文档库 最新最全的文档下载
当前位置:文档库 › 乙酸乙酯皂化、bz震荡反应思考题

乙酸乙酯皂化、bz震荡反应思考题

乙酸乙酯皂化、bz震荡反应思考题
乙酸乙酯皂化、bz震荡反应思考题

乙酸乙酯皂化反应

1.为什么由0.0100mol·dm-3的NaOH溶液和0.0100mol·dm-3的CH3COONa溶液测得的

电导率可以认为是κ0、κ∞?

答:乙酸乙酯皂化反应中,反应刚开始时溶液中能导电的离子只有OH-、Na+和H+,故可以认为0.0100mol·dm-3的NaOH溶液的电导率可以认为是κ0。

乙酸乙酯皂化反应结束时,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,溶液中能导电的离子有H+、OH-、Na+和CH3COO-。故可以认为

0.0100mol·dm-3的CH3COONa溶液的电导率κ∞。

2.为何本实验要在恒温条件下进行?我们采用哪些手段来保证本实验在恒温条件下

进行?

答:电导率是一个和温度有关的物理量,所以需要恒温。

首先给反应器加一个恒温水套保证反应在恒温环境中进行;然后反应开始前先将反应物在测量温度下恒温十分钟。

3.使用电导电极应注意什么?

答:(1)电导电极在使用前要先用去离子水冲洗干净,然后用待测溶液冲洗三遍。

(2)电导电极在不用时应该浸在去离子水中,避免干燥。

4.如果两种反应物起始浓度不相等,试问能否用本实验方法来计算k值?

答:可以。计算方法略。

5.如果NaOH和乙酸乙酯溶液为浓溶液时,能否用此法求k值,为什么?

答:不可以。只有在稀溶液中,我们才能认为乙酸乙酯皂化反应的产物是完全水解的。

BZ化学振荡反应

1、影响诱导期和振荡周期的主要因素有哪些?

答:温度、催化剂。

2、产生化学振荡需要满足的条件是什么?

答:反应必须远离平衡态,化学振荡只有在远离平衡态,具有很大的不可逆程度时才能发生;反应历程中应包含有自催化的步骤,产物之所以能加速反应,因为是自催化反应;体系必须有两个稳态存在,即具有双稳定性。

3、本实验用什么方法来观察化学震荡反应的发生?

答:测定离子选择性电极上的电势(U)随时间(t)变化的U-t曲线来观察B-Z反应的振荡现象的发生。

4、简述丙二酸在溶有硫酸铈铵的酸性溶液中被溴酸钾氧化的化学震荡反应发生的过程?并指出化学震荡反应发生的的关键步骤。

答:过程A (1) Br-+BrO3-+2H+→HBrO2+HBrO

(2) Br-+HBrO2+H+→2HBrO

过程B (3) HBrO2+BrO3-+H+→2BrO2.+H2O

(4) BrO2.+Ce3++H+→HBrO2+Ce4+

(5) 2HBrO2→BrO3-+H++HBrO

过程C (6) 4Ce4++BrCH(COOH)2+H2O+HBrO 2Br-+4Ce3++3CO2+6H+

过程A是消耗Br-,产生能进一步反应的HBrO2,HBrO为中间产物。

过程B是一个自催化过程,在Br-消耗到一定程度后,HBrO2才按式(3)、(4)进行反应,并使反应不断加速,与此同时,Ce3+被氧化为Ce4+。HBrO2的累积还受到式(5)的制约。

过程C为丙二酸被溴化为BrCH(COOH)2,与Ce4+反应生成Br-使Ce4+还原为Ce3+。

过程C对化学振荡非常重要,如果只有A 和B,就是一般的自催化反应,进行一次就完成了,正是C的存在,以丙二酸的消耗为代价,重新得到Br-和Ce3+,反应得以再启动,形成周期性的振荡。

5、丙二酸在溶有硫酸铈铵的酸性溶液中被溴酸钾氧化的化学震荡反应什么条件下结束?

答:丙二酸耗尽后,无法重新得到Br-和Ce3+使反应得以再启动,化学震荡反应结束。

乙酸乙酯皂化反应实验报告

乙酸乙酯皂化反应速度常相数的测定 一、实验目的 1.通过电导法测定乙酸乙酯皂化反应速度常数。 2.求反应的活化能。 3.进一步理解二级反应的特点。 4.掌握电导仪的使用方法。 二、基本原理 乙酸乙酯的皂化反应是一个典型的二级反应: 325325CH COOC H OH CH COO C H OH --+??→+ 设在时间t 时生成浓度为x ,则该反应的动力学方程式为 ()()dx k a x b x dt - =-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为 2()dx k a x dt =- (8-2) 积分上式得: 1() x k t a a x =?- (8-3) 由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。如果k 值为常数,就可证明反应是二级的。通常是作 () x a x -对t 图,如果所的是直线,也可证明反应是二级 反应,并可从直线的斜率求出k 值。 不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。本实验用电导法测定x 值,测定的根据是: (1) 溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。 (2) 在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率

