文档库 最新最全的文档下载
当前位置:文档库 › 分子生物学

分子生物学

分子生物学:是一门从分子水平研究生命显像、生命本质、生命活动以及规律的科学。

第一章

1、遗传信息传递的中心法则:

课后题:

1、DNA、RNA、mRNA和siRNA的英文全名:

DNA:deoxyribonucleic acid

RNA:ribonucleic acid

mRNA:massage mRNA

siRNA:short-interfering RNAs

2、早期有哪些实验证明DNA是遗传物质?

㈠肺炎链球菌转化实验:Ⅰ、外表光滑的S型肺炎链球菌(有荚膜多糖→致病性)Ⅱ、外表粗糙R型肺炎链球菌(无荚膜多糖)

①活的S型→注射→实验小鼠→小鼠死亡

②死的S型(经烧煮灭火)→注射→实验小鼠→小鼠存活

③活的 R型→注射→实验小鼠→小鼠存活

④死的S型+活的R型→实验注射→小鼠死亡

⑤分离被杀死的S型菌体的各种组分+活的R型菌体→注射→实验小鼠→小鼠死亡(内只有死的S型菌体的DNA转

化R型菌体导致致病菌)

*DNA是遗传物质的载体。

㈡噬菌体侵染细菌实验

①细菌培养基35S标记的氨基酸+无标记噬菌体→培养1-2代→子代噬菌体几乎不含带有35S标记的蛋白质

②细菌培养基32N标记的核苷酸+无标记噬菌体→培养1-2代→子代噬菌体含有30%以上32N标记的核苷酸

∴说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。

3、定义重组DNA技术:目的是将不同的DNA片段,按照人们的设计定向的连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

第二章

1、增色效应:当DNA溶液温度升高到接近水的沸点时,260nm的吸光度明显增加,这些现象称为增色效应。

2、减色效应:双螺旋的DNA中碱基积累降低了其对紫外线的吸收能力。

3、DNA解链温度或熔点:T m,吸光度增加到最大值一般的温度称为DNA的解链温度或其熔点。

4、复制子:一般把生物体内能独立进行复制的单位称为复制子。

5、复制叉:复制时,双链DNA要解开成两股联分别进行,所以,这个复制起始点呈现叉子的形状,被称为复制叉。

6. 冈崎片段:日本学者冈崎提出了DNA的半不连续性复制,指复制时,形成前导链和后随链,前导链DNA的合成

以5’-3’方向进行,随着亲代双链DNA解开而连续进行复制;而后随链在合成过程中一段亲本DNA的单链首先暴露出来,然后以复制叉移动相反的方向按照5’-3’方向合成一系列冈崎片段,然后再把他们连接起来成为完整的后随链。

7.DNA的转座及转座子:或称移位,是由可移位因子介导的遗传物质重排现象。

转座子:Tn,是存在与染色体DNA上可自主复制和移位的基本单位。分为复合型转座子和插入序列IS。

6、SNP:是single nucleotide polymorphism 的简称,为单核苷酸多态性,指基因组DNA徐立忠由于单个核苷酸ATGC 的突变引起的多态性。

7、C值:把一种生物单倍体基因组DNA的总量称为C值。

8、C值反常现象:也成C值谬误,指C值往往与种系进化的复杂程度不一致,某些低等生物却具有较大的C值。

9、半不连续复制:前导链复制是连续的,随从链的复制是不连续的。

10、DNA的半保留复制:在DNA复制时,母链的双螺旋DNA解开成两股单链个子作为模板,以四种脱氧核糖核苷三磷酸为原料,按碱基互补的原则合成另一条链,子代DNA的一条链是完全从亲代接受过来的,另一条是新合成的。

实验证明:

①将大肠杆菌长期培养在15N做氮源的培养基中,可得到15N-DNA。

*15N-DNA密度比14N-DNA密度大,在氯化铯密度离心时,这两种DNA形成位置不同的区带。

②用普通培养基(含14N的氮源)培养15N标记的大肠杆菌。

③经一代培养后,形成一半14N和一半15N的杂合子,两代后出现等量的14N分子和15N-14N杂合分子。

④继续培养,则14N-DNA分子增多,说明DNA分子在复制时均可被分成两个亚单位,分别构成子代分子的一半,

这些亚单位经过许多复制仍保持着完整性。

课后题:

1、DNA双螺旋结构模型是由谁提出的?简述其发现的主要实验依据及其在分子生物学发展中的重要意义:

答:1953年Waston和Crick提出DNA右手双螺旋。

2、原核生物DNA 具有哪些不同于真核生物DNA的特征?

①没有非编码区和内含子。

②是环状的DNA分子,裸露于拟核区域;而真核生物的DNA通常与蛋白质结合成染色体存在于细胞核中。

③原核生物的细胞质中还可能具有质粒,也是一种环状的DNA双链分子,能够自主复制并影响原核生物的性状,并遗传到下一代;真核生物中的DNA还可能存在于叶绿体和线粒体中,具有半自主性,可以进行复制、转录,称为细胞质DNA。

3、DNA的结构(论述):

(1)DNA的一级结构:就是指四种核苷酸的连接及其排列顺序,表示了该DNA分子的化学组成

(2)DNA的二级结构:实质两条核苷酸反相平行盘绕所生成的双螺旋结构。DNA是有脱氧核糖和磷酸交替排列,排在外侧,构成基本骨架,碱基排列在内测,两条链上的碱基通过氢键结合,形成碱基对GC、AT。相邻碱基对平面之间的距离为0.34nm,双螺旋的直径为2.0nm。

(3)DNA的三级结构:是一种普通形式,双螺旋DNA的松开导致负超螺旋,而拧紧则导致正超螺旋。

4、真核生物基因组的结构特点:

