文档库 最新最全的文档下载
当前位置:文档库 › 事故树分析

事故树分析

事故树分析
事故树分析

基本事件编号概率(次/年)电线短路X1 0.0438

电线绝缘老化X2 0.5256

电线电流呈超负荷X3 0.43

接触电阻过大X4 0.438

人为错误操作X5 0.2628

过负荷运作X6 0.07884

电器故障X7 0.3504

电器短路X8 0.438

纵火X9 0.876

小孩玩火X10 0.7884

乱扔烟蒂X11 0.438

堆放杂物自燃X12 0.876

烟感失灵X13 0.0876

温感失灵X14 0.0876

人为报警器失灵X15 0.000876

缺乏专职人员X16 0.0876

专职人员检查不力X17 0.0876

制度不完善X18 0.0876

上级检查不力X19 0.0876

无灭火器X20 0.0876

灭火器失效X21 0.0876

灭火器数量不够X22 0.438

灭火器不会使用X23 0.3504

消防通道堆放杂物X24 0.7008

消防通道拥挤X25 0.2628

火源A1

扑救不力A2

电器火灾B1

电器线路C1

电器设备C2

人为失火B2

及时发现B3

未及时发现B4

报警器C3

安检不利C4

消防器材失效C5

通道障碍C6

T=A1*A2

=(B1+B2+X12)*(B3+B4)

=((C1+C2)+X9+X10+X11+X12)*(C3+C4+C5+C6)

=(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12)*(X13+X14+ X15+X16+X17+X18+X19+X20+X21+X22+X23+X24+X25)

=X8 X19+ X4 X23 +X9 X19 +X12 X19 +X1 X10 X19 +X1 X11 X19 +X1 X9 X23 +X1 X12 X23 +X1 X5 X23 +X11 X25 +X9 X25 +X12 X25 +X5 X10 X25 +X2 X10 X25 +X3 X10 X25+X1 X10 X25 +X8 X25 +X1 X6 X25 +X1 X7 X25 +X1 X5 X25 +X4 X25

顶上事件发生的概率是:0.382286157523

此事故树的最小割集是:K1={X8 X19}K2={X4 X23}K3={X9 X19}K4={X1 X10 X19}K5={X1 X11 X19}K6={X1 X9 X23}K7={X1 X12 X23}K8={ X1 X5 X23}K9={ X11 X25 }K10={ X9 X25}K11={ X12 X25}K12={X5 X10 X25}K13={X2 X10 X25}K14={X3 X10 X25}K15={ X1 X10 X25 }K16={ X8 X25 }K17={ X1 X6 X25}K18={ X1 X7 X25}K19={ X1 X5 X25}K20={ X4 X25}

此事故树的最小径集是:

X1 X9 X12 X10 X11 X5 X6 X7 X8 X2 X3 X4

X13 X20 X24 X25 X16 X21 X22 X23 X17 X18 X19 X14 X15

T= X1 X9 X12 X10 X11 X5 X6 X7 X8 X2 X3 X4

+ X13 X20 X24 X25 X16 X21 X22 X23 X17 X18 X19 X14 X15

此事故树的最小径集是:

K1={X1 X9 X12 X10 X11 X5 X6 X7 X8 X2 X3 X4}

K2={X13 X20 X24 X25 X16 X21 X22 X23 X17 X18 X19 X14 X15 }

此事故树的结构重要度是:

I(8)=0.0476********

X8的结构重要度是:0.0476******** I(19)=0.103174603175

X19的结构重要度是:0.103174603175 I(4)=0.0476********

X4的结构重要度是:0.0476******** I(23)=0.0714********

X23的结构重要度是:0.0714******** I(9)=0.063492063492

X9的结构重要度是:0.063492063492 I(12)=0.063492063492

X12的结构重要度是:0.063492063492 I(1)=0.142857142857

X1的结构重要度是:0.142857142857 I(10)=0.0793********

X10的结构重要度是:0.0793******** I(11)=0.0396********

X11的结构重要度是:0.0396******** I(5)=0.0476********

X5的结构重要度是:0.0476********

I(25)=0.230158730159

X25的结构重要度是:0.230158730159

I(2)=0.015873015873

X2的结构重要度是:0.015873015873

I(3)=0.015873015873

X3的结构重要度是:0.015873015873

I(6)=0.015873015873

X6的结构重要度是:0.015873015873

I(7)=0.015873015873

X7的结构重要度是:0.015873015873

结构重要度顺序为:

I(25)>I(1)>I(19)>I(10)>I(23)>I(12)=I(9)>I(8)=I(5)=I(4)>I(11)>I(2)=I(3) =I(6)=I(7)

X12的概率重要度是:0.36574752

X9的概率重要度是:0.36574752

X10的概率重要度是:0.33764544

X11的概率重要度是:0.26663688

X1的概率重要度是:0.351458208

X2的概率重要度是:0.020719152

X3的概率重要度是:0.020719152

X4的概率重要度是:0.6132

X5的概率重要度是:0.047577312

X6的概率重要度是:0.01151064

X7的概率重要度是:0.01151064

X8的概率重要度是:0.3504

X13的概率重要度是:.

X14的概率重要度是:.

X15的概率重要度是:.

X16的概率重要度是:.

X17的概率重要度是:.

X18的概率重要度是:.

X19的概率重要度是:0.180571632

X20的概率重要度是:.

X21的概率重要度是:.

X22的概率重要度是:.

X23的概率重要度是:0.45526596

X24的概率重要度是:.

X25的概率重要度是:0.78745392

Ig(25)>Ig(4)>Ig(23)>Ig(9)=Ig(12)>Ig(1)>Ig(8)>Ig(10)>Ig(11)>Ig(19)>Ig (5)>Ig(2)=Ig(3)>Ig(6)=Ig(7)>Ig(16)=Ig(17)=Ig(18)=Ig(13)=Ig(20)=Ig(21 )=Ig(22)=Ig(14)=Ig(24)=Ig(15)

X12的临界重要度是:0.0838******* X9的临界重要度是:0.0419******* X10的临界重要度是:0.06963361337 X11的临界重要度是:0.030549616077 X1的临界重要度是:0.040267922883 X2的临界重要度是:0.028********* X3的临界重要度是:0.023********* X4的临界重要度是:0.70256689842 X5的临界重要度是:0.032706697189 X6的临界重要度是:0.002373873183 X7的临界重要度是:0.010******** X8的临界重要度是:0.04014667991 X13的临界重要度是:.

X14的临界重要度是:.