就等于组成溶液的电解质的电导率之和。 依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是 强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。如果是在稀溶液下进行反应,则 01A a κ= 2A a κ∞= 12()t A a x A x κ=-+ 式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数; 0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。由此三 式可以得到: 00( )t x a κκκκ∞ -=- (8-4) 若乙酸乙酯与NaOH 的起始浓度相等,将(8-4)式代入(8-3)式得: 01t t k ta κκκκ∞ -= ?- (8-5) 由上式变换为: 0t t kat κκκκ∞-= + (8-6) 作0~ t t t κκκ-图,由直线的斜率可求k 值,即 1m ka = ,1k ma = 由(8-3)式可知,本反应的半衰期为: 1/21 t ka = (8-7) 可见,两反应物起始浓度相同的二级反应,其半衰期1/2t 与起始浓度成反比,由(8-7)式可知,此处1/2t 亦即作图所得直线之斜率。 若由实验求得两个不同温度下的速度常数k ,则可利用公式(8-8)计算出反应的活化能a E 。

乙酸乙酯的结构特点和主要化学性质

酯 学案 宋清冬 学习目标:乙酸乙酯的结构特点和主要化学性质。乙酸乙酯水解的基本规律。 温故知新:酯的定义。写出乙酸与乙醇反应的方程式。 学习内容: 一、酯 1、酯的一般通式: 。饱和一元羧酸和饱和一元醇形成的酯的分子式为 ,所以这种酯与碳原子数相同的饱和一元羧酸互为同分异构体。 2、酯的通性 物理性质:酯 溶于水,易溶于 ,密度比水 ,低级酯有果香味。这种特殊的性质往往被用来鉴别酯类化合物。 3、酯的命名:酯类化合物是根据生成酯的酸和醇的名称来命名的,例如: 4、酯的化学性质: 乙酸乙酯在 条件下完全水解; 乙酸乙酯在 条件下部分水解; 乙酸乙酯仅在加热的条件下不水解或几乎不水解。 总之在有酸(或碱)存在并加热的条件下,酯类水解生成相应的酸(或盐)和醇。 RCOOR ` + H 2O RCOOR ` + H 2O RCOOH + NaOH → 或合并为 二、酯化反应 1、一元羧酸与一元醇之间的酯化反应 CH 3COOH + HOC 2H 5 2、一元羧酸与多元醇之间的酯化反应 2CH 3COOH + CH 2OH CH 2OH 3、多元羧酸与一元醇之间的酯化反应 COOH COOH + 2CH 3CH 2OH 三、思考交流 1.为什么酒存放时间越久越香? 2.喝醋不能解酒? 3、日常生活中,我们经常使用热的纯碱水溶液(显碱性)洗涤炊具上的油污,分析这是利用了什么原理? 当堂练习 1.下列分子式只能表示一种物质的是 A.C 3H 7Cl B.CH 2Cl 2 C.C 2H 6O D.C 2H 4O 2 2.下列基团:-CH 3、-OH 、-COOH 、-C 6H 5,相互两两组成的有机物有 A.3种 B.4种 C.5种 D.6种 3、尼泊金甲酯可在化妆品中作防腐剂。结构简式为 , 下列说法中不正确的是 A 、该物质属于芳香烃 B 、该物质的分子式为C 8H 8O 3 C 、该物质能够和FeCl 3反应,使溶液呈紫色 D 、在一定条件下,1mol 该物质最多能和2molNaOH 反应 4.下面四种变化中,有一种变化与其他三种变化类型不同的是: A .CH 3CH 2OH + CH 3COOH CH 3COOCH 2CH 3 + H 2O B .CH 3CH 2OH 浓硫酸 170℃ CH 2=CH 2↑+H 2O C .2CH 3CH 2OH 浓硫酸 140℃ CH 3CH 2OCH 2CH 3 + H 2O D. CH 3CH 2OH + HBr CH 3CH 2Br + H 2O 5. 甲组中的 能跟乙组中的所有物质发生反应,乙组中的 也能跟甲组的所有物质发生反应 6、图为实验室制乙酸乙脂的装置。 1)在大试管中配制一定比例的乙醇、乙酸和浓H 2SO 4混合液的方法为: 然后轻轻的振荡试管,使之混合均匀。 2)装置中通蒸汽的导管要插在饱和Na 2CO 3溶液的液面以上,不能插在溶液中,目的是 3)浓H 2SO 4的作用: (1) (2) 4)饱和Na 2CO 3的作用:(1) (2) 5)试管中加入沸石的作用: 6)实验室生成的乙酸乙脂,其密度比水 (填“大”或“小”), 有 的气味。 浓H 2SO 4