(1)真核基因组庞大

(2)真核基因组存在大量的重复序列

(3)大部分为非编码序列,占整个基因组序列的90%以上

(4)转录产物的单顺反子

(5)真核基因是断裂基因,有内含子结构

(6)存在大量的顺式作用元件,包括启动子、增强子、沉默子等

(7)真核基因组中存在大量的DNA多态性

(8)真核基因组有端粒结构

5、原核生物DNA的如下特点:

(1)结构简练

(2)存在转录单元

(3)有重叠基因

第三章

1、转录:是指拷贝出一条与DNA链序列完全相同,的RNA单链的过程,是基因表达的核心步骤。

2、翻译:是指新生的mRNA为模板,把核苷酸三联遗传密码子翻译成核苷酸序列、合成多肽链的过程,是基因表达的最终目的。

3、编码连:把与mRNA序列相同的那条DNA链称为编码链或有意义链。

4、模板链:把另一条根据碱基互补原则指导mRNA合成的DNA链称为模板链,或反义链。

5、启动子:promoter是基因转录起始所必需的一段DNA序列,是基因表达调控的上游顺势作用元件之一。是一段位于结构基因上游5’端DNA序列,能活化RNA聚合酶,使之与模板DNA能准确的相结合并具有转录起始的特异性。

6、P盒并证明其存在,其保守序列为:在保护区内有一个由5个核苷酸组成的共同序列,是RNA聚合酶的紧密结合点,先成为Pribnow区,这个区的中央大约位于起始位点上游10bp处,故称为-10区。是RNA聚合酶与启动子的结合位点,能与δ因子相互识别而具有很高的亲和力。

7、TA TA区:在真核生物基因中,发现类似P盒的,位于转录起始上游-25~-30bp处的共同序列TATAAA,也称TATA 区。

8、核酶:是指一类具有催化功能的RNA分子,通过催化靶位点RNA链中磷酸二脂键的断裂,特异性的剪切底物RNA 分子,从而阻断基因的表达。

9、增强子及其特点:能起到增强转录起始的序列称为增强子。

增强子的特点:(1)远距离效应(2)无方向性(3)顺势调节(4)无物种和基因的特异性(5)具有组织特异性(6)有相位性(7)有的增强子可以对外部信号产生反应

课后题:

1、比较复制和转录的异同:

异复制转录

模板DNA双链DNA的一条链

原料 d NTP NTP

引物需要(RNA引物)不需要

酶DNA聚合酶RNA聚合酶

产物DNA RNA

配对A-T,G-C A-U,T-A,G-C

相同

合成方向5’—3’

键磷酸二酯键

2、DNA聚合酶和RNA聚合酶的区别

①原核生物的RNA聚合酶由多个亚基组成:α2ββ'称为核心酶,转录延长只需核心酶即可。α2ββ'σ称为全酶,转录起

始前需要σ亚基辨认起始点,所以全酶是转录起始必需的。

②真核生物RNA聚合酶有RNA-polⅠ、Ⅱ、Ⅲ三种,分别转录45s-rRNA; mRNA(其前体是hnRNA);以及5s-rRNA、snRNA

和tRNA。

(1)原核生物的RNA聚合酶是由2个α亚基、1个β亚基、1个β’亚基和一个ω亚基组成核心酶,加上一个δ亚基后称为聚合酶全酶。核心酶负责RNA链的延伸,而δ因子则负责专一性结合模板DNA启动子。

(2)真核生物的RNA聚合酶有三类:I、II、III

酶细胞内定位转录产物相对活性对α-鹅膏覃碱的敏感程度

I 核仁rRNA 50~70% 不敏感

II 核质hnRNA 20~40% 敏感

III 核质tRNA 10% 物种特异性

3.原核生物启动子的结构特点和功能:

启动子是DNA链上一段能与RNA聚合酶结合并能起始mRNA合成的序列,它是基因表达不可缺少的重要调控序列。没有启动子,基因就不能转录。原核生物启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。启动子区域:

(1)Pribnow盒,位于转录起始位点上游5—10bp,一般由6~8个碱基组成,富含A和T,故又称为TATA盒或—10区。启动子来源不同,Pribnow盒的碱基顺序稍有变化。

(2)—35区,位于转录起始位点上游35bp处,故称—35区,一般由10个碱基组成。

启动子有强弱之分,虽然原核细胞仅靠一种RNA聚合酶就能负责所有RNA的合成,但它却不能识别真核基因的启动子。为了表达真核基因,必须将其克隆在原核启动子的下游,才在原核表达系统中被转录。在原核生物表达系统中,通常使用的可调控的强启动子有lac (乳糖启动子)、trp (色氨酸启动子)、PL和PR(λ噬菌体的左向和右向启动子)以及tac(乳糖和色氨酸的杂合启动子)等。

4、原核生物与真核生物mRNA的特征比较:

(1)原核生物mRNA的特征:原核生物mRNA半衰期短、可能以多顺贩子形式存在、5’端无帽子结构,3’端没有或只有较短的A尾结构、。

(2)真核生物mRNA的特征:真核生物基本上以AUG作为起始密码子。真核生物5’端存在帽子结构,使mRNA 免遭核酸酶破坏、3’端mRNA有多A尾是细胞核进入细胞质基质所必需的形式,

4、真核生物RNA的转录后加工(三种RNA)又真核生物的初级转录产物必须经过哪些加工才能成为成熟的mRNA,以用做蛋白质合成的模板:

真核基因大多是断裂的,往往随着RNA的剪接过程,从mRNA前体分子中切除内含子的非编码区,并使基因中被称为外显子的编码区拼接形成成熟mRNA。分为tRNA、rRNA的转录后加工、mRNA的剪接。

(1)tRNA:内含子的剪切、3’端添加CCA、核苷酸修饰(RNA甲基化)

(2)rRNA:在5’端切除非编码的序列,生成41S的中间产物、41S被切为32S含有28S和5.8S,另一段为20S,含有18S,第四步分别切出28S和5.8S和18S RNA。

