文档库 最新最全的文档下载
当前位置:文档库 › Protel99se导出坐标教程

Protel99se导出坐标教程

Protel99se导出贴片坐标文件教程

原创:jimmy

始发于:https://www.wendangku.net/doc/6a1811316.html,

步骤如下:

1)用 Protel99 se软件打开 PCB 文件。

2)设定原点。选择【Edit】 / 【Origin】 / 【Set】,设定坐标原点。

3)导出坐标数据。选择【File】/【Cam Manager…】,出现输出数据向导界面

按“Next”,选择输出数据类型为 Pick Place.

再按“Next”继续,文件格式选择 Text、单位选择 Metric。

然后选择【Tools】/【Preference…】,在弹出的 CAM Options 对话框中设定输出坐标文件所在的目录.

选择【Tools】/ 【Generate CAM Files】在指定路径下生成坐标文件。

******************************谢谢**************************************

空间直角坐标系与大地坐标系转换程序

空间直角坐标系与大地坐标系转换程序 #include #include #include using namespace std; #define PI (2.0*asin(1.0)) void main() { double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e; //cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<>a>>b; a=6378137; //以WGS84为例 b=6356752.3142; e=sqrt(a*a-b*b)/a; c=a*a/b; int x; cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<>x; switch(x) { case 0: { cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<>d1>>f1>>m1>>d2>>f2>>m2>>H; B=PI*(d1+f1/60+m1/3600)/180; L=PI*(d2+f2/60+m2/3600)/180; W=sqrt(1-e*e*sin(B)*sin(B)); N=a/W; X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-e*e)+H)*sin(B); cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<>X>>Y>>Z; double t,m,n, P,k,B0; m=Z/sqrt(X*X+Y*Y); //t0 B0=atan(m); //初值 n=Z/sqrt(X*X+Y*Y);

坐标系转换问题

坐标系转换问题--WGS84坐标 BJ54 BJ80 2012-10-18 14:37 对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。 我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。这里不多啰嗦。 那么,为什么要做这样的坐标转换呢? 因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。简单的来说,就一句话,减小误差,提高精度。 下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。 说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。我们都知道,地球是一个近似的椭球体。因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。比如北京54坐标系采用的就是克拉索夫斯基椭球模型。而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563 之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。这就需要两个很重要的转换参数dA、dF。 dA的含义是两个椭球基准之间半长轴的差;dF的含义是两个椭球基准之间扁率倒数的差。在进行坐标转换时,这两个转换参数是固定的,这里,我们给出在进行84—〉54,84—〉80坐标转换时候的这两个参数如下: WGS84>北京54:DA:-108;DF:0.0000005 WGS84>西安80:DA: -3 ;DF: 0 椭球的基准转换过来了,那么由于建立椭球的原点还是不一致的,还需要在dXdYdZ这三个空间平移参量,来将两个不同的椭球原点重合,这样一来才能使两个坐标系的椭球完全转换过来。而由于各地的地理位置不同,所以在各个地方的这三个坐标轴平移参量也是不同的,因此需要用当地的已知点来计算这三个参数。具体的计算方法是: 第一步:搜集应用区域内GPS“B”级网三个以上网点WGS84坐标系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x值。(注:B、L、H分别为大地坐标系中的大地纬度、大地经度及大地高,h、x分别为大地坐标系中的高程及高程异常。各参数可以通过各省级测绘局或测绘院具有“A”级、“B”级网的单位获得。) 第二步:计算不同坐标系三维直角坐标值。计算公式如下: X=(N+H)cosBcosL Y=(N+H)cosBsinL Z=[N(1-e2)+H]sinB

Protel99se教程

Protel99se教程一:建立一个数据库文件习Protel99 SE的第一步,是建立一个DDB文件,也就是说,使用protel99se进行电路图和PCB设计,以及其它的数据,都存放在一个统一的DDB数据库中的 一,打开protel 99se后,选择file菜单下的new菜单 第二步:选择新建的项目存放方式为DDB以及文件存放目录