BZ振荡反应

BZ振荡反应 刘恺 1120123036 一、实验目的 (1)了解BZ(Belousov-Zhabotinski)反应的基本原理。 (2)观察化学振荡现象。 (3)练习用微机处理实验数据和作图。 二、实验原理 化学振荡:反应系统中,某些物理量(如某组分浓度)随时间做周期性变化。 BZ体系:溴酸盐、有机物在酸性条件以及在有(或无)金属离子催化剂作用下构成的体系。 BZ振荡反应机理(FKN机理): 总反应:(A)2H++2Br0 3-+2CH 2 (COOH) 2 →2BrCH(COOH) 2 +3CO 2 +4H 2 O 过程(1):(B)BrO 3-+Br-+H+→HBrO 2 +HOBr (C)HBrO 2 +Br-+H+→2HOBr 过程(2):(D)BrO 3-+HBrO 2 +H+→2BrO 2 +H 2 O (E)BrO 2+Ce3++H+→HBrO 2 +Ce4+ (F)2HBrO 2→BrO 3 -+HOBr+H+ Br-再生过程(G)4Ce4++BrCH(COOH) 2+H 2 O+HOBr→2Br-+4Ce3++3CO 2 +6H+ 体系中存在着两个受溴负离子浓度控制的过程(1)与(2)。当溴负离子含量足够高时,主要发生过程(1),其中步骤B是速率控制步骤。当溴负离子含量低时,主要发生过程(2),其中D是速率控制步骤。如此,体系在过程(1)与(2)之间往复振荡。 反应进行时,系统中Br-、HBrO 2 、Ce3+、Ce4+的浓度均随时间做周期性变化。实验中,可选用溴离子选择电极测定Br-,用铂丝电极测定Ce4+、Ce3+随时间变化。 从加入硫酸铈铵到体系开始振荡的时间为t 诱 ,诱导期与反应速率成反比, 即1/t 诱正比于k=Aexp(-E 表 /RT),并且有, Ln(1/t 诱)=LnA-E 表 /RT. 作图Ln(1/t 诱)-1/T,根据斜率可求出表观活化能E 表。 三、仪器与试剂 BZ反应数据采集接口系统、微型计算机、恒温槽、反应器、磁力搅拌器、丙二酸(0.45mol/L)、溴酸钾(0.25mol/L)、硫酸(3.00mol/L)、硫酸铈铵(4×10-3mol/L). 四、实验步骤 (1)恒温槽水浴接通电源,设置温度为30℃。用去离子水清洗反应器、铂电极、参比电极。检查仪器连线(铂电极-BZ反应数据采集接口正极,参比电极-BZ反应数据采集接口负极,温度传感器探头-恒温水浴)。 (2)启动微机,接通BZ反应数据采集接口系统电源,进入BZ振荡软件主菜单。(3)文件-新建;实验-设置参数(使用默认值);实验-反应记录。(4)取8ml 硫酸铈铵溶液于锥形瓶中,放于恒温槽中恒温。(待恒温槽温度稳定在设置温度

乙酸乙酯皂化反应实验报告(详细参考)

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应 姓名成绩 班级学号 同组姓名实验日期 指导教师签字批改日期年月日

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为 (1)式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时

的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。 乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得: 重新排列得: (3) 因此,只要测不同时间溶液的电导值G t和起始溶液的电导值G0,然后 以G t对作图应得一直线,直线的斜率为,由此便求出某温 度下的反应速率常数k值。由电导与电导率κ的关系式:G=κ代入(3)式得: (4) 通过实验测定不同时间溶液的电导率κt和起始溶液 的电导率κ0,以κt,对作图,也得一直线,从直线的斜率也可求出反应速率数k值。如果知道不同温度下的反应速率常数k(T2)和k(T1),根据Arrhenius公式,可计算出该反应的活化能E和反应半衰期。 (5)

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法; 2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数; 3.熟悉电导仪的使用。 二、实验原理 (1)速率常数的测定 乙酸乙酯皂化反应时典型的二级反应,其反应式为: CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OH t=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0 速率方程式 2kc dt dc =- ,积分并整理得速率常数k 的表达式为: t 0t 0c c c c t 1k -?= 假定此反应在稀溶液中进行,且CH 3COONa 全部电离。则参加导电离子有Na + 、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反 应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。 令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则: t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:

∞+-?= κκκκt kc 1t 00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对t t 0κκ-作图,可得一直线,则直线斜率0 kc 1 m = ,从而求得此温度下的反应速率常数k 。 (2)活化能的测定原理: )11(k k ln 2 1a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。 三、仪器与试剂 电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支 氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤 1.标定NaOH 溶液及乙酸乙酯溶液的配制 计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。计算出配制与NaOH 等浓度的乙酸乙酯溶液100mL 所需化学纯乙酸乙酯的质量,根据不同温度下乙酸乙酯的密度计算其体积(乙酸乙酯的取样是通过量取一定量的体积),于ml 100容量瓶中加入约3/2容积的去离子水,然后用1mL 移液管吸取所需的乙酸乙酯加入容量瓶中,加水至刻度,摇匀。 2.调节恒温水浴调节恒温水浴温度为30℃1.0±℃。 3.电导率0K 的测定 用mL 20移液管量取去离子水及标定过的NaOH 溶液各mL 20,在干燥的100mL 烧杯中混匀,用少量稀释后的NaOH 溶液淋洗电导电极及电极管3次,装入适量的此NaOH 溶液于电极管中,浸入电导电极并置于恒温水浴中恒温。将

BZ振荡实验

BZ振荡实验 一、实验目的及要求 1.了解BZ(Belousov-Zhobotinski)振荡反应的基本原理,观察BZ化学振荡 实验。 2.了解化学振荡反应中的电势测定方法,通过测定电位-时间曲线求得化学振荡反应的表观活化能。 二、实验原理 振荡反应 化学振荡是指反应系统中的某些量(如某组分的浓度)随时间做周期性的变化。BZ振荡实验是由贝诺索夫(Belousov)和柴波廷斯基(Zhobotinski)发现和发展 起来的,是指在酸性介质中,有机物在有金属离子催化的条件下被溴酸盐氧化,某些组分的浓度发生周期性的变化。 大量实验研究表明,化学振荡反应的发生必须满足三个条件:(1)必须是远离平衡态体系;(2)反应历程中含有自催化步骤;(3)体系必须具有双稳态性,即可在稳态间来回振荡。 机理 菲尔德(Field)、科罗什(Koros)、诺伊斯(Noyes)三位科学家对BZ振荡反应 实验进行了解释,称为FKN机理。下面以BrO 3~Ce4+~CH 2 (COOH) 2 ~H 2 SO 4 体系为例说 明。在该体系中发生的总反应为: 该反应的的核心内容是系统中存在受Br-浓度控制的A和B两个过程。具体的说, 当Br-的浓度高于某个浓度(这个浓度被称为临界浓度C 临)时,BrO 3 -被还原成Br 2 , 即发生A过程。 过程A: (注:HOBr产生后立即被丙二酸消耗,反应过程如下: 当Br-的浓度低于临界浓度时,或者说Br-的浓度较低时,Ce3+被氧化为Ce4+,发生B过程。 过程B:

(自由基反应瞬间完成) Br-再生过程: 过程A是消耗Br-并产生能进一步发生反应的HBrO 2 ,HOBr是中间产物,产 生之后立即被丙二酸消耗。 过程B是一个自催化的过程(HBrO 2 充当催化剂),在Br-消耗到一定程度后, HBrO 2 才按③和④进行,并使反应不断加速,与此同时,Ce3+被氧化为Ce4+。 HBrO 2 的累积还受⑤的制约。 ⑥反应为丙二酸被溴化为BrCH(COOH) 2 ,与Ce4+反应生成Br-使Ce4+转化为Ce3+。这个反应使得Br-和Ce3+再生,形成周期振荡,并且控制A过程和B过程发生的离子是Br-。 -的临界浓度 过程A中,慢反应②控制整个A过程的速度,当过程A达到准定态,即υ ①=υ ② ,这时: k 1[BrO 3 -][Br-][H+]2=k 2 [HBrO 2 ][Br-][H+],得:[HBrO 2 ] A =k 1 /k 2 [BrO 3 -][H+]。 过程B中,慢反应③产生的自由基BrO 2 ·立即反应,当反应达到准定态, 即υ ③=υ ⑤ ,这时 k 3[BrO 3 -][HBrO 2 ][H+]=k 5 [HBrO 2 ]2,得:[HBrO 2 ] B =k 3 /k 5 [BrO 3 -][H+]。 观察②反应和③反应,Br-和BrO 3 -均要与HBrO 2 反应,形成竞争反应。当 k 2[HBrO 2 ][Br-][H+]>k 3 [BrO 3 -][HBrO 2 ][H+]时,即k 2 [Br-]>k 5 [BrO 3 -]时,反应②进 行,反应③不能进行。而k 2[Br-]

11乙酸乙酯皂化反应试题

实验十一乙酸乙酯皂化反应 第一题、填空题 1. 乙酸乙酯溶液应在使用前现配,目的是____________________________。 2. 乙酸乙酯皂化反应中,我们将酯加入到NaOH溶液中,而不是反过来操作,目的是__________________________________________。 3. 二级反应的速度常数有K=1/t(a-b)lnb(a-x)/a(b-x)和K=X/a(a-x)·1/t二种形式,条 件分别为__________________________和______________________________。 4.乙酸乙酯皂化反应,K(G0--G t )可表示________________________________。 5.乙酸乙酯皂化反应中,给出了________________________,测定_________________,用_________________与______________________作图处理,求得反应速度常数。 6. 测定乙酸乙酯皂化反应中的实验用水应为。 7. 常时间放置的去离子水内含有。 8. 测量溶液电导值时,须对其恒温,因为____________________,若温度升高,则电导 值_____________________。 9.乙酸乙酯皂化反应中,以K t对(K0 -K t )/t作图,初期点偏离直线的原因是_________________或__________________所致。 10.电导池常数是法得到的。向电导池内加入溶液的量定量加入,因为 11. 电导测量时须使用____电源,目的是防止____________________。 12.电导法测HAc电离常数时,测量KCI溶液电导的目的是_____________________。 13.电导池常数是____________________________法得到的。 14. 若将15℃下配制的饱和硫酸钡溶液用电导法测其25℃时的Ksp,其结果必然 _________理论值。 15. 电导电极上镀有一层铂黑目的是__________________________________,防止__________________________。 16. 电导测量时,若采用直流电将_________________,若采用低频交流电,会使电极__________。 第二题、选择题 1.若将氢氧化钠加入到乙酸乙酯中一半时作为反应起点,不考虑酯的挥发,对所测结果: 有正误差;有负误差;

BZ振荡反应-实验报告

B-Z 振荡反应 实验日期:2016/11/24 完成报告日期:2016/11/25 1 引言 1.1 实验目的 1. 了解Belousov-Zhabotinski 反应(简称B-Z 反应)的机理。 2. 通过测定电位——时间曲线求得振荡反应的表观活化能。 1.2 实验原理 对于以B-Z 反应为代表的化学振荡现象,目前被普遍认同的是Field ,kooros 和Noyes 在1972年提出的FKN 机理,,他们提出了该反应由萨那个主过程组成: 过程A ① ② 式中 为中间体,过程特点是大量消耗。反应中产生的能进一步反应,使 有机物MA 如丙二酸按下式被溴化为BrMA, (A1) (A2) 过程B ③ ④ 这是一个自催化过程,在消耗到一定程度后, 才转化到按以上③、④两式 进行反应,并使反应不断加速,与此同时,催化剂氧化为。在过程B 的③和④中,③的正反应是速率控制步骤。此外, 的累积还受到下面歧化反应的制约。 ⑤ 过程C MA 和使离子还原为,并产生(由)和其他产物。 这一过程目前了解得还不够,反应可大致表达为: ⑥2++f +2+其他产物 式中f 为系数,它是每两个离子反应所产生的数,随着与MA 参加反应 的不同比例而异。过程C 对化学振荡非常重要。如果只有A 和B ,那就是一般的自催化反应或时钟反应,进行一次就完成。正是由于过程C ,以有机物MA 的消耗为代价,重新得到和,反应得以重新启动,形成周期性的振荡。 322BrO Br H HBrO HOBr --+++→+22HBrO Br H HOBr -+++→2 HBrO Br - HOBr 22HOBr Br H Br H O -+++→+2Br MA BrMA Br H -+ +→++32222BrO HBrO H BrO H O -++++342222222BrO Ce H HBrO Ce ++ ++→+Br - 2 HBrO 3Ce + 4Ce + 2 HBrO 232HBrO BrO HOBr H -+ →++BrMA 4Ce + 3Ce + Br - BrMA 4Ce + MA BrMA →Br - 3Ce + 4Ce + Br - BrMA Br - 3Ce +

