文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方程讲义课后答案三四章__姜礼尚版本

数学物理方程讲义课后答案三四章__姜礼尚版本

数学物理方程讲义课后答案三四章__姜礼尚版本
数学物理方程讲义课后答案三四章__姜礼尚版本

数学物理方程第二版答案

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??- 23 222)( 22 52222 3 2222 2 ) (3) (t y x t y x t t u ?--+---=??- -

数学物理方程 答案 谷超豪

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 (2)若l x =为自由端,则杆在l x =的张力x u x E t l T ??=) (),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若0=x 为自由端,则相应的边界条件为 x u ??∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的 偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --==

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数学物理方程习题解答案

数学物理方程习题解 习题一 1,验证下面两个函数: (,)(,)sin x u x y u x y e y == 都是方程 0xx yy u u += 的解。 证明:(1 )(,)u x y = 因为322 2 22 2222 2222 22 322 222 2222 2222 222222 222222 1 1()22 () 2()()11()22()2()()0()() x xx y yy xx yy x u x x y x y x y x x x y u x y x y y u y x y x y x y y y y x u x y x y x y y x u u x y x y =-? ?=- +++-?-=-=++=-??=-+++-?-=-=++--+=+=++ 所以(,)u x y =是方程0xx yy u u +=的解。 (2)(,)sin x u x y e y = 因为 sin ,sin cos ,sin x x x xx x x y yy u y e u y e u e y u e y =?=?=?=-? 所以 sin sin 0x x xx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。 2,证明:()()u f x g y =满足方程 0xy x y uu u u -=

其中f 和g 都是任意的二次可微函数。 证明:因为 ()()u f x g y = 所以 ()(),()()()() ()()()()()()()()0 x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=?=?''=?''''-=?-??= 得证。 3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。 解:令x y ξλ=+则(,)()u x y f ξ= 所以2 (),()x xx u f u f ξλξλ'''=?=? (),(),()xy y yy u f u f u f λξξξ'''''=?== 将上式带入原方程得2 (43)()0f λλξ''-+= 因为f 是一个具有二阶连续可导的任意函数,所以2 -430 λλ+=从而12 =3,1λλ=, 故1122(,)(3),(,)()u x y f x y u x y f x y =+=+都是原方程的解,12,f f 为任意的二阶可微函数,根据迭加原理有 12(,)(3)()u x y f x y f x y =+++为通解。 4,试导出均匀等截面的弹性杆作微小纵振动的运动方程(略去空气的阻力和杆的重量)。 解:弹性杆的假设,垂直于杆的每一个截面上的每一点受力与位移的情形都是相 同的,取杆的左端截面的形心为原点,杆轴为x 轴。在杆上任意截取位于 [,]x x x +?的一段微元,杆的截面积为s ,由材料力学可知,微元两端处的相对伸长(应 变)分别是 (,)u x t x ??与(,)u x x t x ?+??,又由胡克定律,微元两端面受杆的截去部分的拉力分别为()(,)u SE x x t x ??与()(,)u SE x x x x t x ?+?+??,因此微元受杆的截去部分的作用力的合力为:()(,)()(,)u u SE x x x x t SE x x t x x ??+?+?-??

数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1 +=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

数学物理方程考试试题及解答

数学物理方程试题(一) 一、填空题(每小题5分,共20分) 1.长为π的两端固定的弦的自由振动,如果初始位移为x x 2sin ,初始速度为 x 2cos 。则其定解条件是 2. 方程 03=??-??x u t u 的通解为 3.已知边值问题???===+0 )()0(0 )()('"πλX X x X x X ,则其固有函数)(x X n = 4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分,共15分) 1. 拉普拉斯方程02222=??+??y u x u 的一个解是( ) (A )xy e y x u x sin ),(= (B )22),(y x y x u += (C )2 21),(y x y x u += (D )22ln ),(y x y x u += 2. 一细杆中每点都在发散热量,其热流密度为),(t x F ,热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是 ( ) (A )ρc t x F x u a t u ),(222 22+??=?? (B )ρc t x F x u a t u ),(222+??=?? (C ) ρc t x u x F a t F ),(22222+??=?? (D) ρc t x u x F a t F ),(22 2+??=?? (其中ρc k a =2) 3. 理想传输线上电压问题??? ??? ?=??=??=??=x aA t u x A x u x u a t u t ωωωsin ,cos )0,(0 2 2 222 ( 其中C L a 1 2 = )的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(= (C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω

数学物理方程第三版第一章答案解析(全)

数学物理方程第三版答案 第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??--=??--=111124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??--????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ??? ??????+??? ? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ???? ? ?-=+???? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表 示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为 ()t x f x u a t u ,22 2+??=?? 其中()()()t x F c t x F t x f c k a ,,/,,,2 ρρ == 为单位体积单位时间所产生的热量。 由常电流i 所产生的()t x F ,1为2 2/24.0ωr i 。因为单位长度的电阻为ω r ,因此电流i 作功为

数学物理方程(谷超豪)第二版前两章答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ) ,()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由, (3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件 为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2 222)1(])1[(t u h x x u h x x E ??-=??-??ρ 其中h 为圆锥的高(如图1) 证:如图,不妨设枢轴底面的半径为1,则x

相关文档
相关文档 最新文档