第三步:新建好DDB文件后,我们就可里边的Documents目录下 第五步:可以新建SCH文件了,也就是电路图设计项目

第六步:新建后SCH项目后,在默认的一个protel99se元件库中,可以选择元件放到电路图中了

第七步:我们也可以选择增加自己的元件库

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Protel99se教程二:使用protel99se原理图绘制使用protel99se绘制原理图,首先要先设置一下显示网格这一项去掉,这一个可以根据个个习惯,并不是一定需要这样的,去掉

prote99se的界面的View菜下,将visible Grid选中或取消,可以选择是否显示网格. 下边我们绘制一个简单的原理图,使大家熟悉一下protel99se的原理图操作,这个SCH原理图的所有元件,都可以在我们默认的原件库中下载. 一、将元件放进SCH原理图中,并且设计元件的属性

坐标转换源代码--GPS定位程序(C--)

坐标转换源代码--GPS定位程序(C++) GPS数据处理中为了满足不同的需要,处理的数据要进行坐标转换,得到在不同坐标系统下的结果,下面是笛卡尔坐标系,大地坐标系,站心地平坐标系(线型和极坐标形式)之间的转换源代码: 头文件: #ifndef _COORDCOVERT_H #define _COORDCOVERT_H #include "stdlib.h" //WGS-84椭球体参数 const double a=6378137.0;//长半轴 const double flattening=1/298.257223563;//扁率 const double delta=0.0000001; typedef struct tagCRDCARTESIAN{ double x; double y; double z; }CRDCARTESIAN; typedef CRDCARTESIAN *PCRDCARTESIAN;

//笛卡尔坐标系 typedef struct tagCRDGEODETIC{ double longitude; double latitude; double height; }CRDGEODETIC; typedef CRDGEODETIC *PCRDGEODETIC; //大地坐标系 typedef struct tagCRDTOPOCENTRIC{ double northing; double easting; double upping; }CRDTOPOCENTRIC; typedef CRDTOPOCENTRIC *PCRDTOPOCENTRIC; //站心地平坐标系(线坐标形式) typedef struct tagCRDTOPOCENTRICPOLAR{ double range;

54坐标系、80坐标系、84坐标系之间的转换关系

工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。 其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。 3,任意两空间坐标系的转换 由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式: 对该公式进行变换等价得到: 解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算: 其中:V 为残差矩阵; X 为未知七参数; A 为系数矩阵; 解之:L 为闭合差 解得七参数后,利用布尔莎公式就可以进行未知点的坐标转换了,每输入一组坐标值,就能求出它在新坐标系中的坐标。但是要想GPS观测成果用于工程或者测绘,还需要将地方直

bigemap 如何转 2000坐标系

同步视频教程:投影转换(转CGCS2000) 视频教程:如何选择中央子午线或者分度带 注意:投影转换成cgcs2000坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图: 选择上图的更多,如下图所示:

1:选择 -CGCS2000 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图:

6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图: 此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

Protel99入门教程

Protel99se教程一:建立一个数据库文件 习Protel99 SE的第一步,是建立一个DDB文件,也就是说,使用protel99se 进行电路图和PCB设计,以及其它的数据,都存放在一个统一的DDB数据库中的 一,打开protel 99se后,选择file菜单下的new菜单 第二步:选择新建的项目存放方式为DDB以及文件存放目录 第三步:新建好DDB文件后,我们就可里边的Documents目录下

第五步:可以新建SCH文件了,也就是电路图设计项目

第六步:新建后SCH项目后,在默认的一个protel99se元件库中,可以选择元件放到电路图中了 第七步:我们也可以选择增加自己的元件库

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Protel99se教程二:使用protel99se原理图绘制 使用protel99se绘制原理图,首先要先设置一下显示网格这一项去掉,这一个可以根据个个习惯,并不是一定需要这样的,去掉prote99se的界面的View菜下,将visible Grid选中或取消,可以选择是否显示网格.

