文档库 最新最全的文档下载
当前位置:文档库 › 分别利用矩形法、梯形法、辛普森法对定积分进行近似计算并比较计算效果。

分别利用矩形法、梯形法、辛普森法对定积分进行近似计算并比较计算效果。

分别利用矩形法、梯形法、辛普森法对定积分进行近似计算并比较计算效果。
分别利用矩形法、梯形法、辛普森法对定积分进行近似计算并比较计算效果。

数学实验报告

实验序号: (4) 日期:2015/1/2 22n y -++

定积分及其应用练习 带详细答案

定积分及其应用 题一 题面: 求由曲线2 (2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323 . 变式训练一 题面: 函数f (x )=???? ? x +2-2≤x <0, 2cos x ? ? ???0≤x ≤π2的图象与x 轴所围成的封闭图形的面积 为( ) B .2 | C .3 D .4 答案:D. 详解: 画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为12×2×2+∫π 202cos x d x =2+2sin x |π20=4. 变式训练二 题面: 由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) ¥ A .2 3 B .9-23 答案: 详解:

注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的 面积为??-3 1(3-x 2-2x )d x =? ???? 3x -13x 3-x 2??? 1 -3=3×1-13×13-12- ? ?? 3×-3-1 3×-3 3 ]- -3 2 =32 3,选D. 题二 ^ 题面: 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ). A .1 B .1 C .1 D .17 变式训练一 题面: 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3 sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积 2、求对数螺线θ ρae =()πθπ≤≤-及射线πθ=所围成的图形的面积

3、求由曲线x y sin =和它在2 π= x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3 x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的 立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长 8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm )成

正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水 面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

设计采用梯形法和辛普生法求定积分的程序

河北工业大学计算机软件技术基础(VC)课程设计报告 学院信息工程学院院班级通信101 姓名崔羽飞学号 102117 成绩 __ ____ 一、题目: 设计采用梯形法和辛普生法求定积分的程序 二、设计思路 1、总体设计 1)分析程序的功能 本题目的功能是对梯形法和辛普森法,在不同区间数下计算所得的定积分的值,进行精度比较。 2)系统总体结构: 设计程序的组成模块,简述各模块功能。 该程序共分为以下几个模块 模块一:各函数原型的声明。 模块二:主函数。 模块三:各函数的定义。 包括两个数学函数y1=1+x*x、y2=1+x+x*x+x*x*x的定义和两个函数指针double integralt(double ,double ,int ,double(*f)(double)) double integrals(double ,double ,int ,double(*f)(double)) 的定义。 2、各功能模块的设计:说明各功能模块的实现方法 模块一:对各种函数进行声明。 模块二:求梯形法和辛普森法,在不同区间数下计算所得的定积分的值。 模块三:将各函数写出来。 3、设计中的主要困难及解决方案 在这部分论述设计中遇到的主要困难及解决方案。 1)困难1:函数指针的应用。解决方案:仔细阅读课本,以及与同学之间的讨论,和向老师求助。 2)困难2:将程序分成不同的.cpp文件。解决方案:与同学讨论。 4、你所设计的程序最终完成的功能 1)说明你编制的程序能完成的功能 在数学上求一个函数与x轴在一定范围内所围的面积即求定积分,对梯形法和辛普森法求定积分的比较。 2)准备的测试数据及运行结果

MATLAB实验三-定积分的近似计算

实验三定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

第一题.矩阵法,梯形法积分

梯形法数值积分 A .算法说明: 梯形法数值积分采用的梯形公式是最简单的数值积分公式,函数()f x 在区间[a,b]上计算梯形法数值积分表达式为: ()[()()]2b a b a f x dx f a f b -≈+? 由于用梯形公式来求积分十分粗糙,误差也比较大,后来改进后提出了复合梯形公式:b a h n -=,其中,n 为积分区间划分的个数;h 为积分步长。 在MATLAB 中编程实现的复合梯形公式的函数为:Combine Traprl. 功能:复合梯形公式求函数的数值积分。 调用格式:[I,step]=CombineTraprl(f,a,b,eps). 其中,f 为函数名; a 为积分下限; b 为积分上限; eps 为积分精度; I 为积分值; Step 为积分划分的区间个数 B .流程图