(3)mRNA的剪接:5’端加帽,3’端加poly-A尾,内含子剪接。

6、RNA转录的基本过程

①模板识别:主要是RNA聚合酶与启动子DNA双链相互作用并与其结合的过程。

②转录起始:不需要引物,RNA聚合酶结合在启动子上以后,使启动子附近的DNA双链解旋并解链,形成转录泡以促使底物核糖核苷酸与模板DNA的碱基配对。

③转录的延伸:RNA聚合酶从全酶上脱落下来,RNA聚合酶离开启动子,核心酶沿模板DNA链移动并使新生成RNA 链不断伸长的过程。

④转录终止:当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA杂合物分离,转录泡瓦解,DNA回复双链状态,而RNA聚合酶和RNA链都被从模板上释放出来的过程(依赖σ因子和不依赖σ因子的终止)

第四章

1、翻译:是指将mRNA链上的核苷酸从一个特定的起始位点开始,按每个核苷酸代表一个氨基酸的原则,依次合成一条多肽链的过程。

2、密码子:mRNA上每三个核苷酸翻译成蛋白质多肽链上的一个氨基酸,这三个核苷酸就称为密码,也叫三联体密码子,即密码子。起始密码子AUG,终止密码子UAG、UGA、UAA。

3、怎样保证蛋白质合成的真实性:氨酰-tRNA合成酶是一类催化氨基酸和tRNA结合的特异性酶。AA + tRNA + ATP====AA-tRNA + AMP + PPi

蛋白质合成的真实性主要取决于tRNA能否把正确的氨基酸放到新生多肽链的正确位置上,而这一步主要取决于AA-tRNA合成酶能否使氨基酸与对应的tRNA相结合。

4、肽链的延伸过程:蛋白质的延伸机制在真核生物与原核生物中十分相同。起始复合物生成,第一个氨基酸(fMet/Met-tRNA)与核糖体结合后,肽链开始伸长。按照mRNA模板密码子的排列,氨基酸通过新生肽键的方式被有序的结合上去。肽链延伸由许多循环组成,每加一个氨基酸就是一个循环,循环包括AA-tRNA与核糖体的结合、肽键的生成和移位。

①后续AA-tRNA与核糖体结合

②肽键生成

③移位

5、分子伴侣:是目前研究比较多的能够在细胞内辅助新生肽链正常折叠的蛋白质。它是一类序列上没有相关性但是具有共同功能的保守性白质,它们在细胞内能帮助其他多肽进行正确的折叠、组装、运转和降解。目前至少有两类分子伴侣家族:热休克蛋白和伴侣素。

6、信号肽:在起始密码子后,有一段编码性氨基酸序列的RNA区域,这个氨基酸序列就称为信号肽。

7、核糖体循环:蛋白质翻译是一个循环进行的过程,每一个循环包括大小亚基之间以及其与mRNA的结合,翻译mRNA,然后各自分离。这种结合和分离就称为核糖体循环。

课后题:

1、简述遗传密码简并性对生物体的生物学意义:

密码子的性质

(1)密码子的连续性

(2)密码子的简并性

(3)密码子的通用性和特殊性

(4)密码子与反密码子的相互作用

密码子简并性具有重要的生物学意义,它可以减少有害突变。若每种氨基酸只有一个密码子,61个密码子中只有20个是有意义的,各对应于一种氨基酸。剩下41个密码子都无氨基酸所对应,将导致肽链合成终止。由基因突变而引起肽链合成终止的概率也会大大增加。简并性使得那些即使密码子中碱基被改变,仍然能编码原来氨基酸的可能性大为提高。密码的简并也使DNA分子上碱基组成有较大余地的变动,例如细菌DNA中G+C含量变动很大,但不同G+C含量的细菌却可以编码出相同的多肽链。所以遗传密码的简并性在物种的稳定上起着重要的作用

2、有几种终止密码,序列及别名:

UAG,UAA,UGA

AUG(甲硫氨酸),GUG(缬氨酸)为起始密码子,UAA,UGA,UAG为终止密码子

3、原核生物和真核生物在核糖体组成上有何区别:

原核生物和真核生物的核糖体形态相似,椭球形的粒状小体

原核细胞的核糖体较小,沉降系数为70S,相对分子质量为2.5MDa,由50S和30S两个亚基组成;

真核细胞的核糖体体积较大,沉降系数是80S,相对分子质量为3.9~4.5MDa,由60S和40S两个亚基组成。

4、什么是SD序列,及其功能:

几乎所有原核生物mRNA上都有一个5’-AGGAGGU-3’的序列,这个富嘌呤区被称为SD序列。

SD序列(Shine-Dalgarnosequence):mRNA中用于结合原核生物核糖体的序列。SD序列在细菌mRNA起始密码子AUG 上游10个碱基左右处,有一段富含嘌呤的碱基序列,能与细菌16SrRNA3’端识别,帮助从起始AUG处开始翻译。

5、核糖体循环(简答):

指在细胞内构成核糖体的大小两种亚单位(沉淀系数为50S或60S的大亚单位和30S或40S的小亚单位)与蛋白活体合成开始会合(70S或80S粒子形成),合成后又分离的这一反复循环而言(参见核糖体)。核糖体在不合成蛋白时,分离成亚单位,这是由于多肽链起始因子之一与小亚单位结合,而抑制了与大亚单位的结合。这种状态的小亚单位,如果与其它起始因子、起始tRNA、mRNA结合,则形成多肽链起始复合体。随着与大亚单位结合,在多肽链延长因子存在下进行多肽链延长反应。多数的核糖体在一分子mRNA顺次移动(参见多核糖体)。当终止信号出现时,由于多肽链终止因子的作用,多肽链合成终止,核糖体从mRNA脱离,重新分离成大小二个亚单位。这些反应都要利用鸟苷三磷酸(GTP)水解所产生的能量。

6.核糖体的3个tRNA合成位点(简答):

核糖体有三个tRNA结合位点,分别为A、E、P位点。

A位点是新到来的AA-tRNA的结合位点,

P位点是肽酰-tRNA的结合位点,

E位点是延伸过程中的多肽链转移到AA-tRNA上释放tRNA的位点。(先入P位点)