下边我们绘制一个简单的原理图,使大家熟悉一下protel99se的原理图操作,这个SCH原理图的所有元件,都可以在我们默认的原件库中下载. 一、将元件放进SCH原理图中,并且设计元件的属性

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

坐标系转换c语言作业

《程序设计语言(C)》大作业报告 题目:坐标系的转换 完成人: 小组构成及分工: *******独自完成程序的书写及调试. 问题定义: 大地坐标和空间直角坐标系以及其他坐标系之间转换在卫星大地测量中经常用到的坐标系有,空间直角坐标系和大地直角坐标。为了实现测量数据的快速高效的在不同的坐标系的转换,方便在学习及应用的中。需要编写一程序实现数据的转换,实现空间直角坐标系与大地直角坐标之间在同一个系统中转换。 开发工具:Visual C++ 6.0 数据结构描述: 用不同的变量表示不同的坐标,变量选择时根据使用的习惯方便使用者的识别。 X:表示大地直角坐标的纵坐标; Y:表示大地直角坐标的横坐标; Z表示大地直角坐标的竖坐标 L:表示空间直角坐标的经度; B:表示空间直角坐标的纬度; H:表示空间直角坐标的高度; 算法描述: 通过编写一个主函数描述出整个程序的主体不分,然后通过调用函数实现坐标的转换。 程序调试情况: 坐标由大地直角坐标系中的转换为空间直角坐标系的坐标: 大地直角坐标转换后空间直角坐标: B=60; X=2055059.130122; L=50; Y=2449123.986892; H=100; Z=5500477.615329;

坐标由空间直角坐标系中的坐标转换为大地直角坐标系中的坐标; 空间直角坐标转换后大地直角坐标; X=100; B=-127.103127844; Y=100; L=45.000000000; Z=10000; H=-6391994.685276; 参考文献或网站: 1.《控制测量学》(下册)第三版孔祥元郭际明主编武汉大学出版社; 2. 《数字测图原理与方法》第二版潘正风程效军成枢王腾军宋伟东 邹进贵编著武汉大学出版社; 3.《C 程序设计语言》魏东平朱连章于广斌编著;电子工业出版社 心得体会: 写这个大作业确实让我收获了许多! 1.写这次计算机大作业,让我经历了一个难忘的过程。自己的是必须得自己独立自主的想办法去解决,没人会为与自己没多大关系的事分很多神的! 2.经历了过程,让我学到了些东西也在解决困难的过程中认识了些学长,他们也教会了我许多学习经验。 3.在自己调试程序的过程中也知道了点以前写程序时不知道的细节问题,如:数据的类型在计算时会起到一定的限制,计算三角函数时数值向角度的转换.....;这就是知识! 4.这次写的作业题目是出自本专业的题,这次写计算机作业的所有收获都是以后学习的经验、财富.....! 5.在本次作业的调试中真的是考验了我的耐性。因为一个函数中的数据类型的错误,导致调了近两天。 6.知识水平的有限,所以让我学会了怎样以更好的方式去向别人请教学问!

空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换 1.空间直角坐标系/笛卡尔坐标系 坐标轴相互正交的坐标系被称作笛卡尔坐标系。三维笛卡尔坐标系也被称为空间直角坐标系。在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。 以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。 在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。 空间直角坐标系 2.空间大地坐标系 由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量: 2.1椭球的大小和形状

2.2椭球的短半轴的指向:通常与地球的平自转轴平息。 2.3椭球中心的位置:根据需要确定。若为地心椭球,则其中心位于地球质心。 2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。 以大地基准为基础建立的坐标系被称为大地坐标系。由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P点的椭球法线与赤道面的夹角叫P点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,P点的位置用L,B表示。如果点不在椭球面上,表示点的位置除L,B外,还要附加另一参数——大地高H。 空间大地坐标系 3.空间直角坐标与大地坐标间的转换 3.1大地坐标转换为空间直角坐标

坐标转换参数求取及坐标转换程序设计

毕业设计 设计题目坐标转换参数求取及坐标转换程序设计 学生姓名张威 指导教师杜继亮 专业测绘工程 班级测绘12-2班 填写日期2016/4/6 矿业工程学院

摘要 坐标系统是测量工作中定位的基础,坐标系统有多种形式和基准,由于各测量工作目的不同,所选用的坐标基准也会不同,根据不同的工作要求需要将不同的坐标系下的坐标进行相互转换。在这些坐标转换的过程中会用到很多坐标转换模型,但是坐标系转换模型过于复杂手算非常困难。本设计为了方便施工时遇到的坐标转换问题,设计利用Visual Basic 6.0编程语言编写程序,用来实现坐标系统之间的转换以及转换参数的求解,例如:大地坐标与空间直角坐标的相互转换、高斯投影正反算、二维坐标转换与四参数计算、三维坐标转换与七参数转换、同参考基准下的坐标换带计算,以及坐标数据的批量处理。 关键字:坐标系统,转换模型,坐标转换,程序设计