C.复合梯形公式的原程序代码: function[I,step]=CombineTraprl(f,a,b,eps) % 复合梯形公式求函数f在区间[a,b]上的定积分 %函数名:f %积分下限:a %积分上限:b %积分精度:eps %积分值:I %积分划分的子区间个数:step if(nargin==3) eps=1.0e-4; %默认精度为0.0001 end n=1; h=(b-a)/2; I1=0; I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps n=n+1 h=(b-a)/n; I1=I2; I2=0; for i=0:n-1 %第年n次的复合梯形公式积分 x=a+h*i; %i=0 和n-1时,分别代表积分区间的左右端点 x1=x+h I2=I2+(h/2)*(subs(sym(f),findsym(sym(f)),x)+subs(sym(f),findsym(sym(f)),x1)); end end I=I2; step=n; D.应用举例 复合梯形法求数值积分应用举例,利用复合梯形法计算定积分 dx x ? - 4 221 1 流程图

定积分的应用练习题

定积分的应用练习题 Final revision by standardization team on December 10, 2020.

题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤-上的一段弧所围成的图形面积 为 . 6.椭圆)0,0(1sin 1 cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )

§ 6 定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积

2、求对数螺线θρae =()πθπ≤≤-及射线πθ=所围成的图形的面积 3、求由曲线x y sin =和它在2 π = x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形 的立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长

8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm ) 成正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与 水面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为 ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

矩形、梯形法计算定积分的黎曼和

钦州学院数学与计算机科学学院 数 学 实 验 报 告 实验完成日期 2010 年 11 月 5 日 , 第 10 周 , 星期五 成绩等级(五级分制) 评阅教师 评阅日期 年 月 日 数学实验报告填写要求:思路清晰,中间结果和最终结果真实;字迹工整,报告完整。 [实验题目及内容] 实验题目:(1)通过矩形法、梯形法分别计算定积分? ++-= b a x x x f 32.0)(2 的黎曼和; (2)通过10=n ,50=n ,200=n 时黎曼和的值分析两种方法逼近定积分的 速度。 内容:黎曼和逼近定积分值的动态过程演示,可利用几何画板制作 [问题描述](用自己组织的相关数学语言重述现实问题;注意对约定的条件作说明) 将AB 边n 等分,过这些分点作E B '的垂线,将抛物线32.0)(2 ++-=x x x f 和以AB 为边形成的图形分割为n 个直角小梯形或小矩形,求这些小梯形或小矩形面积的和,即可求出定积分? ++-= b a x x x f 32.0)(2 黎曼和即面积。当n 充分大时,直角小梯形或小矩形的 面积之和可近似代替定积分? ++-=b a x x x f 32.0)(2 黎曼和。因此可通过计算梯形或矩形 面积求出定积分? ++-= b a x x x f 32.0)(2 的黎曼和。 定积分dx x f b a ?)(在数值上等于以曲线)(x f y =和三直线0=y 、a x =、b x =所围 成的曲边梯形的面积。解决的办法是分割后再求和:设想将区间],[b a 分为n 个小区间,以每个小区间左端点对应的函数值为高,以小区间的长度为宽,构作n 个梯形或矩形,并以这些小梯形或小矩形的面积的和(即黎曼和)近似代替定积分的面积。当改变参数n 的大小时,随着n 的逐渐增大(并且每个小区间的长度逐渐缩小),黎曼和的值逐渐趋近定积分的值。 [模型建立或思路分析](建立合理,可解释的数学模型,通过公式、表格或图形直观明确地描述模型的结构;无法通过建立模型解决的,给出解题的思路及办法。) 利用几何画板作图:

2014届高三理科数学一轮复习试题选编29:定积分的计算及其应用(学生版)

实用文档 2014届高三理科数学一轮复习试题选编29:定积分的计算及其应用 一、选择题 1 .(安徽寿县一中2012年高三第四次月考试卷) 求由曲线y =,直线2y x =-+及y 轴所围成的 图形的面积错误的为 ( ) A . 4 (2x dx -+? B . ? C .22 2 (2)y y dy ---?D .0 22 (4)y dy --? 2 .(江西重点高中协作体第二次联考理科)若函数?? ? ??≥<<-≤=)2(,0)23(,4)3(,1)(2x x x x x f ,则dx x x f ])([21+?-的值为 ( ) A . 3 3 32 ++ π B . 2 3 53 ++ π C . 2 3 33 ++ π D . 3 3 52 ++ π 3 .(2011-2012学年厦门市3月份高三数学质量检查试题(理科))如图,已知幂函数y x α=的图像过点 (2,4)P ,则图中阴影部分的面积等于 ( ) A . 16 3 B .83 C . 43 D . 23 4 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为

实用文档 ( ) A . 2π5 B .43 C .32 D . π2 5 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影 部分的概率为 ( ) A . 14 B .15 C .16 D . 17 6 .(北京四中2013届高三上学期期中测验数学(理)试题)函数 的图象与x 轴所围成的封闭图形的面积为 ( ) A . B .1 C .2 D . 7 .(2013北京朝阳二模数学理科试题)若 1 20 ()d 0 x mx x +=? ,则实数m 的值为 ( ) A .1 3 - B .23 - C .1- D .2- 8 .(2013届北京大兴区一模理科)抛物线2(22)y x x ≤≤绕y 轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入 1 -y x O 第3题 1 1

C语言-用矩形法和梯形法求定积分

一.写一个用矩形法求定积分的函数,求sin(x)在(0,1)上的定积分。 #include #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; //n表示划分的单位宽度,n越小结果越精确,n是矩形的宽 l=(b-a)/n; // l表示有多少个单位宽度 for(i=0;i #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; l=(b-a)/n; for(i=0;i #include jifen(float a,float b,double (*fun)(double)) {int i,l;

定积分的应用习题答案

1.填空题 ⑴函数的单调减少区间__ [解答] ,令,可得 当时,,单调递减. 所以的单调递减区间是或. ⑵曲线与其在处的切线所围成的部分被轴分成两部分,这两部分面积之比是__ [解答] 直线方程为,即, 两直线的交点可求得,即求解 方法一:已知其一根为,设方程为 通过比较可得,可解得另外一根为 方法二:分解方程有 即 所以 则 ⑶设在上连续,当_时,取最小值. [解答]

令,则 即 所以 ⑷绕旋转所成旋转体体积__ [解答] 令,则 当时, 当时, 所以 ⑸求心脏线和直线及围成的图形绕极轴旋转所成旋转体体积__ [解答] 将极坐标化为直角坐标形式为, 则 所以

2.计算题 ⑴在直线与抛物线的交点上引抛物线的法线,求由两法线 及连接两交点的弦所围成的三角形的面积. [解答] 由题意可计算两法线的方程为 ,即 ,即 两直线的交点为,则 ⑵过抛物线上的一点作切线,问为何值时所作的切线与抛物线 所围成的面积最小. [解答] 直线的斜率,则直线方程为,与抛物线相交,即,设方程的两根为且,则 ,从而

又,所以 ⑶求通过点的直线中使得为最小的直线方程. [解答] 设,则 则 由可得即可得 又则当时为最小,此时方程为 ⑷求函数的最大值与最小值. [解答] 令,可得 当时,,即在取最小值,此时 当时,,即在取最大值 此时. ⑸求曲线与所围阴影部分面积,并将此面积绕轴旋转所构成的旋转体体积,如图所示. [解答]