X15的临界重要度是:.

X16的临界重要度是:.

X17的临界重要度是:.

X18的临界重要度是:.

X19的临界重要度是:0.0413******** X20的临界重要度是:.

X21的临界重要度是:.

X22的临界重要度是:.

X23的临界重要度是:0.417292620318

X24的临界重要度是:.

X25的临界重要度是:0.541329802567

临界重要系数顺序:

Cg(4)>Cg(25)>Cg(23)>Cg(12)>Cg(10)>Cg(9)>Cg(19)>Cg(1)>Cg(8)>C g(5)>Cg(11)>Cg(2)>Cg(3)>Cg(7)>Cg(6)>Cg(16)=Cg(17)=Cg(18)=Cg(1 3)=Cg(20)=Cg(21)=Cg(22)=Cg(14)=Cg(24)=Cg(15)

附1

附2

安全出口灭火器消防栓疏散通道

事故树分析范例

事故树分析案例 起重作业事故树分析 一、概述 在工矿企业发生的各种类型的工伤事故中,起重伤害所占的比例是比较高的,所以,起重设备被列为特种设备,每二年需强制检测一次。本工程在施工安装、生产检修中使用起重设备。伤害事故的因素很多,在众多的因素中,找出问题的关键,采取最有效的安全技术措施来防止此类事故的发生,最好的方法是对起重机事故采取事故树分析方法,现对“起吊物坠落伤人”进行事故树分析。 二、起重作业事故树分析 1、事故树图 图6-2 起吊物坠落伤人事故树 T——起重物坠落伤人;

A1——人与起吊物位置不当;A2——起吊物坠落; B1——人在起吊物下方;B2——人距离起吊物太近; B3——吊索物的挂吊部位缺陷;B4——吊索、吊具断裂; B5——起吊物的挂吊部位缺陷;B6——司机、挂吊工配合缺陷; B7——起升机构失效;B8——起升绳断裂; B9——吊钩断裂; C1——吊索有滑出吊钩的趋势;C2——吊索、吊具损坏; C3——司机误解挂吊工手势; D1——挂吊不符合要求;D2——起吊中起吊物受严重碰撞; X1——起吊物从人头经过;X2——人从起吊下方经过; X3——挂吊工未离开就起吊;X4——起吊物靠近人经过; X5——吊钩无防吊索脱出装置;X6——捆绑缺陷; X7——挂吊不对称;X8——挂吊物不对; X9——运行位置太低;X10——没有走规定的通道; X11——斜吊;X12——运行时没有鸣铃; X13——司机操作技能缺陷;X14——制动器间隙调整不当; X15——吊索吊具超载;X16——起吊物的尖锐处无衬垫; X17——吊索没有夹紧;X18——起吊物的挂吊部位脱落; X19——挂吊部位结构缺陷;X20——挂吊工看错指挥手势; X21——司机操作错误;X22——行车工看错指挥手势; X23——现场环境照明不良;X24——制动器失效;

(完整版)故障树分析法

什么是故障树分析法 故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。 1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。 什么是故障树图(FTD) 故障树图 ( 或者负分析树)是一种逻辑因果关系图,它根据元部件状态(基本事件)来显示系统的状态(顶事件)。就像可靠性框图(RBDs),故障树图也是一种图形化设计方法,并且作为可靠性框图的一种可替代的方法。 一个故障树图是从上到下逐级建树并且根据事件而联系,它用图形化"模型"路径的方法,使一个系统能导致一个可预知的,不可预知的故障事件(失效),路径的交叉处的事件和状态,用标准的逻辑符号(与,或等等)表示。在故障树图中最基础的构造单元为门和事件,这些事件与在可靠性框图中有相同的意义并且门是条件。 故障树和可靠性框图(RBD) FTD和RBD最基本的区别在于RBD工作在"成功的空间",从而系统看上去是成功的集合,然而,故障树图工作在"故障空间"并且系统看起来是故障的集合。传统上,故障树已经习惯使用固定概率(也就是,组成树的每一个事件都有一个发生的固定概率)然而可靠性框图对于成功(可靠度公式)来说可以包括以时间而变化的分布,并且其他特点。 故障树分析中常用符号 故障树分析中常用符号见下表:

事故树分析法

事故树分析法(FTA) 事故树分析法就是一种既能定性又能定量的逻辑演绎评价方法,就是从结果到原因描绘事故发生的有向逻辑树,在逻辑树中相关原因事件之间用逻辑门连接,构成逻辑树图,为判明事故发生的途径及损害间关系提供一种最形象、最简洁的表达方式。 事故树法又称为故障树分析法,就是一种逻辑演绎的系统评价方法,就是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评估,既适用于定性分析,又能进行定量分析。具有简明、形象的特点。其分析方法就是从要分析的特定事故或故障顶上事件开始,层层分析其发生原因(中间事件),一直分析到不能再分解或没有必要分析时为止,即分析至基本原因事件为止,用逻辑门符号将各层中间事件与基本原因事件连接起来,得到形象、简洁地表达其因果关系的逻辑树图形即故障树。通过对其简化计算得到分析评价目的的方法。 故障树分析法的主要功能 1、对导致事故的各种因素及其逻辑关系作出全面的描述 2、便于发现与查明系统内固有的或者潜在的危险因素,为安全设计、制定技术措施及 采取管理对策提供依据 3、使作业人员全面了解与掌握各项防灾要点 4、对已发生的事故进行原因分析 故障树的分析步骤 1、确定所分析的系统 2、熟悉所分析的系统 3、调查系统发生的事故 4、确定事故的顶上事件 5、调查与顶上事件有关的所有原因事件 6、故障树作图 7、故障树的定性分析 8、故障树的定量分析 9、安全性评价

事故树的主要符号 事件符号 逻辑符号 顶上事件、中间事件符号,需要进一步的分析 基本事件符号,不能进一步往下分析 正常事件,正常情况下存在的事件 省略事件,不能或者不需要分析