乙酸乙酯皂化反应实验报告精选doc

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为

(1) 式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。

乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得:

乙酸乙酯皂化反应速率常数的测定

工程学院物理化学实验报告— 实验名称乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.了解用电导法测立乙酸乙酯皂化反应速率常数和活化能: 2.了解二级反应的特点,学会用图解法求二级反应的速率常数; 3.掌握电导率仪的使用方法。 二、实验原理 1.二级反应动力学方程 A 4? B->产物 t=0 a a t=t a-x a-x -dc A/dt=-d(a-x)/dt=dx/dt=k(a-x) (2.9.1) 定积分得:kt=x/a(a-x) (2.9.2) 以x/(a-x)对t作图,若所得为一直线,证明是二级反应,由斜率即可求出反应速率常数k值如果知道不同温度下的速率常数k(T】)和k(T2),按阿仑尼乌斯方程计算岀该反应的活化能Ea?Ea=ln( k(T2)/k(TJ) xRTi T2/ (T2-T J)(2.93) 2.乙酸乙酯皂化反应是二级反应,反应式为: CH3COOC2H5+NaOH T CH3COONa+ C2H5OH t=0a a00 t=t a-x a-x X X (Toe00a a iq)=Ara K QO=A2 * a K l=Ai(a-x)+A2x 由上三式得:x=(Ku-K()a/ (KO-K?)>代入式(2.9.2),得 K=(KO-Kl) /ta(Ki-Kx) (2.9.4) 重新排列得:Z N KO-K O/kat g (2.9.5) 因此,以z对(KO-K.) /t作图为一直线即为二级反应,由斜率即可求岀反应速率常数k值: 由两个不同温度下测得的速率常数k(「)和k(T2),按式(2.93)计算出该反应的活化能Ea.

三、仪器和试剂 1.仪器:数字电导率仪1台,恒温水槽1套,叉形电导管2只,移液管(10ml,胖肚)3根; 2.药品:乙酸乙酯标准溶液(0.0212 mol-dnr3), NaOH标准溶液(0.0212 mol dml。 四、实验步 1.调节恒温槽 调肖温度为25°C,同时电导率仪提前打开预热。 2.Ko的测定 分别取10ml蒸餾水和10ml NaOH标准溶液,加到洁净干燥的叉形管中充分混匀,然后将其置于 25°C恒温槽中,恒温5min,并接上电导率仪,测其电导率值心。 3.z的测定 在另一支叉形管的直支管中加10ml CH3COOC2H5标准溶液,侧支管中加10ml NaOH标准溶液,放入25°C恒温5min后,将其混合均匀并立即记时,同时用该溶液冲洗电极三次,开始测 量其电导率值(由于反应为吸热反应,开始时会有所降低,因此一般从第6min开始读数)当反 应进彳亍6min, 9min, 12min, 15min, 20min, 25min, 30min, 35min, 40min时各测电导率一次,记录电 导率M及时间t。 反应结束后,倾去反应液,洗净电导池及电极,将钳黑电极浸入蒸慵水中。 4.调节恒温槽温度为35°C,重复上述步骤测左其心和M ,但在测圮时是按照进行4min, 6min, 8min. 10min, 12min, 15min> 18min, 21 min, 24 min, 27min, 30min 时测其电导率。 五、数据记录与处理 室温:24.9C 大气压力:100.46 kPa 初始浓度:C CH3COOC2H5=0.0212 mol? dm' C Naon=0.0212mol dnr3 ,