Abstract The base of coordinate system in surveying work. there are many forms and benchmarks in the coordinate system. However, in general engineering, the control point and coordinate. System are the same. So It is necessary to transform the control point. coordinate during the construction process. Due to different purposes of each measurement and the selected. different coordinate references, there will be many different coordinate systems. Coordinate systems used in the measurement work are as follows: WGS-84 World Geodetic System, China Geodetic Coordinate System 2000, National Geodetic Coordinate System 1980, Beijing coordinate system 1954 and Local Coordinate System. There are space rectangular coordinate, geodetic coordinate and plane coordinate in the way of the reference in the same coordinate. According to the requirements of different tasks, we need to convert coordinates under the different coordinate systems. On condition that the coordinates of the reference standard can be obtained. the normal construction work can be done. A lot of coordinate transformation models are used in the process of the coordinate transformation. But the coordinate transformation model is very complex and difficult. Nowadays the conversion formula is suitable for the computerization whose language is easy to learn. So in the design I make use of Visual Basic 6 programming language to realize the transformation between the coordinate system and transformation parameters. Key words : coordinate systems transformation model coordinate transform programming

protel99se简明教程

Protel99se简明教程 说明:1、本教程为通信工程学院学生科技协会自主编辑 2、本教程为简明教程,作为科协成员初步学习protell99se时使用。 3、教程中出现的图片皆为截图,不完整,学习时请看仔细。 一、sch元件库的绘制 Sch元件库是画电路原理图时的器件图形。其名称与图形应与我们的习惯相符才好。如发光 二极管(LED),则画成形状,电阻是。因此,为了方便原理图的绘制,我们一般喜欢自己画一个元件库。 1、File—New—出现,在Databae File Name中填如文件名,在DatabaeLocation中选择文件的存放位置—点击OK。 2、双击,选择File—New,双击,改名,双击之,出现器件编辑窗口。 3、选择Tool—New Component ,新建一个元件,在出现的对话框中填入元件名称,如LED (发光二极管),点击OK,利用绘图工具绘图,画直线,画填充框,放引脚。 4、画一个LED,利用在绘图界面上画好,再利用放引脚, ,LED有两个引脚2、3。名称是2、3。 5、引脚号与引脚名称的更改。用鼠标靠近引脚,双击之,将出现引脚属性对话框, ,Name是引脚的名称(随便你填,但以方便自己对器件的认识为填写的原则),填入1,Number是引脚编号,填入 A(这个也随便你填,但是这个号要与元件的PCB 封装的引脚号相对应,不对应,会在原理图转化到PCB图时出错),同样,更改引脚3的属 性,将出现。在中填入引脚的长度(默认是30mil)我们一般需要20mil即可。 6、补充LED的发光箭头。由于 protel99se的连线,只能在栅格的两点之间画,因此,我

空间直角坐标系与大地坐标系转换程序

. 空间直角坐标系与大地坐标系转换程序 #include #include #include using namespace std; #define PI (2.0*asin(1.0)) void main() { double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e; ??潣瑵?请分别输入椭球的长半轴、短半轴(国际单位)<>a>>b; a=6378137; //以WGS84为例 b=6356752.3142; e=sqrt(a*a-b*b)/a; c=a*a/b; int x; 潣瑵?请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系<>x; switch(x) { case 0: { 潣瑵?请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)<>d1>>f1>>m1>>d2>>f2>>m2>>H; B=PI*(d1+f1/60+m1/3600)/180; 1 / 4 . L=PI*(d2+f2/60+m2/3600)/180; W=sqrt(1-e*e*sin(B)*sin(B)); N=a/W; X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-e*e)+H)*sin(B); 潣瑵?空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为 <

protel99SE四层板设计及内电层分割入门

protel99SE四层板设计及内电层分割入门 [日期:2011-12-16] 来源:作者:pcb_dz [字体:大中小] 本教程将详细的讲解Protel99SE的四层板的设计过程,以及在其中的内电层分割的用法。事先声明:本教程用于初学者的入门与提高;对于高手们,也欢迎看看,帮小弟指出其中不当的做法! 下面,就打开你的电脑及软件开始了。(- - - - - -好像是废话, 嘿嘿..... ) 一、准备工作 新建一个DDB文件,再新建相关的原理图文件, 并做好相关准备设计PCB的准备工作,这个相信想画四层板的朋友都会, 不用我多讲了。 二、新建文件 新建一个PCB文件, 在KeepOutLayer层画出PCB的外框, 如下图,用过Protel的朋友们应该都会。 三、设置板层 在PCB界面中点击主菜单Design 再点击Layer Stack Manager 如图: 点击后弹出下面的层管理器对话框, 因为在Protel中默认是双面板,所以,我们看到的布线层只有两层。