事故树分析

2.3事故树分析法 2.3.1 方法概述 事故树(Fault Tree Analysis, FTA)也称故障树,是一种描述事故因果关系的有向逻辑“树”,是安全系统工程中重要的分析方法之一。该法尤其适用于对工艺设备系统进行危险识别和评价,既适用于定性分析,又能进行定量分析。具有简明、形象化的特点,体现了以系统工程方法研究安全问题的系统性、准确性和预测性。FTA作为安全分析评价、事故预测的一种先进的科学方法,已得到国内外的公认和广泛采用。 1962年,美国贝尔电话实验室的维森(Watson)提出此法。该法最早用于民兵式导弹发射控制系统的可靠性研究,从而为解决导弹系统偶然事件的预测问题作出了贡献。随之波音公司的科研人员进一步发展了FTA方法,使之在航空航天工业方面得到应用。20世纪60年代期,FTA由航空航天工业发展到以原子能工业为中心的其他产业部门。1974年美国原子能委员会发表了关于核电站灾害性危险性评价报告(拉斯姆逊报告),对FTA作了大量和有效的应用,引起了全世界广泛的关注。目前此法已在国内外许多工业部门得到运用。 从1978年起,我国开始了FTA的研究和运用工作。FTA不仅能分析出事故的直接原因,而且能深入提示事故的潜在原因,因此在工程或设备的设计阶段、在事故查询或编制新的操作方法时,都可以使用FTA对它们的安全性作出评价。实践证明FTA适合我国国情,适合普遍推广使用。 2.3.2 FTA方法的分析步骤 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系。它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判明灾害、伤害的发生途径及与灾害、伤害之间的关系提供一种最为形象、简洁的表达形式。 事故树分析的基本程序如下: 1)熟悉系统。要详细了解系统状态、工艺过程及各种参数,以及作业情况、环境状况等,绘出工艺流程图及布置图。 2)调查事故。广泛收集同类系统的事故安全,进行事故统计(包括未遂事故),设想给定系统可能要发生的事故。 3)确定顶上事件。要分析的对象事件即为顶上事件。对所调查的事故进行全面分析,分析其损失大小和发生的频率,从中找出后果严重且较易发生的事故作为顶上事件。 4)确定目标值。根据经验教训和事故案例,经统计分析后,求出事故发生的概率(频率),作为要控制的事故目标值,计算事故的损失率,采取措施,使之达到可以接受的安全指标。 5)调查原因事件。全面分析、调查与事故有关的所有原因事件和各种因素,如设备、设施、人为失误、安全管理、环境等。 6)画出事故树。从顶上事件起,按演绎分析的方法,逐级找出直接原因事件,到所要分析的深度,按其逻辑关系,用逻辑门将上下层连结,画出事故树。 7)定性分析。按事故树结构运用布尔代数,进行简化,求出最小割(径)集,确定各基本事件的结构重要度。 8)求出顶上事件发生概率。确定所有原因发生概率,标在事故树上,并进而求出顶上事件(事故)发生概率。

机械伤害事故树案例大全

1)用布尔代数简化事故树,求其最小割集。 事故树的函数表达式为: T=A1+A2 = B1B2+ A2 =(X1+X2+X3+X4)(X5+X6+X7)+(X8+ X9+X10+ X11) =X1X5+ X2X5+ X3X5+ X4X5+ X1X6+ X2X6+ X3X6+ X4X6+ X1X7+ X2X7+ X3X7+ X4X7 + X8+ X9+X10+ X11 得到机械伤害事故树最小割集,即: K1={ X1X5};K2={ X2X5};K3={ X3X5};K4={ X4X5};K5={ X1X6};K6={ X2X6};K7={ X3X6};K8={ X4X6};K9={ X1X7};K10={ X2X7};K11={ X3X7};K12={ X4X7};K13={ X8};K14={ X9};K15={ X10};K16={ X11}。 2)结构重要度分析 1Xi∑1 KjNj 式中:N—最小割集数;∈用公式求出各基本事件结构重要度系数:Iφ(i) = N Kj—含有基本事件Xi的最小割集; Nj—Kj中的基本事件数 Iφ(1)= Iφ(2)= Iφ(3)= Iφ(4)=1/16×3/2=0.094 Iφ(5)= Iφ(6)= Iφ(7)=1/16×4/2=0.125 Iφ(8)= Iφ(9)= Iφ(10)= Iφ(11)=1/16×1/1=0.0625 所以各基本事件结构重要度分析排序为: Iφ(8)= Iφ(9)= Iφ(10)= Iφ(11)>Iφ(5)= Iφ(6)= Iφ(7)>Iφ(1)= Iφ(2)= Iφ(3)= Iφ(4) 3)结果分析 由以上分析过程可见,“人员配合不当”、“设备未断电”、“无连锁保护装置”、“检修时设备误启动”这些单事件因素的结构重要度最大,应重点防;“人员接触设备”的事件因素结构重要度也较高,人员接触设备是构成机械伤害的必要条件;“设备自身有缺陷”、

事故树分析程序(正式)

编订:__________________ 单位:__________________ 时间:__________________ 事故树分析程序(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8023-30 事故树分析程序(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 事故树分析虽然根据对象系统的性质、分析目的的不同,分析的程序也不同。但是,一般都有下面的十个基本程序。有时,使用者还可根据实际需要和要求,来确定分析程序。 熟悉系统。要求要确实了解系统情况,包括工作程序、各种重要参数、作业情况。必要时画出工艺流程图和布置图。 调查事故。要求在过去事故实例、有关事故统计基础上,尽量广泛地调查所能预想到的事故,即包括已发生的事故和可能发生的事故。 确定顶上事件。所谓顶上事件,就是我们所要分

析的对象事件。分析系统发生事故的损失和频率大小,从中找出后果严重,且较容易发生的事故,作为分析的顶上事件。 确定目标。根据以往的事故记录和同类系统的事故资料,进行统计分析,求出事故发生的概率(或频率),然后根据这一事故的严重程度,确定我们要控制的事故发生概率的目标值。 调查原因事件。调查与事故有关的所有原因事件和各种因素,包括设备故障、机械故障、操作者的失误、管理和指挥错误、环境因素等等,尽量详细查清原因和影响。 画出事故树。根据上述资料,从顶上事件起进行演绎分析,一级一级地找出所有直接原因事件,直到所要分析的深度,按照其逻辑关系,画出事故树。

事故树分析法

事故树分析法 事故树分析法 概述事故树分析法(Accident Tree Analysis,简称ATA)起源于故障树分析法(简称FTA),是安全系统工程的重要分析方法之一,它能对各种系统的危险性进行辨识和评价,不仅能分析出事故的直接原因,而且能深入地揭示出事故的潜在原因。用它描述事故的因果关系直观、明了,思路清晰,逻辑性强,既可定性分析,又可定量分析。 “树”的分析技术是属于系统工程的图论范畴。“树”是其网络分析技术中的概念,要明确什么是“树”,首先要弄清什么是“图”,什么是“圈”,什么是连通图等。 图论中的图是指由若干个点及连接这些点的连线组成 的图形。图中的点称为节点,线称为边或弧。节点表示某一个体事物,边表示事物之间的某种特定的关系。比如,用点可以表示电话机,用边表示电话线;用点表示各个生产任务,用边表示完成任务所需的时间等。一个图中,若任何两点之间至少有一条边则称这个图是连通图。若图中某一点、边顺