第五章:

1、基因组DNA文库:把某种生物的基因组DNA切成适当大小,分别与载体结合,导入微生物细胞,形成克隆。基因组中的所有DNA 序列克隆的总汇被称为基因组DNA 克隆。

课后题:

1、简述荧光染料SYBR Green I和TaqMan荧光探针的主要不同点:

SYBR Green I是一种结合于所有dsDNA双螺旋小沟区域的具有绿色激发波长的染料。在游离状态下,SYBR Green I发出微弱的荧光,但一旦与双链DNA结合后,荧光大大增强。因此,SYBR Green I的荧光信号强度与双链DNA的数量相关,可以根据荧光信号检测出PCR体系存在的双链DNA数量。SYBR Green I 的最大吸收波长约为497nm,发射波长最大约为520nm

TaqMan 荧光探针是是RNA探针,一种寡核苷酸探针,荧光基团连接在探针的5’末端,而淬灭剂则在3’末端。PCR 扩增时在加入一对引物的同时加入一个特异性的荧光探针,探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5'-3'外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。常用的荧光基团是FAM,TET,VIC,HEX。而新型TaqMan-MGB探针使该技术既可进行基因定量分析,又可分析基因突变(SNP),有望成为基因诊断和个体化用药分析的首选技术平台。

第六章:

1、RNA干涉:RNAi技术利用双链小RNA高效、特异性降解细胞内同源mRNA从而阻断靶基因表达,使细胞内出现靶基因缺失的表型、

课后题:

1、简述RNAi技术原理以及在分子生物学领域应用的前景:

第七章:

1、组成型蛋白质、调节型蛋白质:如DNA聚合酶、RNA聚合酶等都是代谢中必需的酶或蛋白质,其合成速率不受环境变化或代谢状态的影响,这一类蛋白质称为组成型合成蛋白质;另一类则称为适应型/调节型合成蛋白质,因为这类蛋白质的合成速率明显的受环境的影响而改变。

2、弱化子:当操纵子被阻遏,RNA合成被终止时,起终止转录信号作用的那一段氨基酸被称为弱化子。

课后题:

1、什么是操纵子学说:

大肠杆菌的乳糖操纵子是一个十分巧妙的自动控制系统:当培养基中含有充分的乳糖,同时不含葡萄糖时,细菌便会自动产生半乳糖苷酶来分解乳糖,以资利用。当培养基中不含乳糖时,细菌便自动关闭乳糖操纵子,以免浪费物质和能量。

2、什么是弱化作用:

有些现象与阻遏作为唯一调节机制的观点不一致,产生这种与阻遏物控制无关的调控机制为弱化作用。

3、葡萄糖效应:有葡萄糖存在时,即使在细菌培养基中加入乳糖、半乳糖、阿拉伯糖或麦芽糖等诱导物,其相对应的

操纵子也不会启动,产生处代谢这些糖的酶来,这种现象称为葡萄糖效应或称为降解物抑制作用。

4、大肠杆菌乳糖操纵子:

乳糖操纵子包括调节基因、启动基因、操纵基因和结构基因。

大肠杆菌的lac操纵子受到两方面的调控:一是对RNA聚合酶结合到启动子上去的调控(阳性);二是对操纵基因的调控(阴性)。

在含葡萄糖的培养基中大肠杆菌不能利用乳糖,只有改用乳糖时才能利用乳糖。操纵子的调控机理是:当在培养基中只有乳糖时由于乳糖是lac操纵子的诱导物,它可以结合在阻遏蛋白的变构位点上,使构象发生改变,破坏了阻遏蛋白与操纵基因的亲和力,不能与操纵基因结合,于是RNA聚合酶结合于启动子,并顺利地通过操纵基因,进行结构基因的转录,产生大量分解乳糖的酶,这就是当大肠杆菌的培养基中只有乳糖时利用乳糖的原因。在含乳糖的培养基中加入葡萄糖时,不能利用乳糖的原因,即在lac操纵子的调控中,有降解物基因活化蛋白(CAP),当它特异地结合在启动子上时,能促进RNA聚合酶与启动子结合,促进转录(由于CAP的结合能促进转录,称为阳性调控方式)。但游离的CAP不能与启动子结合,必须在细胞内有足够的cAMP时,CAP首先与cAMP形成复合物,此复合物才能与启动子相结合。葡萄糖的降解产物能降低细胞内cAMP的含量,当向乳糖培养基中加入葡萄糖时,造成cAMP浓度降低,CAP 便不能结合在启动子上。此时即使有乳糖存在,RNA聚合酶不能与启动子结合,虽已解除了对操纵基因的阻遏,也不能进行转录,所以仍不能利用乳糖。

第八章

1、内含子:非编码序列为内含子。

2、外显子:编码序列为外显子。

3、断裂基因:在一个结构基因中,编码某一蛋白质不同区域的各个外显子并不连续排列在一起,而常常被长度不等的内含子所隔离,形成镶嵌排列的断裂方式。因此真核基因常称为断裂基因。

4、组成性基因表达:某些基因在个体的所有细胞中持续表达,这些基因即为管家基因,其表达模式又称为组成性基因表达。

5、可诱导基因:在特定环境信号刺激下,相应的基因被激活,基因表达产物增加,这种基因称为可诱导基因。

6、阻遏基因:基因受到环境信号抑制,这种基因称为阻遏基因。

7、顺式作用元件:是指启动子和基因的调节序列。主要包括启动子、增强子、沉默子等,

8、反式作用因子:是指能够结合在顺势作用元件上的调控基因表达的蛋白质和RNA。根据不同功能,分为三类:具有识别启动子元件功能的基本转录因子,能识别增强子或沉默子的转录调节因子以及不需要通过DNA-蛋白质相互作用就参与转录调控的共调节因子。