关于制取乙酸乙酯的注意事项

制取乙酸乙酯的要点归纳 乙酸的酯化反应制乙酸乙酯的方程式: CH3COOH + CH3CH2OH === CH3COOC2H5 + H2O (此反应为可逆反应、需加热、浓硫酸作催化剂、吸水剂) 关于药品加入的几种顺序的解释: 第一种:先加入乙酸后缓慢加入浓硫酸,并不断搅拌。再加入乙醇。这个方法的好处是可以减少乙醇的挥发。但由于乙酸中加入浓硫酸后放热,使乙酸产生挥发而损失原料,从工业角度的“最低廉成本制取最大量产物”的原则考虑,乙酸较乙醇贵,所以这个方法可行但一般不取用。 第二种:先加入乙酸和乙醇,之后再缓慢加入浓硫酸,并不断搅拌。这个方法比上面一个安全。但同样会造成原料挥发而产生损失。如果对比起来,第二种方法优于第一种方法。 第三种:最佳的药品加入的顺序:先加乙醇→再加浓硫酸→最后加乙酸→然后加热 原因解释:酯化反应是一个可逆反应。为了提高酯的产量,必须尽量使反应向有利于生成酯的方向进行。一般是使反应物酸和醇中的一种过量。在工业生产中,究竟使哪种过量为好,一般视原料是否易得、价格是否便宜以及是否容易回收等具体情况而定。而在实验室里一般采用乙醇过量的办法,乙醇的质量分数要高,如能用无水乙醇代替质量分数为95%的乙醇效果会更好。催化作用使用的浓硫酸量很少,一般只要使硫酸的质量达到乙醇质量的3%就可完成催化作用,但为了能除去反应中生成的水,应使浓硫酸的用量再稍多一些。由于浓硫酸的密度比乙醇和醋酸和密度都要大。浓硫酸与乙醇混合后会放出大量的热。若先加浓硫酸,由于乙醇的密度小,加入后会浮在液体表面,导致在表面放热,使表面的液体沸腾、溅出,很危险。此种方法当然也会造成乙醇挥发损失,但前面说过,乙醇相对乙酸便宜。所以冰醋酸放到最后加。 注意事项: 1、制备乙酸乙酯时反应温度不宜过高,要保持在60 ℃~70 ℃左右,温度过高时会产生乙醚和亚硫酸等杂质。液体加热至沸腾后,应改用小火加热。事先可在试管中加入几片碎瓷片,以防止液体暴沸。 2、导气管不要伸到Na2CO3溶液中去,防止由于加热不均匀,造成Na2CO3溶液倒吸入加热反应物的试管中。 3、浓硫酸既作催化剂,又做吸水剂。 4、Na2CO3溶液的作用是: (1)饱和碳酸钠溶液的作用是冷凝酯蒸气,减小酯在水中的溶解度(利于分层),吸收蒸出的乙酸和乙醇。 (2)Na2CO3能跟挥发出的乙酸反应,生成没有气味的乙酸钠,便于闻到乙酸乙酯的香味。 5、为有利于乙酸乙酯的生成,可采取以下措施: (1)制备乙酸乙酯时,反应温度不宜过高,保持在60 ℃~70 ℃。不能使液体沸腾。 (2)最好使用冰醋酸和无水乙醇,同时采用乙醇过量的办法。 (3)起催化作用的浓硫酸的用量很小,但为了除去反应中生成的水,浓硫酸的用量要稍多于乙醇的用量。 (4)使用无机盐Na2CO3溶液吸收挥发出的乙酸。

物化实验报告-BZ振荡实验

B-Z振荡反应 2011011743 分1 黄浩 同组人姓名:李奕 实验日期:2013-11-2 提交报告日期:2013-11-8 指导教师:王振华 1 引言 1.1. 实验目的 (1)了解Belousov-Zhabotinski反应(简称B-Z反应)的机理。 (2)通过测定电位——时间曲线求得振荡反应的表观活化能。 1.2 实验原理 所谓化学振荡就是反应系统中某些物理量如组分的浓度随时间作周期性的变化。1958年,Belousov首次报道在以金属铈离子作催化剂的条件下,柠檬酸被溴酸氧化的均相系统可呈现这种化学振荡现象。随后,Zhabotinsky继续了该反应的研究。到目前为止,人们发现了一大批可呈现化学振荡现象的含溴酸盐的反应系统。例如,除了柠檬酸外,还有许多有机酸(如丙二酸、苹果酸、丁酮二酸等)的溴酸氧化反应系统能出现振荡现象,而且所用的催化剂也不限于金属铈离子,铁和锰等金属离子可起同样的作用。后来,人们笼统地称这类反应为B- Z反应。目前,B-Z反应是最引人注目的实验研究和理论分析的对象之一。该系统相对来说比较简单,其振荡现象易从实验中观察到。由实验测得的B-Z体系典型铈离子和溴离子浓度的振荡曲线如图2-11-1所示。 图1. B-Z体系典型铈离子和溴离子浓度的振荡曲线 关于B-Z反应的机理,目前为人们普遍接受的是关于在硫酸介质中以金属铈离子作催化剂的条件下,丙二酸被溴酸氧化的机理,简称为FKN机理。其主要的反应步骤及各步骤的速率或速率系数归纳如下表:

i 222按照FKN 机理,可对化学振荡现象解释如下: 当[Br -]较大时,反应主要按表中的(1)、(2)、(3)进行,总反应为: O H Br H Br BrO 2233365+→+++-- (11) 生成的Br 2按步骤(7)消耗掉。步骤(1)、(2)、(3)、(7)组成了一条反应链,称为过程A ,其总反应为: O H COOH BrCH H COOH CH Br BrO 222233)(33)(32+→++++-- (12) 当[Br -]较小时,反应按步骤(5)和(6)进行,总反应为: O H HBrO Ce H HBrO BrO Ce 2242332232++→+++++- + (13) 步骤(5)为该反应的速度控制步骤((5)的逆反应速率可忽略),这样有 ]][][[] [2352+-=H HBrO BrO k dt HBrO d (14) 上式表明HBrO 2的生成具有自催化的特点,但HBrO 2的增长要受到步骤(4)的限制。(4)、(5)、(6)组成了另一个反应链,称为过程B 。其总反应为: O H Ce HOBr H Ce BrO 24332454++→+++++- (15) 最后Br - 可通过步骤(9)和(10)而获得再生,这一过程叫做C 。总反应为: ++-++++→+++H CO Ce Br O H COOH BrCH Ce HOBr 6342)(423224 (16) 过程A 、B 、C 合起来组成了反应系统中的一个振荡周期。 当[Br -]足够大时,HBrO 2按A 中的步骤(2)消耗。随着[Br -]的降低,B 中的步骤(5)