序衔接,序列中始点和终点重合,则称之为圈(或回路)。 树就是一个无圈(或无回路)的连通图。 20世纪60年代初期,很多高新产品在研制过程中,因对系统的可靠性、安全性研究不够,新产品在没有确保安全的情况下就投入市场,造成大量使用事故的发生,用户纷纷要求厂家进行经济赔偿,从而迫使企业寻找一种科学方法确保安全。 事故树分析首先由美国贝尔电话研究所于1961为研究民兵式导弹发射控制系统时提出来,1974年美国原子能委员会运用FTA对核电站事故进行了风险评价,发表了著名的《拉姆逊报告》。该报告对事故树分析作了大规模有效的应用。此后,在社会各界引起了极大的反响,受到了广泛的重视,从而迅速在许多国家和许多企业应用和推广。我国开展事故树分析方法的研究是从1978年开始的。目前已有很多部门和企业正在进行普及和推广工作,并已取得一大批成果,促进了企业的安全生产。80年代末,铁路运输系统开始把事故树分析方法应用到安全生产和劳动保护上来,也已取得了较好的效果。

机械伤害-事故树案例大全

机械伤害- 事故树案例大全

1) 用布尔代数简化事故树,求其最小割集。事故树的函数表达式为: T=A1+A2 = B1B2+ A2 =( X1+X2+X3+X)4 ( X5+X6+X7)+(X8+ X9+X10+ X11) =X1X5+ X2X5+ X3X5+ X4X5+ X1X6+ X2X6+ X3X6+ X4X6+ X1X7+ X2X7+ X3X7+ X4X7 + X8+ X9+X10+ X11 得到机械伤害事故树最小割集,即: K1={ X1X5} ;K2={ X2X5} ;K3={ X3X5} ; K4={ X4X5} ;K5={ X1X6} ;K6={ X2X6} ; K7={ X3X6} ;K8={ X4X6} ;K9={ X1X7} ;

K10={ X2X7} ;K11={ X3X7} ;K12={ X4X7} ; K13={ X8};K14={ X9};K15={ X10};K16={ X11}。2)结构重要度分析 1Xi 1 KjNj 式中:N—最小割集数;用公式求出各基本事件结构重要度系数:I φ(i )= N Kj —含有基本事件Xi 的最小割集;Nj —Kj 中的基本事件数 I φ(1)= I φ(2)= I φ(3)= I φ(4) =1/16 ×3/2=0.094 I φ(5)= I φ(6)= I φ (7)=1/16 ×4/2=0.125 I φ(8)= I φ(9)= I φ(10)= I φ(11) =1/16 × 1/1=0.0625 所以各基本事件结构重要度分析排序为: I φ(8)= I φ(9)= I φ(10)= I φ(11)>I φ(5)= I φ(6)= I φ(7)>I φ(1)= I φ(2)= I φ(3)= I φ(4) 3)结果分析由以上分析过程可见,“人员配合不当”、“设备未断电”、“无连锁保护装置”、“检修时设备误启动”这些单事件因素的结构重要度最大,应重点防范;“人员接触设备”的事件因素结构重要度也较高,人员接触设备是构成机械伤害的必要条

事故树分析案例

事故树的编制程序 第一步:确定顶上事件 顶上事件就是所要分析的事故。选择顶上事件,一定要在详细占有系统情况、有关事故的发生情况和发生可能、以及事故的严重程度和事故发生概率等资料的情况下进行,而且事先要仔细寻找造成事故的直接原因和间接原因。然后,根据事故的严重程度和发生概率确定要分析的顶上事件,将其扼要地填写在矩形框内。 顶上事件也可以是在运输生产中已经发生过的事故。如车辆追尾、道口火车与汽车相撞事故等事故。通过编制事故树,找出事故原因,制定具体措施,防止事故再次发生。 第二步:调查或分析造成顶上事件的各种原因 顶上事件确定之后,为了编制好事故树,必须将造成顶上事件的所有直接原因事件找出来,尽可能不要漏掉。直接原因事件可以是机械故障、人的因素或环境原因等。 要找出直接原因可以采取对造成顶上事件的原因进行调查,召开有关人员座谈会,也可根据以往的一些经验进行分析,确定造成顶上事件的原因。 第三步:绘事故树 在找出造成顶上事件的和各种原因之后,就可以用相应事件符号和适当的逻辑门把它们从上到下分层连接起来,层层向下,直到最基本的原因事件,这样就构成一个事故树。 在用逻辑门连接上下层之间的事件原因时,若下层事件必须全部同时发生,上层事件才会发生时,就用“与门”连接。逻辑门的连接问题在事故树中是非常重要的,含糊不得,它涉及到各种事件之间的逻辑关系,直接影响着以后的定性分析和定量分析。 第四步:认真审定事故树 画成的事故树图是逻辑模型事件的表达。既然是逻辑模型,那么各个事件之间的逻辑关系就应该相当严密、合理。否则在计算过程中将会出现许多意想不到的问题。因此,对事故树的绘制要十分慎重。在制作过程中,一般要进行反复推敲、修改,除局部更改外,有的甚至要推倒重来,有时还要反复进行多次,直到符合实际情况,比较严密为止。 第五章定性、定量评价 5.1 对重大危险、有害因素的危险度评价 XXX矿井的重大危险、有害因素有:矿井瓦斯危害、矿井火灾危害、矿压危害和水危害,