9、碱性连氨酸拉链:即bZIP结构。肝、小肠上皮、脂肪细胞以及某些脑细胞中存在的一大类C/EBP家族蛋白质。特征是能够与CCAAT区和病毒的增强子结合。这类蛋白质的DNA结合结构域实际是以碱性区和亮氨酸拉链结构域整体作为基础的。

10、RNA的加工成熟:

⑴rRNA和tRNA的加工成熟:r RNA:原核碱基甲基化、真核核糖甲基化

t RNA:核苷修饰、剪接

⑵m RNA的加工成熟:5’端加帽、3’端加poly-A尾、剪接、核苷酸甲基化

⑶真核生物基因转录后加工的多样性p/354

⑷m RNA有效的调控

11、DNA识别或结构域

反式作用因子是能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。

常见的DNA结构域包括碱性氨基酸结合域、酸性激活域、谷氨酰胺(Q)富含域、脯氨酸(P)富含域等。通常情况下,配体调节受体大多数有DNA结合域和转录激活域。而甾醇类受体通常都是转录因子,其N末端都有保守的DNA 结合域,C末端都有激素结合域。

a.螺旋-转角-螺旋(HTH)

b.锌指结构

c.亮氨酸拉链

d.螺旋-突环-螺旋

转录激活域:与其他转录因子相互作用的结构成分。

课后题:

1、何谓外显子、内含子及其结构特点和可变调控:

(1)外显子(英语expressed region) 是真核生物基因的一部分,它在剪接(Splicing) 后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。

(2)真核生物细胞DNA 中的间插序列。这些序列被转录在前体RNA 中,经过剪接被去除,最终不存在于成熟RNA 分子中。内含子和外显子的交替排列构成了割裂基因。在前体RNA 中的内含子常被称作“间插序列”。内含子是相对的,一个基因的内含子可能是另一个基因的外显子

2、简述真核生物转录元件的组成和分类:

(1)顺式作用元件:启动子,启动子上游元件,增强子。

TA TA/Hognest 盒,启动子的核心序列

GC 盒CAAT 盒

顺式作用元件是转录起始点上游的DNA 序列,能够影响其它基因的表达活性

(2)反式作用因子螺旋转角螺旋(Helix-turn-helix)锌指结构亮氨酸拉链螺旋一环一螺旋(HLH)同源异形结构域(Homeodomains,HD)

12、真核基因、原核基因比较和区别:

真核原核

产物多顺反子单顺反子

DNA序列大部分调控大部分编码

表达翻译、转录的偶联有严格的时间间隔

基因断裂基因连续基因

13、真核细胞与原核细胞在基因转录、翻译及DNA的空间结构方面存在如下差异:

一.转录

1.RNA聚合酶原核生物的RNA聚合酶是一种多聚体蛋白质(α2ββ'σ);真核生物的RNA聚合酶有三种(RNA聚合

酶Ⅰ、Ⅱ、Ⅲ),分别转录不同种类的RNA。

2.转录过程

⑴原核生物的转录过程转录全过程均需RNA聚合酶催化。

①起始过程需核心酶,由σ亚基辨认起始点,被辨认的DNA区段是-35区。在这一区段酶与模板的结合松弛,酶移向-10区并跨入转录起始点。

②延长过程的核苷酸聚合仅需核心酶催化。

③终止分依赖ρ因子的和不依赖ρ因子的转录终止。

a.依赖ρ因子的转录终止:结合后ρ因子和RNA聚合酶都可发生构象变化,从而使RNA聚合酶停顿,解螺旋酶的活性

使DNA/RNA杂环双链拆离,利于产物从转录复合物中释放。

b.不依赖ρ因子的转录终止:DNA模板上靠近终止出有些特殊碱基序列,转录出RNA后,RNA产物形成特殊结构来

终止转录。转录产物的3'-末端,常发现有多个连续的U。连续的U区5'-端上游的一级结构可形成茎环或发卡形式的二级结构。

⑵真核生物的转录过程

①转录起始前的-25bp区段多有典型的TA TA序列,称为TATA box,通常认为这就是启动子的核心序列。此外DNA

分子上还具有其他可影响转录的顺式作用元件,以及能直接、间接辨认和结合转录上游区段的蛋白质——反式作用

因子,其中直接或间接结合RNA聚合酶的为转录因子。真核生物RNA聚合酶不与DNA分子直接结合,而需依靠众多的转录因子。

②②真核生物的转录延长过程与原核生物大致相似。

③真核生物mRNA有polyA尾巴结构,是转录后才加进去的。转录不是在polyA位置上终止,而是超过数百甚至上千核苷酸后才停顿。

二.翻译

1.原核生物与真核生物核蛋白体的组成不同

2真核生物肽链合成起始过程与原核生物相似但更复杂。真核生物有不同的翻译起始成分,起始因子种类更多,起始甲硫氨酸不需甲基化等。成熟的真核mRNA有5'帽子和3'polyA尾结构。

