如何?通过两个环的磁通量是否相同? 解:木环没有感应电流。铝环有感应电流。通过两个环的磁通量相同。 5·两个互相绝缘的圆形线圈如图8.4放置。在什么情况下它们的互感系数最小?当它们的电流同时变化时,是否会有感应电动势产生? 解:当两者相互垂直放置时,互感系数最小,为0。 此时当电流变化时,没有互感电流。 6·试比较动生电动势和感生电动势(从定义、非静电力、一般表达式等方面分析)。 解:由定义知二者产生的原因不同。 (1)如果外磁场不变,而导体(或回路)的位置、形状等有变化,则产生动生电动势。 (2)如果导体(或回路)都固定不动,只有外磁场在变化,则产生感生电动势。 (3)从物理本质上看,它们都由不同的非静电力产生,前者为洛仑兹力,后者为涡旋电场力。 f 图8.3a b 2 R 1R a 图8.3b 图8.4

大学物理D-06稳恒电流的磁场、电磁感应定律

练 习 六 静电场 一、填空题 1. 如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过 abod 面的磁通量为___0.024Wb ______,通过befo 面的磁通量为____0______, 通过aefd 面的磁通量为___0.024Wb ____。 2. 如图所示,两根无限长载流直导线相互平行,通过的电流分别为I 1和I 2。则 =??1 L l d B _____)(120I I -μ_______,=??2 L l d B _____)(120I I +μ_____。 3. 试写出下列两种情况的平面内的载流均匀导线在给定点P 处所产生的磁感强度的大小. (1) B = 08I R μ ; (2) B = 0 。 4. 感应电场是由 变化的磁场 产生的,它的电场线是 闭合曲线 。 5. 如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差 M N U U -________0ln 2Ig a l t a μπ+- ______________. 二、选择题 1. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管 单位长度上的匝数相等。两螺线管中的磁感应强度大小BR 和Br 应满足:( B) (A )BR=2Br (B )BR=Br (C )2BR=Br (D )BR=4Br 2. 磁场的高斯定理 ??=?0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 301

大学物理电磁感应习题

练习(八) 电磁感应 1.半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线 圈电阻为R 。当把线圈转动使其法向与B 的夹角?=60α时,线圈中已通过的电量与线圈面积及转动的时间的关系是( A ) (A )与线圈面积成正比,与时间无关 (B )与线圈面积成正比,与时间成正比 (C )与线圈面积成反比,与时间成正比 (D )与线圈面积成反比,与时间无关 2.一矩形线框边长为a ,宽为b ,置于均匀磁场中,线框绕OO ′轴以匀角速度ω旋转(如图1所示)。设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为( D ) (A )2abB ω | cos ωt | (B )abB ω (C )2 1 abB ω | cos ωt | (D )abB ω | cos ωt | (E )abB ω | sin ωt | 图1 图2 3.面积为S 和2S 的两圆线圈1、2如图放置,通有相同的电流。线圈1的电流产生的通过线圈2的磁通用21?表示,线圈2的电流所产生的通过线圈1的磁通用12?表示,则21?和12?的大小关系为:( C ) 3题图 4.自感0.25H 的线圈中,当电流在(1/16)s 内由2A 均匀减少到零时,线圈中自感电动势的大小为:(2005级上考题) C (A )V .3 1087-? (B )2.0 V (C )8.0 V (D )V .2 1013-?

5.两个相距不太远的平面圆线圈,怎样放置可使其互感系数近似为零?设其中一线圈的轴线恰过另一线圈的圆心。C (A )两线圈的轴线互相平行。 (B )两线圈的轴线成45°角。 (C )两线圈的轴线互相垂直。 (D )两线圈的轴线成30°角。 6.空气中有一无限长金属薄壁圆筒,在表面上沿圆方向均匀地流着一层随时间变化的面电流)(t i ,则 ( B ) (A )圆筒内均匀地分布着变化磁场和变化电场。 (B )任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零 (C )沿圆筒外任意闭合环路上磁感应强度的环流不为零。 (D )沿圆筒内任意闭合环路上电场强度的环流为零。 7.在一自感线圈中通过的电流I 随时间t 的变化规律如图a 所示,若以I 的正方向作为ε 的正方向,则图中代表线圈内自感电动势ε随时间t 变化规律的曲线图是( D ) 8.用线圈的自感系数L 来表示载流线圈磁场的能量公式2 2 1LI W m = D (A )只适用于无限长密绕螺线管; (B )只适用单匝线圈; (C )只适用一个匝数很多,且密绕的螺线环; (D )适用于自感系数L 一定的任意线圈。 9.在感应电场中电磁感应定律可写成 φdt d l d E L k -=?? 式中 E k 为感应电场的电场强度, 此式表明:(D ) (A )闭合曲线 L 上 E k 处处相等, (B )感应电场是保守力场, (C )感应电场的电场线不是闭合曲线, (D )在感应电场中不能像对静电场那样引入电势的概念。

大学物理第九章练习 参考答案

第九章 电磁感应 电磁场理论 练 习 一 一.选择题 1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势ε,磁通量为正值。若磁铁沿箭头方向进入线圈,则有( B ) (A) d /dt 0, 0 ; (B) d /dt 0, 0 ; (C) d /dt 0, 0 ; (D) d /dt 0, 0。 2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C ) (A) I 由A 到B ,U A U B ; (B) I 由B 到A ,U A U B ; (C) I 由B 到A ,U A U B ; (D) I 由A 到B ,U A U B 。 3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量q 为( A ) (A) 2 nINA /R ; (B) nINA /R ; (C) NIA /R ; (D) nIA /R 。 4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。 二.填空题 1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L 可 表示为02 20l R n L πμ=。 2. 如图4所示,一光滑的金属导轨置于均匀磁场B 中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2 θ。 S N v 图1 · · G A B N S v 图2 I I A 图3