事故树分析法

事故树分析法 事故树分析(Accident Tree Analysis,简称ATA) 目录 [隐藏] ? 1 什么是事故树分析法 ? 2 事故树分析法的基本符号 o 2.1 事件符号 o 2.2 逻辑门符号 o 2.3 转移符号 ? 3 事故树分析法的程序 o 3.1 事故树的编制程 序 o 3.2 事故树分析的程 序 ? 4 相关条目 [编辑] 什么是事故树分析法 事故树分析(Accident Tree Analysis,简称ATA)法起源于故障树分析法(简称FTA),是安全系统工程的重要分析方法之一,它能对各种系统的危险性进行辨识和评价,不仅能分析出事故的直接原因,而且能深入地揭示出事故的潜在原因。用它描述事故的因果关系直观、明了,思路清晰,逻辑性强,既可定性分析,又可定量分析。 “树”的分析技术是属于系统工程的图论范畴。“树”是其网络分析技术中的概念,要明确什么是“树”,首先要弄清什么是“图”,什么是“圈”,什么是连通图等。 图论中的图是指由若干个点及连接这些点的连线组成的图形。图中的点称为节点,线称为边或弧。节点表示某一个体事物,边表示事物之间的某种特定的关系。比如,用点可以表示电话机,用边表示电话线;用点表示各个生产任务,用边表示完成任务所需的时间等。一个图中,若任何两点之间至少有一条边则称这个图是连通图。若图中某一点、边顺序衔接,序列中始点和终点重合,则称之为圈(或回路)。 树就是一个无圈(或无回路)的连通图。

20世纪60年代初期,很多高新产品在研制过程中,因对系统的可靠性、安全性研究不够,新产品在没有确保安全的情况下就投入市场,造成大量使用事故的发生,用户纷纷要求厂家进行经济赔偿,从而迫使企业寻找一种科学方法确保安全。 事故树分析首先由美国贝尔电话研究所于1961为研究民兵式导弹发射控制系统时提出来,1974年美国原子能委员会运用FTA对核电站事故进行了风险评价,发表了著名的《拉姆逊报告》。该报告对事故树分析作了大规模有效的应用。此后,在社会各界引起了极大的反响,受到了广泛的重视,从而迅速在许多国家和许多企业应用和推广。我国开展事故树分析方法的研究是从1978年开始的。目前已有很多部门和企业正在进行普及和推广工作,并已取得一大批成果,促进了企业的安全生产。80年代末,铁路运输系统开始把事故树分析方法应用到安全生产和劳动保护上来,也已取得了较好的效果。 [编辑] 事故树分析法的基本符号 事故树是由各种符号和其连接的逻辑门组成的。最简单、最基本的符号有: [编辑] 事件符号 1、矩形符号。用它表示顶上事件或中间事件。将事件扼要记入矩形框内。必须注意,顶上事件一定要清楚明了,不要太笼统。例如“交通事故”,“爆炸着火事故”,对此人们无法下手分析,而应当选择具体事故。如“机动车追尾”、“机动车与自行车相撞”,“建筑工人从脚手架上坠落死亡”、“道口火车与汽车相撞”等具体事故。 2、圆形符号。它表示基本(原因)事件,可以是人的差错,也可以是设备、机械故障、环境因素等。它表示最基本的事件,不能再继续往下分析了。例如,影响司机了望条件的“曲线地段”、“照明不好”,司机本身问题影响行车安全的“酒后开车”、“疲劳驾驶”等原因,将事故原因扼要记入圆形符号内。 3、屋形符号。它表示正常事件,是系统在正常状态下发生的正常事件。如:“机车或车辆经过道岔”、“因走动取下安全带”等,将事件扼要记入屋形符号内。

事故树分析法

安全评价系列讲座之三

■概述 ,基本概念 ■事故树分析方法的步骤 1事故树的符号及其意义 ■事故树的编制和用途 1布尔代数与主要运算法则 1利用布尔代数化简事故树 ■最小割集的概念和求法,最小径集的概念和求法 1基本事件的结构重要度分析

事故树分析(Fault Tree Analysis ),缩写为FTA O 1961年美国贝尔电话研究所的沃森(H.A.Watson )在研究民兵 式导弹发射控制系统的安全性评价时,首先提出了这个方法; 接着该所的默恩斯(A. B. Mearns )等人改进了这个方法,对 解决火箭偶发事故的预测问题作出了贡献。 其后,美国波音飞机公司的哈斯尔(Hassl)等人对这个方法又作 了重大改进,并采用计算机进行辅助分析和计算。 1974年美国原子能委员会应用FTA 对商用核电站的灾害危险性 进行评价,发表了拉斯马森报告(Rasmussen Report ),引起了世 界各国的关注。 概述 故障树、失效树

1 .概述 1976年,清华大学核能技术研究所在核反应堆的安全评价中开始应用了FTA。 1978年,天津东方红化工厂首次用FTA控制生产中的事故,获得成功。 1982年,在北京市劳动保护研究所,召开了第一次安全系统工程座谈会,介绍和推广了FTA。 实践证明,FTA是一种具有广阔的应用范围和发展前途的系统安全分析方法。

2.基本概念 图:指由若干点及连接这些点的线组成的图形。 节点:表示某一具体事物 边或弧:表示事物之间某种特定关系。 连通图:任何两点之间至少有一条边相连。否则就是不连通的。 :若图中某一点边顺序衔接序列中,始点和终点重 例如:A-B-E-C-A A-B-E-F-D-A

液化气事故树案例分析

(—)典型事故分析 湖北襄樊某化工厂因企业破产需对3个50 1fl 卧式液化石油气储罐进行销爆处理。液化石油气属于易燃易爆物质,一旦泄漏,极易与周围空气混合形成具有爆炸性的混合物,如遇明火就会引起火灾或爆炸,其产生的爆炸冲击波及爆炸火球热辐射破坏强度和范围极大,极易导致次生灾害。国内外曾发生多起液化石油气火灾或爆炸事故。如1998年3月5日西安市液化石油气站曾发生过火灾事故_2 J,造成12人死亡,32人受伤,直接经济损失达400多万元。 液化石油气(LPG)主要成分[ 是丙烷、丁烷、丙烯和丁烯,均为易燃易爆气体。液化石油气与空气混合气的着火能量很低,为0.06~0.26 mJ。在常温常压下液化石油气极易挥发l4 J,遇空气后体积迅速扩大250-350倍,气态液化石油气微毒,高浓度时有麻痹作用。为了系统分析液化石油气罐在销爆处理过程中可能存在的潜在危险因素,建立了以发生火灾或爆炸事故为顶上事件的事故树,笔者运用事故树分析法对销爆过程中可能发生的火灾或爆炸事故进行安全评价,预先分析和判断设备和工人操作中可能发生的危险及可能导致燃烧爆炸灾害的条件。其目的是采取相应的管理手段和安全防范措施,最大限度地消除危险和限制事故的严重程度,把事故可能造成的人身安全和财产的损害减少到最低限度。事故树的建立 事故树分析程序按其目的和要求的精度不同而不同,一般采用以下分析程序:1)确定分析系统,即确定 系统所包括的内容及其边界范围;2)熟悉分析系统,熟悉系统的整个情况,包括系统性能、运行情况、操作步 骤及各种重要参数;3)调查系统发生事故的可能性,在收集过去事故实例和事故统计的基础上,估计系统可能发生的事故;4)估计事故的危险等级,确定事故树的顶上事件;5)调查与顶上事件有关的所有事件,这些原因事件包括:设备的元件故障,原材料、半成品、工具等的缺陷;生产管理,指挥、操作上的失误和错误;以及影响顶上事件发生的环境因素;6)绘制事故树图,按照演绎分析的原则,从顶上事件起,逐级分析各自的直接原因事件,根据彼此间的逻辑关系,用逻辑门的连接方法,上一层事件是下一层事件的必然结果,下一层事件是上一层事件的充分条件;7)事故树的定性分析,主要内容有:计算事故树的最小割集或最小径集;计算基本事件的结构重要度;分析各事故类型的危险性,确定防范措施;8)事故树的定量分析,主要内容有:确定引起事故发生的各基本事件的发生概率;计算事故树顶上事件的概率;计算基本事件的概率重要度和l临界重要度;9)安全评价,根据顶上事件可能发生的事故概率及系统严重度确定系统损失