⑹已知圆,其中,求此圆绕轴旋转所构成的旋转体体积和表面积. [解答] 令,如图所示,则 ⑺设有一薄板其边缘为一抛物线,如图所示,铅直沉入水中, ①若顶点恰好在水平面上,试求薄板所受的静压力,将薄板下沉多深,压力加倍? [解答] 抛物线方程为,则在水下到这一小块所受的静压力为 所以整块薄板所受的静压力为 若下沉,此时受到的静压力为

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 2 2 -?=( ) A.233 B.31 C.34 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分

【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(1 22 -?=123 153 x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭 图形的面积为( ) A 、22 B 、42 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函数一般表示为曲边梯形上边界的函数减去下边界的

函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由 ???==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 8103412 9 942 30 3 =??? ? ?-=-=?x x dx x x S ,故选D. 3.22 -? 2 412x x -+dx =( ) A.π4 B.π 2 C.π D.π3 【分值】5分 【答案】A

【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y=2 4 x- +,即(x-2)2+y2=16(y≥0). 12x ∵22-?2 x- +dx表示以4为半径的圆的四分之一12x 4 面积.∴22-?2 x- +dx=π4. 12x 4 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A设定v=3t2+1(m/s)的速度在一直线赛道上行驶,老款赛车B设定在A的正前方5 m处,同时以v=10t(m/s)的速度与A同向运动,出发后赛车A 追上赛车B所用的时间t(s)为( )

定积分的近似计算

数学实验报告 实验序号:4 日期:2012 年12 月13 日 实验名称定积分的近似计算 问题背景描述: 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 实验目的: 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法。对于定积分的近似数值计算,Matlab有专门函数可用。

实验原理与数学模型: 1.矩形法 根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即 在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度. 针对不同的取法,计算结果会有不同。 (1)左点法:对等分区间 , 在区间上取左端点,即取。 (2)右点法:同(1)中划分区间,在区间上取右端点,即取。 (3)中点法:同(1)中划分区间,在区间上取中点,即取。2.梯形法 等分区间 , 相应函数值为().

曲线上相应的点为() 将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个 上的曲边梯形成为真正的梯形,其面积为 ,. 于是各个小梯形面积之和就是曲边梯形面积的近似值, , 即, 称此式为梯形公式。 3.抛物线法 将积分区间作等分,分点依次为 ,, 对应函数值为 (), 曲线上相应点为 (). 现把区间上的曲线段用通过三点,,的抛物线

最新定积分的近似计算2

定积分的近似计算2

定积分的近似计算 虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限性的。对于被积分中的不能用初等函数表达的情形或其原函数虽能用初等函数表达但很复杂的情形,我们就有必要考虑近似计算的方法。 定积分的近似计算的基本思想是根据定积分的几何意义找出求曲边梯形面积的近似方法。下面介绍两种常用的方法梯形法及抛物线法。 一梯形法 将积分区间?Skip Record If...?作?Skip Record If...?等分,分点依次为 ?Skip Record If...? 相应的函数为 ?Skip Record If...? ?Skip Record If...? 曲线?Skip Record If...?上相应的点为 ?Skip Record If...? 将曲线的每一段弧?Skip Record If...?用过点?Skip Record If...?(线性函数)来代替,这使得每个?Skip Record If...?上的曲边梯形形成了真正的梯形(图11——25),其面积为 ?Skip Record If...? 于是各个小梯形面积之和就是曲边梯形面积的近 似值,即 ?Skip Record If...? 亦即 ?Skip Record If...?(2) 称此式为梯形法公式。 在实际应用中,我们还需要知道用这个近似值来代替所求积分时所产生的误差,从而有 ?Skip Record If...?