现在我们来添加层,先单击左边的TopLayer, 再单击层管理器右上角的Add Plane按钮,添加内电层,这里说明一下,因为现在讲的是用负片画法的四层板,所以,需要添加内电层,而不是Add Layer。 单击后,将在TopLayer的下自动增加一个 层,双击该层,我们就可以编辑这一层的相关属性,如下图: 在Name对应的项中,填入V CC,点击确定关闭对话框,也就是将该层改名为VCC,作为设计时的电源层。 按同样的方法,再添加一个GND层。完成后如图:

四、导入网络 回到原理图的界面,单击主菜单Design ==> Update PCB如图: => 选择要更新的PCB文件,点击Apply ,

Protel99SE入门教程

前言 protel99SE 本文适合零基础者学习 很多网友渴望自己设计电路原理图(SCH)、电路板(PCB),同时希望从原始SCH到PCB 自动布线、再到成品PCB电路板的设计周期可以缩短到1天以内!是不是不可能呢?当然不是,因为现在的EDA软件已经达到了几乎无所不能的地步!由于电子很重实践,可以说,不曾亲自设计过PCB电路板的电子工程师,几乎是不可想象的。 很多电子爱好者都有过学习PROTEL的经历,本人也是一样,摸索的学习,耐心的体会,充分的体会什么是成功之母。不希望大家把不必要的时间浪费在学习PROTEL的初期操作上,在这里做这个教程是为了给渴望快速了解和操作PROTEL的初学者们一个走捷径的机会,教程大家都可以看到,可以省走很多不必要的弯路及快速建立信心,网络的魅力之一就在于学习的效率很高。由于本人的水平很有限,所以教程做的比较浅,就是教大家:1.画画简单的原理图(SCH)2.学会创建SCH零件 2.把原理图转换成电路板(PCB)3.对PCB进行自动布线 4.学会创建PCB零件库5.学会一些常用的PCB高级技巧。鉴于此,如果您这方面已经是水平很高的专业人士,无需看此教程。同时也愿这些简单的图片教程可以使大家在今后的电子电路设计之路上所向披靡。 关于教程涉及软件版本: 此教程采用的样板软件是PROTEL99SE汉化版,99SE是PROTEL家族中目前最稳定的版本,功能强大。采用了*.DDB数据库格式保存文件,所有同一工程相关的SCH、PCB等文件都可以在同一*.DDB数据库中并存,非常科学,利于集体开发和文件的有效管理。还有一个优点就是自动布线引擎很强大。在双面板的前提下,可以在很短的时间内自动布通任何的超复杂线路! 关于软件的语言: 采用的是主菜单汉化版,有少量的深层对话框是英文的,重要的细节部分都在教程中作了中文注释,希望大家不要对少量的英文抱有恐惧的心理,敢于胜利是学习的一个前提。再就是不要太急于求成,有一颗平常心可以避免欲速则不达的问题。我可以向大家保证,等大家学会了自动布线,就会对设计PCB信心百倍。 关于教程本身的资源:由于本人精力很有限,所以难免有些疏忽和错误,望大家指出和理解。如果有需要转载的网友请在转载教程的同时注明教程的出处即可。但愿它可以为大家提高掌握PROTEL的效率,更希望它能从此改变大家的一生! 明天将会更加辉煌!