事故树分析

事故树分析法 方法概述 事故树(Fault Tree Analysis, FTA)也称故障树,是一种描述事故因果关系的有向逻辑“树”,是安全系统工程中重要的分析方法之一。该法尤其适用于对工艺设备系统进行危险识别和评价,既适用于定性分析,又能进行定量分析。具有简明、形象化的特点,体现了以系统工程方法研究安全问题的系统性、准确性和预测性。FTA作为安全分析评价、事故预测的一种先进的科学方法,已得到国内外的公认和广泛采用。 1962年,美国贝尔电话实验室的维森(Watson)提出此法。该法最早用于民兵式导弹发射控制系统的可靠性研究,从而为解决导弹系统偶然事件的预测问题作出了贡献。随之波音公司的科研人员进一步发展了FTA方法,使之在航空航天工业方面得到应用。20世纪60年代期,FTA由航空航天工业发展到以原子能工业为中心的其他产业部门。1974年美国原子能委员会发表了关于核电站灾害性危险性评价报告(拉斯姆逊报告),对FTA作了大量和有效的应用,引起了全世界广泛的关注。目前此法已在国内外许多工业部门得到运用。 从1978年起,我国开始了FTA的研究和运用工作。FTA不仅能分析出事故的直接原因,而且能深入提示事故的潜在原因,因此在工程或设备的设计阶段、在事故查询或编制新的操作方法时,都可以使用FTA对它们的安全性作出评价。实践证明FTA适合我国国情,适合普遍推广使用。 FTA方法的分析步骤 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系。它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判明灾害、伤害的发生途径及与灾害、伤害之间的关系提供一种最为形象、简洁的表达形式。 事故树分析的基本程序如下: 1)熟悉系统。要详细了解系统状态、工艺过程及各种参数,以及作业情况、

事故树分析理论基础

第3章事故树分析理论基础 3.1事故树原理 事故树分析(FTA)是分析系统安全的一种逻辑方法,目的是分析系统中事故 产生的原因和评价系统潜在的危险。它是一种系统可靠性分析方法,已经被公认为是对复杂系统进行可靠性分析、预算、设计的最简单、最有效、最有发展前途的手段之一,事故树是一种描述事故因果关系的有方向的“树”。 FTA分析技术是在系统有非希望事件发生,如机器发生故障,操作人员发生 失误等前提下,而提出的一种演绎推理的方法,事故树分析是在无任何限制条件下,由顶上事件开始向下分析能获得导致顶上事件发生的一切原因。用事件把这些原因通过逻辑门连接起来,这样就能清楚地表示出哪些原因事件及其组合导致了顶上事件发生的动态过程。事故树分析技术,可以找出导致事故的基本事件的最小组合,即最小割集。有几个割集就有几种导致事故的组合。而且可以从中找出危险最小割集,有针对性的采取措施,防止顶上事件的发生,所以目前事故树分析已成为安全系统工程学中的主要分析方法。 该方法能既能对系统进行安全性分析,同时也可以实现系统的安全性评价; 既适用于定性分析,又能进行定量分析,定性分析是仅按事故树的组成结构对危险的因果关系进行分析,而不计各事件的发生概率,或认为各事件的发生概率均相等;定量分析就是按照己知的基本事件发生概率,对事故树进行的数值分析。若基本事件的发生概率的数据比较齐全而且可靠,则定量分析的结果将比定性分析更准确,更有效。该方法具有具体简明、形象化的特点,体现了以系统工程方法研究安全问题的系统性、准确性和预测性。事故树分析作为安全评价和事故预测的一种先进的科学方法,已得到国内外的公认,并被广泛采用。 事故树分析最早是由美国贝尔电话公司的H.A.沃森(H.A.watson)和A.B.默 恩斯(A.B.Meos)在1962年首先提出来的,当时他们发现,在做数据处理时用 于描述流程的逻辑方法也可用来描述系统中非期望事件发生的概率。该方法最早使用于美国民兵式导弹发射系统的可靠性研究,并随着概率论、图论、集合论和基于FTA的超市水果冷链物流安全评价 电子计算机技术的发展而逐步完善的。80年代后,在工业发达国家引起了广泛关注。 传统的事故树分析是以布尔代数为基础的,在FTA定量分析时基本事件的发 生概率必须是精确的,然而由于模糊的环境和不准确的数据,都会严重影响事件发生的概率,所以在处理实际的问题时,很难实现用精确数值表示事件发生的概率。除此以外,我们需要借助统计大量的数据才能获得事件的概率值,但是对于事故发生频率很低的情况,是很难获得大量统计数据的,从而为确定事件发生的概率值造成了极大的挑战。因此子基本事件发生概率不准确的情况下,传统的事故树分析是无能为力的。为了有效解决这一难题,在本文中将模糊集合理论引入到FTA定量分析中,以模糊数刻画事件发生的概率,事故树成为模糊事故树,用模糊方法进行定量分析。 3,1.1事故树分析程序 在实际应用事故树分析技术时,虽然由于分析的目的和要求分析的深度等原 因,其具体方法各有差别,但一般的来说,事故树分析方法的具体步骤是收集足够的系统资料,找出合适的顶事件,分析产生事故的原因,在画出系统失效的事故树后,首先是定性的分析求出导致顶事件发生的最小基本事件的集合(即事故树的最小割集),然后再根据各底事件的己知概率进行定量计算,以获得系统的失效