3.真核生物肽链合成的延长过程与原核生物基本相似,只是有不同的反应体系和延长因子。

4.真核生物的翻译终止过程

与原核生物相似。

三.表达调控原核基因表达调控与真核存在很多共同之处。但因原核生物没有细胞核,亚细胞结构及其基因组结构要比

真核简单得多。

1.原核基因转录调节特点

⑴σ因子识别特异启动序列,不同的σ因子决定特异基因的转录激活,决定mRNA,rRNA和tRNA基因的转录。

⑵除个别基因外,原核生物绝大多数基因按功能相关性成簇的串联、密集于染色体上,共同组成一个转录单位——操

纵子。一个操纵子只含一个启动序列及数个可转录的编码基因。

2.真核细胞结构及基因组结构远比原核复杂,其基因表达调控机制发生在染色体活化、基因转录激活、转录后加工、翻

译及翻译后加工等水平的调节事件也要复杂的多

四.DNA的空间结构

1.原核生物DNA的高级结构绝大部分原核的DNA都是共价封闭的环状双螺旋分子。在细胞内进一步盘绕,并形成类

核结构,以保证其以较致密的形式存在于细胞内。在细菌基因组中,超螺旋可以相互独立存在。

2.真核生物DNA的存在形式在真核生物,DNA以非常致密的形式存在于细胞核中。在细胞周期的大部分时间里以分散

的染色质形式出现在细胞分裂期形成高度组织有序的染色体。

医学分子生物学讲义复习重点

分子生物学 1.ORF 答:ORF是open reading frame的缩写,即开放阅读框架。在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。 2.结构基因 答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。 3.断裂基因 答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或 RNA 的核酸序列,还包括保证转录所必需的调控序列、位于编码区 5 ' 端与 3 ' 端的非编码序列和内含子。真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。 4.选择性剪接 答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,而最终的蛋白产物会表现出不同或者是相互拮抗的功能和结构特性,或者,在相同的细胞中由于表达水平的不同而导致不同的表型。 5.C值 答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。 6.生物大分子 答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸、脂类、糖类。 7.酚抽提法 答:酚抽提法最初于1976年由Stafford及其同事提出,通过改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破碎细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,根据不同需要进行透析或沉淀处理获得所需的DNA样品。 8.凝胶过滤层析 答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。 9.多重PCR 答:多重PCR技术是在一个反应体系中加入多对引物,同时扩增出多个核酸片段,由于每对引物扩增的片段长度不同,可用琼脂糖凝胶电泳或毛细管电泳等技术加以鉴别。 10.荧光域值 答:荧光阈值是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,一般荧光阈值的设置是基线荧光信号的标准偏差的10倍。 11.退火 答:温度突然降至37-58℃时,变性的DNA单链在碱基互补的基础上重新形成氢

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学

分子标志物:指可以反映机体生理、病理状态的核酸、蛋白质(多肽)、代谢产物等生物分子。 DNA结构: DNA的二级结构是双螺旋结构:DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,两链以-脱氧核糖-磷酸-为骨架,以右手螺旋方式绕同一公共轴盘。螺旋直径为2nm,形成大沟(major groove) 及小沟(minor groove)相间。碱基垂直螺旋轴居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T;G=C)。相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。 DNA的三级结构是超螺旋结构:DNA双螺旋链再盘绕即形成超螺旋结构。正超螺旋(positive super coil)盘绕方向与DNA双螺旋方同相同负超螺旋(negative super coil)盘绕方向与DNA双螺旋方向相反。 原核生物DNA的是环状超螺旋结构 核小体(nucleosome) 是染色质的基本组成单位,由DNA和蛋白质构成。组蛋白:H1、H2A、H2B、H3、H4 RNA结构: 一级结构:核苷酸连接方式同DNA。RNA的一级结构即指核苷酸的连接方式、数量和排列 方式。 主要结构特征:①含有稀有碱基(修饰碱基);②不遵守Char gaff原则;③多数为单链分子,形成链内双链二级结构(发夹结构);④碱基配对:A-U,G-C。 t RNA二级结构:DHU环反密码环额外环 TΨC环氨基酸臂 t RNA的三级结构是倒L型 t RNA的功能:活化、搬运氨基酸到核糖体,参与蛋白质的翻译。 m RNA的结构与功能: 1)基本特点:含量低(约占总RNA的1%~5%);种类多(上万种);分子大小差异大(几百~约2万个核苷酸);半衰期短。 2)结构特点:编码区——决定蛋白质的一级结构,包括起始密码子、终止密码子、外显子。非编码区——与蛋白质生物合成的调控有关,包括5′非编码区(帽结构、核蛋白体识别结合位点等)、3′非编码区(多聚腺苷酸尾)、间隔序列(内含子)。大多数真核m RNA 的5′末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C′2甲基化,形成帽子结构m7GpppN-。大多数真核m RNA的3′末端有一个多聚腺苷酸(poly A)结构,称为多聚A尾3)功能:作为蛋白质合成的模板。 帽子结构和多聚A尾的功能:m RNA核内向胞质的转位、m RNA的稳定性维系、翻译起始的调控 增色效应:核酸分子在变性过程中,其溶液的A260会增大,此现象称为增色效应。 融解温度(Tm):DNA分子热变性程度达到50%时所对应的温度,称为融解温度或解链温度。 Tm的影响因素: ①DNA分子的碱基组成Tm与DNA分子碱基组成的关系 AT富集区先解链,GC富集区后解链。 ②溶液的离子强度一般情况下,在低离子强度溶液中,DNA的Tm较低, 且解链温度范围较宽;在高离子强度溶液中,Tm较高,解链温度范围较窄。 ③ pH 一般情况下,核酸溶液的pH在5~9范围内,DNA的Tm变化不明显;当溶液的pH<4或>11时,DNA的Tm会降低。

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学--名词解释(全)

1. 半保留复制(semiconservative replication):DNA复制时,以亲代DNA的每一股做模板,以碱基互补配对原则,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为半保留复制。 2.复制子replicon:由一个复制起始点构成的DNA复制单位。 57. 复制起始点(Ori C)DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸序列顺序的片段,即复制起始点。 24.(35)复制叉(replication fork)是DNA复制时在DNA链上通过解旋、解链和SSB蛋白的结合等过程形成的Y字型结构称为复制叉。 3. Klenow 片段klenow fragment:DNApol I(DNA聚合酶I)被酶蛋白切开得到的大片段。 4. 外显子exon、extron:真核细胞基因DNA中的编码序列,这部分可转录为RNA,并翻译成蛋白质,也称表达序列。 5.(56)核心启动子core promoter:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区。(Hogness区) 6. 转录(transcription):是在DNA的指导下的RNA聚合酶的催化下,按照硷基配对的原则,以四种核苷酸为原料合成一条与模板DNA互补的RNA 的过程。 7. 核酶(ribozyme):是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。 8.(59)信号肽signal peptide:常指新合成多肽链中用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。 9.顺式作用元件(cis-acting element):真核生物DNA中与转录调控有关的核苷酸序列,包括增强子、沉默子等。 10.错配修复(mismatch repair,MMR):在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式;主要用来纠正DNA双螺旋上错配的碱基对,还能修复一些因复制打滑而产生的小于4nt的核苷酸插入或缺失。修复的过程是:识别出正确的链,切除掉不正确的部分,然后通过DNA聚合酶III和DNA连接酶的作用,合成正确配对的双链DNA。 直接修复direct repair:是将被损伤碱基恢复到正常状态的修复。有三种修复方式:1光复活修复2、O6-甲基鸟嘌呤-DNA甲基转移酶修复3单链断裂修复。