其中?Skip Record If...? 二抛物线法 由梯形法求近似值,当?Skip Record If...?为凹曲线时,它就偏小;当?Skip Record If...?为凸曲线时,它就偏大。如果每段改用与它凸性相接近的抛物线来近似,就可减少上述缺点。下面介绍抛物线法。 将区间?Skip Record If...?作?Skip Record If...?等分(图)分点依次为 ?Skip Record If...? 对应的函数值为 ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?曲线上相应的点为?Skip Record If...? 现把区间?Skip Record If...?上的曲线段?Skip Record If...?用通过三点?Skip Record If...?的抛物线 ?Skip Record If...? 来近似代替,然后求函数?Skip Record If...?从?Skip Record If...?到?Skip Record If...?的定积分: ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?由于?Skip Record If...?,将它代入上式整理后可得 ?Skip Record If...? ?Skip Record If...? 同样也有 ?Skip Record If...? ……………………………………………….. ?Skip Record If...? 将这?Skip Record If...?个积分相加即得原来所要计算的定积分的近似值: ?Skip Record If...? 即 ?Skip Record If...?

利用复化梯形公式复化simpson 公式计算积分

实验 目 的 或 要 求1、利用复化梯形公式、复化simpson 公式计算积分 2、比较计算误差与实际误差 实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码 ) 取n=2,3,…,10分别利用复化梯形公式、复化simpson 公式计算积分1 20I x dx =?,并与真值进行比较,并画出计算误差与实际误差之间的曲线。 利用复化梯形公式的程序代码如下: function f=fx(x) f=x.^2; %首先建立被积函数,以便于计算真实值。 a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n 值所计算出的结果 for n=2:10; h=(b-a)/n; %步长 x=zeros(1,n+1); %给节点定初值 for i=1:n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^2; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/2*(y(i)+y(i+1)); %利用复化梯形公式求值 end T=[T,t]; %把不同n 值所计算出的结果装入 T 中 end R=ones(1,9)*(-(b-a)/12*h.^ 2*2); %积分余项(计算误差) true=quad(@fx,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*') %将计算误差与实际误差用图像画出来 注:由于被积函数是x.^2,它的二阶倒数为2,所以积分余项为:(-(b-a)/12*h.^ 2*2)

实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码)利用复化simpson 公式的程序代码如下: 同样首先建立被积函数的函数文件: function f=fx1(x) f=x.^4; a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n值所计算出的结果 for n=2:10 h=(b-a)/(2*n); %步长 x=zeros(1,2*n+1); %给节点定初值 for i=1:2*n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^4; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/3*(y(2*i-1)+4*y(2*i)+y(2*i+1)); %利用复化simpson公式求值end T=[T,t] ; %把不同n值所计算出的结果装入T中 end R=ones(1,9)*(-(b-a)/180*((b-a)/2).^4*24) ; %积分余项(计算误差) true=quad(@fx1,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*')

定积分的几何应用例题与习题

定积分的几何应用例题与习题 11cos ,(0),2 4 L π π ρθθθΓ=+≤≤ = Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的 直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1 (1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的 面积为并且试确定的值,使达到最小,并求出最小值; ()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。 {}0 3(,)01,01:(0) (),()(0) x xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求 4 、0)x y e x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V 3 3 2cos (0,)42sin 11)5x a t a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=( 6.0,(0)02 (),()() ()()(1)(2)lim () ()()() 2,lim 1 () ()x x t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯 形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333 (sin )(1cos )3, (2)5, (3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222 222 23 A x y x y x A x V ππ+≤≥== -8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

数值分析与算法变步长梯形求积法计算定积分

变步长梯形求积法计算定积分 1.原理: 变步长求积法的主要思想是利用若干小梯形的面积代替原方程的积分,当精度达不到要求时,可以通过增加点数对已有的区间再次划分,达到所需精度时即可;其中由于新的式子中有原来n点中的部分项,故可以省略一些计算,符合了计算机计算存储的思想。 主要公式:T2n=T n/2+(h/2)*Σf(x k+; 2.C++语言实现方式: 通过每次的T n值和新增的函数值点计算T2n,再通过判断|T n-T2n|的大小来判断是否达到精度要求。 3.源程序如下: #include"" #include"" double f(double x)//预先输入的待积分函数 { double s; s=log(x*x); return(s); } double ffts(double a,double b,double eps) { int n,k; double fa,fb,h,t1,p,s,x,t; fa=f(a);