坐标转换参数求取及坐标转换程序设计

共享知识分享快乐 盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 毕业设计 设计题目坐标转换参数求取及坐标转换程序设计 学生姓名张威 指导教师杜继亮 专业测绘工程 班级测绘12-2班 填写日期2016/4/6 矿业工程学院

共享知识分享快乐

共享知识分享快乐 摘要 坐标系统是测量工作中定位的基础,坐标系统有多种形式和基准,由于各测量工作目的不同,所选用的坐标基准也会不同,根据不同的工作要求需要将不同的坐标系下的坐标进行相互转换。在这些坐标转换的过程中会用到很多坐标转换模型,但是坐标系转换模型过于复杂手算非常困难。本设计为了方便施工时遇到的坐标转换问题,设计利用Visual Basic 6.0编程语言编写程序,用来实现坐标系统之间的转换以及转换参数的求解,例如:大地坐标与空间直角坐标的相互转换、高斯投影正反算、二维坐标转换与四参数计算、三维坐标转换与七参数转换、同参考基准下的坐标换带计算,以及坐标数据的批量处理。 关键字:坐标系统,转换模型,坐标转换,程序设计

共享知识分享快乐 Abstract The base of coordinate system in surveying work. there are many forms and benchmarks in the coordinate system. However, in general engineering, the control point and coordinate. System are the same. So It is necessary to transform the control point. coordinate during the construction process. Due to different purposes of each measurement and the selected. different coordinate references, there will be many different coordinate systems. Coordinate systems used in the measurement work are as follows: WGS-84 World Geodetic System, China Geodetic Coordinate System 2000, National Geodetic Coordinate System 1980, Beijing coordinate system 1954 and Local Coordinate System. There are space rectangular coordinate, geodetic coordinate and plane coordinate in the way of the reference in the same coordinate. According to the requirements of different tasks, we need to convert coordinates under the different coordinate systems. On condition that the coordinates of the reference standard can be obtained. the normal construction work can be done. A lot of coordinate transformation models are used in the process of the coordinate transformation. But the coordinate transformation model is very complex and difficult. Nowadays the conversion formula is suitable for the computerization whose language is easy to learn. So in the design I make use of Visual Basic 6 programming language to realize the transformation between the coordinate system and transformation parameters. Key words : coordinate systems transformation model coordinate transform programming

不同坐标系的转换和程序的设计论文

师大学 本科生毕业论文(设计) 论文题目:不同坐标系的转换及其程序设计院系:测绘学院 专业:测绘工程 师大学教务处印制

摘要 随着空间技术的发展,全球一体化的形成,越来越多的要求全球测绘资料形成统一规,尤其是坐标系统的统一。由于各测量单位工作目的不同,所选择的椭球参考系也会有所不同,出现了许多不同形式的坐标系,例如WGS-84坐标系、国家80坐标系、54坐标系、独立地方坐标及各种坐标。在同一坐标系下坐标的表示方式又有空间直角坐标、坐标、平面坐标。根据不同的测绘需求,需要将不同的坐标系下的坐标进行相互转换,在这些坐标转换的过程中既会运用到同一坐标系下的坐标转换模型,又会用到不同参考系下各坐标系间的坐标转换模型。 首先本文介绍测量学坐标的相关知识,接着介绍了与坐标转换相关的知识以及坐标转换模型(包括同一坐标系下的坐标转换模型和不同参考系下各坐标系间的坐标转换模型),并利用vb语言实现坐标转换的过程。 关键词:地球椭球,坐标系,转换模型,坐标转换

Abstract Along with the development of space technology, the formation of global integration, more and more requirements of surveying and mapping material form a unified global standard, especially the unity of the coordinate system. Because each measurement unit work purpose is different, choose the frame of reference ellipsoid would differ, the emergence of many different forms of coordinate system, such as WGS-84 coordinate system, the state 80 coordinate system, Beijing 54 coordinate system, independent local coordinate system and various kinds of urban construction coordinates. In the same coordinate system of representation and coordinate space right-angle coordinate, coordinate, coordinate the earth plane. According to the different needs of surveying and mapping, need different coordinate transformation coordinate system, in which the process of coordinate transformation can use to the same coordinate system coordinate transformation model, and will use different reference frame, the coordinate transformation between the coordinate system model. First of all this paper introduces the geodetic coordinates of relevant knowledge, then introduce the knowledge of coordinate transformation and coordinate transformation model(including the same coordinate system coordinate transformation model and different reference frame, the coordinate transformation between the coordinate system model), and the use of vb language realization of coordinate transformation process. Key words:the earth ellipsoid, coordinate system, transformation model, coordinate transformation

相关文档
相关文档 最新文档