乙酸乙酯皂化反应

乙酸乙酯皂化反应 一、实验目的 1. 用电导法测定乙酸乙酯皂化反应的反应级数、速率常数和活化能 2. 通过实验掌握测量原理和电导率一的使用方法 二、实验原理 1. 乙酸乙酯皂化反应为典型的二级反应,其反应式为: CH3COOC2H5+NaOH→CH3COONa+C2H5OH A B C D 当C A,0=C B,0其速率方程为: -dC A/dt=kC A2 积分得: 由实验测得不同时间t时的C A 值,以1/C A 对t作图,得一直线,从直线斜率便可求出K的值。 2. 反应物浓度CA的分析 不同时间下反应物浓度C A可用化学分析发确定,也可用物理化学分析法确定,本实验采用电导率法测定。 对稀溶液,每种强电解质的电导率与其浓度成正比,对于乙酸乙酯皂化反应来说,溶液的电导率是反应物NaoH与产物CH3CooNa两种电解质的贡献: 式中:Gt—t时刻溶液的电导率;A1,A2—分别为两电解质的电导率与浓度关系的比例系数。反应开始时溶液电导率全由NaOH贡献,反应完毕时全由CH3COONa贡献,因此 代入动力学积分式中得: 由上式可知,以Gt对 作图可得一直线,其斜率等于 ,由此可求得反应速率常数k。

3. 变化皂化反应温度,根据阿雷尼乌斯公式: ,求出该反应的活化能Ea。 三、实验步骤 1. 恒温水浴调至20℃。 2. 反应物溶液的配置: 将盛有实验用乙酸乙酯的磨口三角瓶置入恒温水浴中,恒温10分钟。用带有刻度的移液管吸取V/ml乙酸乙酯,移入预先放有一定量蒸馏水的100毫升容量瓶中,再加蒸馏水稀释至刻度,所吸取乙酸乙酯的体积 V/ml可用下式计算: 式子:M =88.11, =0.9005, 和NaOH见所用药品标签。 3. G0的测定: (1)在一烘干洁净的大试管内,用移液管移入电导水和NaOH溶液(新配置)各15ml,摇匀并插入附有橡皮擦的260型电导电极(插入前应用蒸馏水淋洗,并用滤纸小心吸干,要特别注意切勿触及两电极的铂黑)赛还塞子,将其置入恒温槽中恒温。 (2)开启DDSJ-308A型电导仪电源开关,按下"ON/OFF"键,仪器将显示产标、仪器型号、名称。按“模式”键选择“电导率测量”状态,仪器自动进入上次关机时的测量工作状态,此时仪器采用的参数已设好,可直接进行测量,待样品恒温10分钟后,记录仪器显示的电导率值。 (3)将电导电极取出,用蒸馏水林洗干净后插入盛有蒸馏水的烧杯中,大试管中的溶液保留待用。 4. Gt的测定; (1)取烘干洁净的混合反应器一支,其粗管中用移液管移入15ml新鲜配置的乙酸乙酯溶液,插入已经用蒸馏水淋洗并用滤纸小心吸干(注意:滤纸切勿触及两级的铂黑)带有橡皮塞的电导电极,用另一只移液管于细管移入15ml已知浓度的NaOH溶液,然后将其置于20摄氏度的恒温槽中恒温。 注意:氢氧化钠和乙酸乙酯两种溶液此时不能混合。

乙酸乙酯皂化反应速率常数的测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:乙酸乙酯皂化反应速率常数的测定应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxx 指导老师:李旭老师 实验日期: 2013-10-29 湘南学院化学与生命科学系

一、实验目的: 1、了解测定化学反应速率常数的一种物理方法——电导法。 2、了解二级反应的特点,学会用图解法求二级反应的速率常数。 3、掌握DDS-11A 型数字电导率仪和控温仪使用方法。 二、实验原理: 1、对于二级反应:A+B →产物,如果A ,B 两物质起始浓度相同,均为a ,则反应速率的表示式为 2)(x a K dt dx -= (1) 式中x 为时间t 反应物消耗掉的摩尔数,上式定积分得: x a x ta K -= ·1 (2) 以 t x a x ~-作图若所得为直线,证明是二级反应。并可以从直线的斜率求出k 。 所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。 如果知道不同温度下的速率常数k (T 1)和k (T 2),按Arrhenius 公式计算出该反应的活化能E ??? ? ??-?=122112)() (ln T T T T R T K T K E a (3) 2、乙酸乙酯皂化反应是二级反应,其反应式为: OH -电导率大,CH 3COO -电导率小。因此,在反应进行过程中,电

导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显著降低。对稀溶液而言,强电解质的电导率L 与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式: a A L 10= (4) a A L 2=∞ (5) x A x a A L t 21)(+-= (6) A 1,A 2是与温度、电解质性质,溶剂等因素有关的比例常数,0L , ∞L 分别为反应开始和终了时溶液的总电导率。t L 为时间t 时溶液的总 电导率。由(4),(5),(6)三式可得: a L L L L x t ·0 0??? ? ??--=∞ 代入(2)式得: ??? ? ??--=∞ L L L L a t K t t 0·1 (7) 重新排列即得: ∞+-= L t L L k a L t t 0·1 三、实验仪器及试剂 DDS-11A 型数字电导率仪1台(附铂黑电极1支),恒温槽1台, 秒表1只,电导池3支,移液管3支;0.0200mol /L 乙酸乙酯(新配的),O.0200mol /L 氢氧化钠(新配的)