fb=f(b); n=1; h=b-a; t1=h*(fa+fb)/2; p=eps+1; while(p>=eps) { s=0; for(k=0;k<=n-1;k++) { x=a+(k+*h; s=s+f(x); } t=t1/2+h*s/2; p=fabs(t1-t); cout<<"步长n为:"<

定积分及其应用习题详解

第五章 定积分及其应用 习 题 5-1 1. 如何表述定积分的几何意义根据定积分的几何意义推出下列积分的值: (1) ? -x x d 1 1, (2)?--x x R R R d 22, (3)?x x d cos 02π, (4)?-x x d 1 1 . 解:若[]? ≥∈x x f x f b a x a b d )(,0)(,,则 时在几何上表示由曲线)(x f y =,直线 b x a x ==,及x 轴所围成平面图形的面积. 若[]b a x ,∈时,?≤x x f x f a b d )(,0)(则在几何 上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围平面图形面积的负值. (1)由下图(1)所示,0)(d 111 1=+-=?-A A x x . (2)由上图(2)所示,2 πd 2 22 2 R A x x R R R ==-? -. (3)由上图(3)所示,0)()(d cos 5353543π 20=--++=+-+=?A A A A A A A x x . (4)由上图(4)所示,1112 1 22d 61 1=??? ==?-A x x . 2. 设物体以速度12+=t v 作直线运动,用定积分表示时间t 从0到5该物体移动的路程S. ( 2 ) ( 1 ) ( 3 ) (4)

解:= s ? +t t d )12(0 5 3. 用定积分的定义计算定积分 ?b a x c d ,其中c 为一定常数. 解:任取分点b x x x x a n =<<<<=Λ210,把],[b a 分成n 个小区间],[1i i x x - )2,1(n i Λ=,小区间长度记为x ?i =i x -1-i x )2,1(n i Λ=,在每个小区间[]i i x x ,1- 上任取一点i ξ作乘积i i x f ??)(ξ的和式: ∑∑==--=-?=??n i n i i i i i a b c x x c x f 1 1 1)()()(ξ, 记}{max 1i n i x ?=≤≤λ, 则 )()(lim )(lim d 0 a b c a b c x f x c n i i i b a -=-=??=∑? = →→λλξ. 4. 利用定积分定义计算 1 20 d x x ? . 解:上在]1,0[)(2 x x f =连续函数,故可积,因此为方便计算,我们可以对[]0,1 n 等分,分点i i n i n i x ξ;1,,2,1,-== Λ取相应小区间的右端点,故 ∑∑∑ ===?=?=?n i i i n i i i n i i i x x x x f 12121 )(ξξ=∑∑===n i n i i n n n i 1 2 3 2 1 1 1)( = 3 11(1)(21)6n n n n ?++ =)12)(11(61n n ++ 当时0→λ(即时∞→n ),由定积分的定义得: 12 0d x x ?=3 1. 5. 利用定积分的估值公式,估计定积分 ? -+-11 34)524(x x x d 的值. 解:先求524)(3 4 +-=x x x f 在[]1,1-上的最值,由 0616)(2 3 =-='x x x f , 得0=x 或8 3=x . 比较 35093(1)11,(0)5, (),(1)781024 f f f f -====的大小,知 min max 5093 ,111024 f f = =, 由定积分的估值公式,得[])1(1d )524()]1(1[max 11 34min --?≤+-≤--?? -f x x x f , 即 14315093 (425)d 22512 x x x -≤-+≤?. 6. 利用定积分的性质说明 ? 1 d x e x 与?1 d 2 x e x ,哪个积分值较大

相关文档
相关文档 最新文档