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学基础知识要点

Northern blot:是DNA/RNA的杂交,它是一项用于检测特异性RNA的技术,RNA混合物首先按照它们的大小和相对分子量通过变性琼脂糖凝胶电泳加以分离,凝胶分离后的RNA 通过southern印迹转移到尼龙膜或硝酸纤维素膜上,再与标记的探针进行杂交反应,通过杂交结果分析可以对转录表达进行定量或定性。它是研究基因表达的有效手段。与Southern blot 相比,它的条件更严格些,特别是RNA容易降解,前期制备和转膜要防止Rnase的污染。实验步骤:1.用具的准备2.用RNAZaP去除用具表面的RNase酶污染3.制胶4. RNA样品的制备5.电泳6.转膜7.探针的制备8.探针的纯化及比活性测定9.预杂交10.探针变性11.杂交12.洗膜13.曝光14.去除膜上的探针15.杂交结果 半定量PCR要求比普通PCR更严格一些,另外往往通过转膜后的同位素杂交检测或凝胶成像后的灰度测定比较样品间的差异。 半定量RT-PCR一般是在没有条件做实时PCR 的情况下使用,用于测定体内目的基因的表达增加减少与否,即通过目的基因跑出来的电泳带与管家基因(如β-actin)的电泳带的相对含量比较,观测目的基因表达增减,另外还要做一个β-actin的内参照对照。 实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1.实时荧光定量PCR无需内标 2.内标对实时荧光定量PCR的影响 Sybr green(荧光染料掺入法)和Taqman probe(探针法) 检测两种蛋白质相互作用方法 1共纯化、共沉淀,在不同基质上进行色谱层析 2蛋白质亲和色谱基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。 3免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高4 Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 1.酵母双杂交 2.GSTpull-down实验 3.免疫共沉淀 4.蛋白质细胞内定位 RACE是基于PCR技术基础上由已知的一段cDNA片段,通过往两端延伸扩增从而获得完整的3'端和5'端的方法 1.此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有 利用价值的信息 2.节约了实验所花费的经费和时间。 3.只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长 基因特异性引物(GSPs)应该是: 23-28nt 50-70%GC Tm值≥65度,Tm值≥70度可以获得好的结果 注意事项 1.cDNA的合成起始于polyA+RNA。如果使用其它的基因组DNA或总RNA,背景会很高

分子生物学与基因工程复习资料

分子生物学与基因工程 绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代” 3、分子生物学与基因工程的专业地位与作用。 核酸概述 1、核酸的化学组成 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖;

(2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链; (4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。

分子生物学总结完整版

分子生物学总结完整版 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、 DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、 Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、 C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分

9、 DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为 3、4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0、34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列1 1、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成: 由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复

分子生物学期末考试重点

1.定义重组DNA技术 将不同的DNA片段按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 2.说出分子生物学的主要研究内容 1.DNA重组技术 2.基因表达研究调控 3.生物大分子的结构功能研究 4.基因组、功能基因组与生物信息学研究 3.简述DNA的一、二、三级结构 一级:4种核苷酸的连接及排列顺序,表示了该DNA分子的化学成分 二级:2条多核苷酸连反向平行盘绕所形成的双螺旋结构 三级:DNA双螺旋进一步扭曲盘绕所形成的特定的空间结构 4.原核生物DNA具有哪些不同于真核生物DNA的特征? ①DNA双螺旋是由2条互相平行的脱氧核苷酸长链盘绕而成,多核苷酸的方向由核苷酸间的磷酸二酯键的走向决定,一条是5---3,另一条是3---5②DNA双螺旋中脱氧核糖和磷酸交替连接,排在外侧构成基本骨架,碱基排在内侧③两条链上的碱基通过氢键相结合,形成碱基对 5.DNA双螺旋结构模型是由谁提出的?沃森和克里克 6.DNA以何种方式进行复制,如何保证DNA复制的准确性? 线性DNA的双链复制:将线性复制子转变为环状或者多聚分子,在DNA末端形成发卡式结构,使分子没有游离末端,在某种蛋白质的介入下在真正的末端上启动复制。环状DNA 复制:θ型、滚环型、D型 ①以亲代DNA分子为模板进行半保留复制,复制时严格按照碱基配对原则 ②DNA聚合酶I 非主要聚合酶,可确保DNA合成的准确性

③DNA修复系统:错配修复、切除修复、重组修复、DNA直接修复、SOS系统 7.简述原核生物DNA复制特点 只有一个复制起点,复制起始点上可以连续开始新的DNA复制,变现为虽只有一个复制单元,但可以有多个复制叉 8.真核生物DNA的复制在哪些水平上受到调控? 细胞生活周期水平调控;染色体水平调控;复制子水平调控 9.细胞通过哪几种修复系统对DNA损伤进行修复? 错配修复,恢复错配;切除修复,切除突变的碱基和核苷酸片段;重组修复,复制后的修复;DNA直接修复,修复嘧啶二聚体;SOS系统,DNA的修复,导致变异 10.什么是转座子?分为哪些种类? 是存在于染色体DNA上可自主复制和移动的基本单位。可分为插入序列和复合型转座子11.什么是编码链?什么是模板链? 与mRNA序列相同的那条DNA链称为编码链,另一条根据碱基互补配对原则指导mRNA 合成DNA链称为模板链 12.简述RNA的种类及其生物学作用 mRNA:编码了一个或多个多肽链序列。 tRNA:把mRNA上的遗传信息变为多肽中的氨基酸信息。 rRNA:是核糖体中的主要成分。 hnRNA:由DNA转录生成的原始转录产物。 snRNA:核小RNA,在前体mRNA加工中,参与去除内含子。 snoRNA:核仁小RNA,主要参与rRNA及其它RNA的修饰、加工、成熟等过程。scRNA:细胞质小RNA在蛋白质合成过程起作用。