火灾事故树分析方法

第一章火灾事故树分析方法 事故树分析方法是系统安全工程中最常用的分析方法之一,是一种由事故树演绎推理事故过程和原因的评估方法,本节主要介绍该方法的基本概念和定性、定量分析的一般流程,更详细的计算分析过程可参考相关文献。 一、事故树分析法的基本概念 事故树分析是一种演绎推理法。这种方法把系统可能发生的某种事故与导致事故发生的各种原因之间的逻辑关系用一种称为事故树的树形图表示,通过对事故树的定性与定量分析,找出事故发生的主要原因,为确定安全对策提供可靠依据。 事故树评估方法是具体运用运筹学原理对事故原因和结果进行逻辑分析的方法。事故树分析方法先从事故开始,逐层次向下演绎,将全部出现的事件用逻辑关系联成整体,对能导致事故的各种因素及相互关系,作出全面、系统、简明和形象的描述。 对于火灾事故,可通过事故树分析,经过中间联系环节,将潜在原因和最终事故联系起来。这样可以调查事故原因,为采取整改措施提供依据。通过对原因的逻辑分析,可以分清导致事故原因的主次,这样控制住有限的几个关键原因,就能有效地防止重大火灾事故发生,提高管理的有效性,节约人力、物力。 二、事故树的符号及其意义 事故树采用的符号包括事件符号、逻辑门符号和转移符号三大类。 1.事件及事件符号 在事故树分析中各种非正常状态或不正常情况皆称事故事件,各种完好状态或正常情况皆称成功事件,两者均简称为事件。事故树中的每一个节点都表示一个事件。 (1)结果事件。结果事件是由其他事件或事件组合所导致的事件,它总是位于某个逻辑门的输出端。用矩形符号表示。 (2)底事件。底事件是导致其他事件的原因事件,位于事故树的底部,它总是某个逻辑门的输入事件而不是输出事件,用圆形符号表示。 (3)特殊事件。特殊事件是指在事故树分析中需要表明其特殊性或引起注意的事件,用菱形符号表示。 2.逻辑门及其符号 逻辑门是连接各事件并表示其逻辑关系的符号。 (1)与门。与门可以连接数个输入事件E1、E2 , …,E n和一个输出事件E,表示仅当所有输入事件都发生时,输出事件E 才发生的逻辑关系。 (2)或门。或门可以连接数个输入事件E1 ,E2 , …,E n 和一个输出事件E,表示至少一个

事故树分析

事故树分析 一、事故树分析的定义 事故树分析(Fault Tree Analysis,简称FTA)又称故障树分析,是安全系统工程最重要的分析方法。1961年,美国贝尔电话研究所的沃特森(Watson)在研究民兵式导弹反射控制系统的安全性评价时,首先提出了这个方法。1974年,美国原子能委员会应用FTA对商用核电站的灾害危险性进行评价,发表了拉斯姆森报告,引起世界各国的关注。此后,FTA从军工迅速推广到机械、电子、交通、化工、冶金等民用工业。 事故树是从结果到原因描绘事故发生的有向逻辑树。它形似倒立着的树,树中的节点具有逻辑判别性质。树的“根部”顶点节点表示系统的某一个事故,树的“梢”底部节点表示事故发生的基本原因,树的“树权”中间节点表示由基本原因促成的事故结果,又是系统事故的中间原因。事故因果关系的不同性质用不同逻辑门表示。这样画成的一个“树”用来描述某种事故发生的因果关系,称之为事故树。 事故树分析逻辑性强,灵活性高,适应范围广,既能找到引起事故的直接原因,又能揭示事故发生的潜在原因,既可定性分析,又可定量分析。事故树分析可用来分析事故,特别是重大恶性事故的因果关系。 二、事故树分析的步骤 (一)编制事故树编制步骤包括:1、确定所分析的系统,即确定系统所包括的内容及其边界范围。2、熟悉所分析的系统,是指熟悉系统的整体情况,必要时根据系统的工艺、操作内容画出工艺流程图及布置图。3、调查系统发生的各类事故,收集、调查所分析系统过去、现在以及将来可能发生的事故,同时还要收集、调查本单位与外单位、国内与国外同类系统曾发生的所有事故。4、确定事故树的顶上事件,即所要分析的对象事件。5、调查与顶上事件有关的所有原因事件,从人、机、环境和管理各方面调查与事故树顶上事件有关的所有事故原因。这些原因事件包括:机械设备的元件故障;原材料、能源供应、半成品、工具等的缺陷;生产管理、指挥、操作上的失误与错误;影响顶上事件发生的环境不良等。6、事故树作图,就是按照演绎分析的原则,从顶上事件起,一级一级往下分析各自的直接原因事件,根据彼此间的逻辑关系,用逻辑门连接上下层事件,直至所要求的分析深度,最后就形成一株倒置的逻辑树形图。 (二)事故树定性分析定性分析是事故树分析的核心内容。其目的是分析某类事故的发生规律及特点,找出控制该事故的可行方案,并从事故树结构上分析各基本原因事件的重要程度,以便按轻重缓急分别采取对策。事故树定性分析的主要内容有:利用布尔代数化简事故树;求取事故树的最小割集或最小径集;计算各基本事件的结构重要度;定性分析结论。根据分析结论并结合本企业的实际情况,订出具体、切实可行的预防措施。

故障树分析实例

故障假设分析 1 目的 故障假设分析的目的是识别危险性、危险情况或可能产生的意想不到的结果的事故事件。通常由经验丰富的人员识别可能发生的事故的情况、结果,提出降低危险性的安全措施。(对识别出的潜在事故状况不进行分级,不能定量化) 该方法包括检查设计、安装、技改或操作过程中可能产生的偏差。要求评价人员对工艺规程熟知,并对可能导致事故的设计偏差进行整合。 2 评价的结果 故障假设分析很简单,它首先提出一系列问题,然后再回答这些问题。评价结果一般以表格的形式显示,主要内容包括:提出的问题,回答可能的后果、安全措施、降低或消除危险性的安全措施。 3 所需要的资料和条件要求 由于故障假设分析方法较为灵活,它可以用于工程、系统的任何阶段,因此与工艺过程有关的资料都有可能用到。对工艺的具体过程进行分析,一般有2至3名评价人员即可完成。对—个复杂工艺进行分析时,需尽可能的将复杂的工艺问题分解成若干个小块。 4 故障假设分析方法事例 以下故障假设分析方法是参考美国化学工程师学会(CCPS)《危害评价过程指南》中有关故障假设分析方法的事例。 1)工艺中风险问题的提出背景