乙酸乙酯的制备

\\乙酯的制备 一、 实验目的 1. 掌握乙酸乙酯的制备原理及方法,掌握可逆反应提高产率的措施。 2. 掌握分馏的原理及分馏柱的作用。 3. 进一步练习并熟练掌握液体产品的纯化方法。 二、 实验原理 乙酸乙酯的合成方法很多,例如:可由乙酸或其衍生物与乙醇反应制取,也可由乙酸钠与卤乙烷反应来合成等。其中最常用的方法是在酸催化下由乙酸和乙醇直接酯化法。常用浓硫酸、氯化氢、对甲苯磺酸或强酸性阳离子交换树脂等作催化剂。若用浓硫酸作催化剂,其用量是醇的0.3%即可。其反应为: CH 3COOH +CH 3CH 2OH CH 3COOCH 2CH 3H 2O +CH 3CH 223CH 2OCH 2CH 3H 2O +CH 3CH 2OH 24 H 2O +CH 2CH 2主反应:副反应: 酯化反应为可逆反应,提高产率的措施为:一方面加入过量的乙醇,另一方面在反应过 程中不断蒸出生成的产物和水,促进平衡向生成酯的方向移动。但是,酯和水或乙醇的共沸物沸点与乙醇接近,为了能蒸出生成的酯和水,又尽量使乙醇少蒸出来,本实验采用了较长的分馏柱进行分馏。

四、 实验装置图 蒸馏装置 五、 实验流程图 4ml 乙醇5ml 浓硫酸2粒沸石 10ml 8ml 73-80 的馏分,℃ 六、 实验步骤 在100ml 三颈瓶中,加入4ml 乙醇,摇动下慢慢加入5ml 浓硫酸,使其混合均匀,并加入几粒沸石。三颈瓶一侧口插入温度计,另一侧口插入滴液漏斗,漏斗末端应浸入液面以下,中间口安一长的刺形分馏柱(整个装置如上图)。 仪器装好后,在滴液漏斗内加入10ml 乙醇和8ml 冰醋酸,混合均匀,先向瓶内滴入约2ml 的混合液,然后,将三颈瓶在石棉网上小火加热到110-120℃左右,这时蒸馏管口应有液体流出,再自滴液漏斗慢慢滴入其余的混合液,控制滴加速度和馏出速度大致相等,并维持反应温度在110-125℃之间,滴加完毕后,继续加热10分钟,直至温度升高到130℃不再有馏出液为止。 馏出液中含有乙酸乙酯及少量乙醇、乙醚、水和醋酸等,在摇动下,慢慢向粗产品中加

BZ振荡反应

北京理工大学 物理化学实验报告 BZ震荡反应 班级:09111101 实验日期:2013-4-9

一、 实验目的 1) 了解BZ 反应的基本原理。 2) 观察化学振荡现象。 3) 练习用微机处理实验数据和作图。 二、 实验原理 化学振荡:反应系统中某些物理量随时间作周期性的变化。 BZ 体系是指由溴酸盐,有机物在酸性介质中,在有(或无)金属离子催化剂作用下构成的体系。 本实验以BrO - 3 ~ Ce + 4 ~ CH 2(COOH)2 ~ H 2SO 4作为反映体系。该体系的总 反应为: ()()O 4H 3CO COOH 2BrCH COOH 2CH 2BrO 2H 222223++?→?++- + 体系中存在着下面的反应过程。 过程A : HOBr HBrO 2H Br BrO 2K 32+?→?+++-- 2HOBr H Br HBrO 3K 2?→?+++- 过程B : O H 2BrO H HBrO BrO 22K 234+?→?+++- 42K 32Ce HBrO H Ce BrO 5++++?→?++ +++?→?H HOBr BrO 2HBrO -3K 26 Br - 的再生过程:

()+ +- ++++?→?+++6H 3CO 4Ce 2Br HOBr O H COOH BrCH 4Ce 23 K 2247 当[Br -]足够高时,主要发生过程A ,研究表明,当达到准定态时,有 [][][]+- =H BrO K K HBrO 3 3 22。 当[Br -]低时,发生过程B ,Ce +3被氧化。,达到准定态时,有 [][][] +- ≈ H BrO 2K K HBrO 36 42。 可以看出:Br - 和BrO -3是竞争HbrO 2的。当K 3 [Br - ]>K 4[BrO - 3]时,自催 化过程不可能发生。自催化是BZ 振荡反应中必不可少的步骤。否则该振荡不能发生。研究表明,Br -的临界浓度为: [] [][] - --?== 3 633 4crit - BrO 105BrO K K Br 若已知实验的初始浓度[BrO - 3],可由上式估算[Br - ]crit 。 体系中存在着两个受溴离子浓度控制的过程A 和过程B ,当[Br - ]高于临界浓度[Br - ]crit 时发生过程A ,当[Br - ]低于[Br -]crit 时发生过程B 。这样体系就在过程A 、过程B 间往复振荡。 在反应进行时,系统中[Br - ]、[HbrO 2]、[Ce +3]、[Ce +4]都随时间作周期性的变化,实验中,可以用溴离子选择电极测定[Br - ],用铂丝电极测定[Ce +4]、[Ce +3]随时间变化的曲线。溶液的颜色在黄色和无色之间振荡,若再加入适量的FeSO 4邻菲咯啉溶液,溶液的颜色将在蓝色和红色之间振荡。 从加入硫酸铈铵到开始振荡的时间为t 诱 ,诱导期与反应速率成反比,即 ??? ? ??-=∝RT E A k t 表诱exp 1 ,并得到

相关文档