大学物理 磁场、电磁感应练习题答案

磁场、电磁感应练习题答案 一、选择题 1. B 2. B 3. B 4.C 5.D 6.D 二、填空题 1. )(2)(0)(00c I b a I μμ 2. 匀速直线 匀速率圆周 等距螺旋 3. T 101 4.13-?== eR mv B 垂直纸面向里 81057.1-?==v R t πS 4. IBa 5. 8 V 6. RC t e RC E r -0 02επ- 相反 7. 小于 8. t a nI m ωωπμcos 20- 9. 6.92 12==LI W J 三、小计算 1. 解: 由磁场高斯定理可知,通过闭合曲面的磁通量为0 20 r B s s πφφφφ=-==+∴圆面圆面 2. 解: 方向向里方向向外;R l R I B R l R I B B B B B B B B B B l l l l l l πμπμ2222(00220110212 102 12121===+==+++= 0)0012 2121=∴=+∴=B B B l l I I l l 3. 建立坐标轴,以P 为原点O ,水平向左为坐标正方向。取微分元d x 方向垂直向里。 b b a a I x x a I dB B x xa I x I B x a I I a b b +===== =??+ln 2d 2d 22d d d 0000πμπμπμπμ

4.解: 方向向上。 方向垂直向外, B NIa mB M NIa NIs m 2 2 90 sin= = = = 5.解:在细环中作同心环路L T 10 26 .2 10 72 300 600 10 4 Am 300 5.0 3.0 500 2 500 500 2 d 1 3 7 1 - - - - ? = ? = ? ? ? = = = ? = = = ? = ?∑ ? π π μ μ π π H B r I H I r H I l H r L 6.解: T 10 5.0 5000 10 4 5000 10 2.0 1 3 7 3 - - - ? = ? ? ? = = = ? = π π μnI B n 7.解: a b a Ic x x Ic x Bc s B x Bc s B x c s b a a b a a + = = = = = = = ? ? ?+ + ln 2 d 2 d d d d d , d d π μ π μ φ φ 取微分元 四、计算题 1.解:在圆柱体内部与导体中心轴线相距为r处的磁感强度的大小,由安培环路定律可得: ) ( 22 0R r r R I B≤ = π μ 因而,穿过导体内画点部分平面的磁通 1 φ为

大学物理《普通物理学简明教程》第十二章 电磁感应 电磁场

第十二章 电磁感应 电磁场 问题 12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转. 解 导线在右边区域激发的磁场方向垂直于纸面向 里,并且由2I B r μ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定. (1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向. (2)线圈绕AD 轴旋转,当从0到90时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90到180时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180到270时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270到360时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零. 12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗? 解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生. 12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)]. C I

大学物理电磁学知识点汇总

大学物理电磁学知识点 汇总 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基 础。) 习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

大学物理电磁学知识点总结

大学物理电磁学总结 一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。 uuu r q q ur F21 = k 1 2 2 er r ur u r 高斯定理:a) 静电场:Φ e = E d S = ∫ s ∑q i i ε0 (真空中) b) 稳恒磁场:Φ m = u u r r Bd S = 0 ∫ s 环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁 ∫ L ur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中) L 电磁学 静电场 稳恒磁场稳恒磁场 电场强度:E 磁感应强度:B 定义:B = ur ur F 定义:E = (N/C) q0 基本计算方法:1、点电荷电场强度: E =

ur r u r dF (d F = Idl × B )(T) Idl sin θ 方向:沿该点处静止小磁针的N 极指向。基本计算方法: ur q ur er 4πε 0 r 2 1 r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r 2、连续分布的电流元的磁场强度: 2、电场强度叠加原理: ur n ur 1 E = ∑ Ei = 4πε 0 i =1 r qi uu eri ∑ r2 i =1 i n r ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 2 3、安培环路定理(后面介绍) 4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度: ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur ? dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 0 4、高斯定理(后面介绍) 5、通过电势解得(后面介绍) 几种常见的带电体的电场强度公式: 几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B = ur 1、点电荷:E = q ur er 4πε 0 r 2 1 0 I 2R 0 I 2π r 2、均匀带电圆环轴线上一点: ur E=

大学物理 电磁感应 电磁场(一)习题答案 上海理工

第九章 电磁感应 电磁场(一) 一。选择题 [ A ]1. 如图所示,导体棒AB 在均匀磁场B 中绕通过C 点的垂 直于棒长且沿磁场方向的轴OO 转动(角速度ωρ 与B ? 同方向),BC 的长度为棒长的3 1 ,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (C) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点 【分析】在B O '上取一个长度微元x d ? ,它离O '点的距离为x ,方 向向B 端。则x d ? 两端的电势差由动生电动势公式可求得: ()Bxdx vBdx x d B v d i ωε==??=? ?? 所以O '、B 两端的电势差为: 230 181 BL Bxdx V V L O B ωω= =-?' 同理O '、A 两端的电势差为: 2320 18 4 BL Bxdx V V L O A ωω= =-? ' 所以A 、B 两点的电势差可求得: 26 1 BL V V B A ω=- A 点的电势高。 [ D ]2. 在圆柱形空间内有一磁感强度为B ?的均匀磁场,如图所示.B ? 的大小以速率 d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等. (D) AB 导线中的电动势小于AB 导线中的电动势 【分析】连接oa 与ob ,ob ab ob oab εεεε++=。因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=?= =? → →l d E ob ob εε oab ob d dB S dt dt φεε==- =- o ab oab d d dt dt ??∴< O A B ?B ? O O ′ B ? B A C

相关文档
相关文档 最新文档