下面是假定公司和装置的基本情况,并简单介绍了氯乙烯单体的生产工艺。 (1)公司和装置的基本情况。 某化工有限公司是美国一家大型联合化工企业,生产氯、烧碱、硫酸、盐酸等化学品。某公司享有极高的安全信誉,在过去的59年里,始终保持安全生产。某公司的许多技术人员都是国际上公认的化工产品生产和加工方面的专家。基于众多原因,某公司决定将氯乙烯单体的生产能力扩大。某公司决定在美国Anyuhere厂建一条工艺生产状况具有世界先进水平的VC朋生产线。公司专门成立一个职能部门(筹建处)负责这项带有风险的三年投资计划。作为公司安全生产管理的一部分,该公司将在适当的时间内,组织完成该装置的操作的安全评价研究工作。 安全评价业务小组的领导者决定,为进一步识别和评价安全危险性,必须对氯乙烯单体产品的生产进行安全评价。 (2)生产工艺简述。 某公司的职能部门对涉及氯乙烯单体生产技术的专利和有关参考文献进行了广泛的查询。通过对这些资料分析比较,它们决定采纳在高温下二氯乙烯蒸气脱除氯化氢的VCM 单体生产工艺(图1)。中间体EDC的生产采用乙烯催化氯化法(图1)。在该装置建成之后,某公司还决定扩建聚氯乙烯产品(PVC)。表1、表2列出了该工艺的主要原料、中间体和产品,以及它们的化学危险特性。

事故树分析程序

事故树分析程序 事故树分析虽然根据对象系统的性质、分析目的的不同,分析的程序也不同。但是,一般都有下面的十个基本程序。有时,使用者还可根据实际需要和要求,来确定分析程序。 熟悉系统。要求要确实了解系统情况,包括工作程序、各种重要参数、作业情况。必要时画出工艺流程图和布置图。 调查事故。要求在过去事故实例、有关事故统计基础上,尽量广泛地调查所能预想到的事故,即包括已发生的事故和可能发生的事故。 确定顶上事件。所谓顶上事件,就是我们所要分析的对象事件。分析系统发生事故的损失和频率大小,从中找出后果严重,且较容易发生的事故,作为分析的顶上事件。 确定目标。根据以往的事故记录和同类系统的事故资料,进行统计分析,求出事故发生的概率(或频率),然后根据这一事故的严重程度,确定我们要控制的事故发生概率的目标值。 调查原因事件。调查与事故有关的所有原因事件和各种因素,包括设备故障、机械故障、操作者的失误、管理和指挥错误、环境因素等等,尽量详细查清原因和影响。 画出事故树。根据上述资料,从顶上事件起进行演绎分析,一级一级地找出所有直接原因事件,直到所要分析的深度,按照其逻辑关系,画出事故树。 定性分析。根据事故树结构进行化简,求出最小割集和最小径集,确定各基本事件的结构重要度排序。

计算顶上事件发生概率。首先根据所调查的情况和资料,确定所有原因事件的发生概率,并标在事故树上。根据这些基本数据,求出顶上事件(事故)发生概率。 进行比较。要根据可维修系统和不可维修系统分别考虑。对可维修系统,把求出的概率与通过统计分析得出的概率进行比较,如果二者不符,则必须重新研究,看原因事件是否齐全,事故树逻辑关系是否清楚,基本原因事件的数值是否设定得过高或过低等等。对不可维修系统,求出顶上事件发生概率即可。 定量分析。定量分析包括下列三个方面的内容:当事故发生概率超过预定的目标值时,要研究降低事故发生概率的所有可能途径,可从最小割集着手,从中选出最佳方案。 利用最小径集,找出根除事故的可能性,从中选出最佳方案。 求各基本原因事件的临界重要度系数,从而对需要治理的原因事件按临界重要度系数大小进行排队,或编出安全检查表,以求加强人为控制。 事故树分析方法原则上是这10个步骤。但在具体分析时,可以根据分析的目的、投入人力物力的多少、人的分析能力的高低、以及对基础数据的掌握程度等,分别进行到不同步骤。如果事故树规模很大,也可以借助电子计算机进行分析。

交通事故事故树分析

易童翔 云南省邱北县“特大交通事故”事故树分析 1事故分析 事故说明 2004年1月26日中午12时30分,丘北县腻脚乡小塘子村村民刁克仕无证驾驶川路牌CGC150T型多功能运输拖拉机(车牌号为云南H09770)违章搭载80人从腻脚乡小塘子村沿七江公路驶往八道哨方向,当行至二道沟村路段时由于超载过重、刹车失灵,与同向行驶的一辆两轮摩托车发生追尾碰撞,失控后向右驶离路面翻入深约5米的路基下,造成20人当场死亡,7人在送往医院和抢救过程中死亡,53人受伤(其中3人重伤)的特大农机交通事故。事故现场一片狼籍,血溅四野,惨不忍睹。经查在死亡人员中,有男性20人、女性7人;汉族17人、苗族6人、壮族2人、彝族1人。年龄最大的57岁、最小的3岁。在这次事故死亡的27人中,涉及17户家庭,有3对是夫妻;一户死亡2人以上的共6户,其中有2户死3人,死伤波及该村38户家庭,造成4名事故孤儿。事故死亡人员中,除两人分别是砚山县人嘎乡和文山县新街乡农民外,其余25人都是小塘子村人。这是近年来云南省发生的一起最大的农机交通事故。 事故原因分析 事故的原因可以归结为道路原因、人员原因和车辆原因: 对于道路原因,据调查当地的入村公路为两米宽的土路,窄的地方一辆中巴车都过不去,路面质量也很差,大多数的农村公路都是通而不畅。同时事故发生地道路崎岖多急弯,发生事故时车辆无法有效避让。 对于人员原因,一是驾驶员无证驾驶。该肇事车辆是四川省公路机械厂生产的川路牌拖拉机,曾办理过新车落户登记,核发了云南H09770牌证,2003年3月参加年度检验合格。原车主为砚山县宏兴砖厂工人,于2003年12月11日将车转卖给刁克仕,尚未办理过户手续,而刁克仕本人尚未取得驾驶证,刁克仕(已死亡)系无证驾驶。二是驾乘人员安全意识、法律意识淡薄。“事故”的肇事机车可谓创造了一项“世界级”的载客纪录。该车车厢长为米,宽为米,面积为平

相关文档