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。 6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面 存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。(3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA 链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。

分子生物学终极复习资料汇总

《分子生物学》复习题 1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定 形态、结构特征的物体。携带很多基因的分离单位。只有在细胞分裂中才可见的形态单位。 2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA 组成的复合结构,因其易被碱性染料染色而得名。 3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组 成 4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为C值矛盾 5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中, 一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制 6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基 因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的 合成是不连续的,故称半不连续复制。 8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引 物(Primer)。实质是以DNA为模板的RNA聚合酶。 9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。 10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA 链上的邻近顺反子所界定。 11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。 12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。 13、增强子:能强化转录起始的序列 14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。 (即核心酶+σ因子) 15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。 16、核酶:是一类具有催化功能的RNA分子 17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。 18、SD序列:mRNA中用于结合原核生物核糖体的序列。30S亚基通过其

分子生物学习题与答案

第0章绪论 一、名词解释 1.分子生物学 2.单克隆抗体 二、填空 1.分子生物学的研究内容主要包含()、()、()三部分。 三、是非题 1、20世纪60年代,Nirenberg建立了大肠杆菌无细胞蛋白合成体系。研究结果发现poly(U)指导了多聚苯丙氨酸的合成,poly(G)指导甘氨酸的合成。(×) 四、简答题 1. 分子生物学的概念是什么? 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 3. 分子生物学研究内容有哪些方面? 4. 分子生物学发展前景如何? 5. 人类基因组计划完成的社会意义和科学意义是什么? 6.简述分子生物学发展史中的三大理论发现和三大技术发明。 7. 简述分子生物学的发展历程。 8. 二十一世纪生物学的新热点及领域是什么? 9. 21世纪是生命科学的世纪。20世纪后叶分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。试阐述分子生物学研究领域的三大基本原则,三大支撑学科和研究的三大主要领域? 答案: 一、名词解释 1.分子生物学:分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究。

2.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 二、填空 1.结构分子生物学,基因表达与调控,DNA重组技术 三、是非题 四、简答题 1. 分子生物学的概念是什么? 答案: 有人把它定义得很广:从分子的形式来研究生物现象的学科。但是这个定义使分子生物学难以和生物化学区分开来。另一个定义要严格一些,因此更加有用:从分子水平来研究基因结构和功能。从分子角度来解释基因的结构和活性是本书的主要内容。 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 3. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来

基础分子生物学(生物科学专业用)

基础分子生物学 三、选择题 1、RNA 合成的底物是------ ---------。 A dATP, dTTP , dGTP , d CTP BATP, TTP , GTP , CTP C ATP ,GTP, CTP,UTP D 、GTP, CTP,UTP,TTP 2.模板DNA的碱基序列是3′—TGCAGT—5′,其转录出RNA碱基序列是:A.5′—AGGUCA—3′ B.5′—ACGUCA—3′ C.5′—UCGUCU—3′ D.5′—ACGTCA—3′ E.5′—ACGUGT—3′ 3、转录终止必需。 A、终止子 B、ρ因子 C、DNA和RNA的弱相互作用 D上述三种 4、在转录的终止过程中,有时依赖于蛋白辅因子才能实现终止作用,这种蛋白辅因子称为---- -----。 A σ因子 B ρ因子 C θ因子 D IF因子 5.识别RNA转转录终止的因子是: A.α因子 B.β因子 C.σ因子 D.ρ因子 E.γ因子 6.DNA复制和转录过程有许多异同点,下列DNA复制和转录的描述中错误的是: A.在体内以一条DNA链为模板转录,而以两条DNA链为模板复制 B.在这两个过程中合成方向都为5′→3′ C.复制的产物通常情况下大于转录的产物 D.两过程均需RNA引物 E.DNA聚合酶和RNA聚合酶都需要Mg2+ 7、核基因mRNA 的内元拼接点序列为。 A、AG……GU B、GA……UG C、GU……AG D、UG……GA 8、真核生物mRNA分子转录后必须经过加工,切除---------,将分隔开的编码序列连接在一起,使其成为蛋白质翻译的模板,这个过程叫做RNA的拼接。 A 外显子 B 启动子 C 起始因子 D 内含子 9、在真核生物RNA polⅡ的羧基端含有一段7个氨基酸的序列,这个7肽序列为Tyr-Ser-Pro-Thr-Ser-Pro-Ser ,被称作。 A C末端结构域 B 帽子结构 C Poly(A)尾巴 D 终止子 10.真核生物RNA的拼接需要多种snRNP的协助,其中能识别左端(5’)拼接点共有序列的snRNP 是: A.U1 snRNP B.U2 snRNP C.U5 snRNP E.U2 snRNP+ U5 snRNP 四、是非题 1、所有的启动子都位于转录起始位点的上游。( X ) 2、RNA分子也能像蛋白酶一样,以其分子的空间构型产生链的断裂和和合成所必须的微环境。(对) 3、真核生物的mRNA中的poly A 尾巴是由DNA编码,经过转录形成的。( X ) 4、在大肠杆菌RNA聚合酶中,β亚基的主要功能是识别启动子。( X ) 5、所有起催化作用的酶都是蛋白质。( X ) 五、问答题

分子生物学试验基础知识

分子生物学实验基础知识 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(trans formation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Ap r、抗四环素Tc r等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。 (二)工具酶

相关文档
相关文档 最新文档