文档库 最新最全的文档下载
当前位置:文档库 › MCQ Composites 复合材料性能表征与校验分析软件

MCQ Composites 复合材料性能表征与校验分析软件

MCQ Composites 复合材料性能表征与校验分析软件
MCQ Composites 复合材料性能表征与校验分析软件

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

基于ANSYS的大型复合材料风力机叶片结构分析

国 防 科 技 大 学 学 报 第32卷第2期 JOURNA L OF NA TIONA L UNIVERSITY OF DEFE NSE TECHNO LOGY V ol.32N o.22010文章编号:1001-2486(2010)02-0046-05 基于ANSYS的大型复合材料风力机叶片结构分析Ξ 周鹏展1,2,3,肖加余1,曾竟成1,王 进2,杨 军2 (1.国防科技大学航天与材料工程学院,湖南长沙 410073; 2.株洲时代新材料科技股份有限公司,湖南株洲 412007; 3.长沙理工大学能源与动力工程学院,湖南长沙 410076) 摘 要:基于ANSY S软件,对某款应用于G L3A风场的1500kW大型复合材料风力机叶片进行了结构分析。分析结果表明:该叶片的振型以一阶挥舞和一阶摆振为主,其频率分别为0186H z和1159H z;在极限挥舞 载荷作用下,该叶片有限元模型计算得到的叶尖挠度为81445m,而该叶片全尺寸静力试验得到的极限挥舞载 荷作用下的叶尖挠度为8112m,计算值与试验值的误差只有318%;另外,该叶片的最大计算拉应力和压应力 分别为228MPa和201MPa,而该叶片玻纤Π环氧复合材料实测拉伸强度和实测压缩失稳强度分别为720MPa和 380MPa,其计算最大应力只有对应实测极限强度的3117%和5219%。 关键词:复合材料;风力机叶片;结构分析;极限挥舞载荷 中图分类号:TK8 文献标识码:A Structural Analysis of Large2scale Composite Wind Turbine B lade B ased on ANSYS ZH OU Peng2zhan1,2,3,XI AO Jia2yu1,ZE NGJing2cheng1,W ANGJin2,Y ANGJun2 (1.C ollege of Aerospace and M aterial Engineering,National Univ.of Defense T echnology,Changsha410073,China; 2.Zhuzhou T imes New M aterial T echnology C o.Ltd.,Zhuzhou412007,China; 3.C ollege of Energy and P ower Engineering,Changsha Univ.of Science&T echnology,Changsha410076,China) Abstract:Based on the ANSY S s oftware,the structural analysis of a kind of1500kW large2scale com posite wind turbine blade which applied in G L3A wind farm was carried out.The analysis results show that the vibration m odes of this blade are mainly presented as first flapwise m ode and first edgewise m ode,the frequencies of the vibration are respectively0.86H z and1.59H z.At the action of ultimate flapwise loads,the FE M analysis results show that the blade tip deformation is8.445m,while the blade tip deformation of the full scale blade under static test is8.12m,s o the deviation between the calculated and tested value of the blade tip deformation is only 3.8%.M oreover,the calculated maximum tensile stress and the com pressive stress are228MPa and201MPa,while the tested tensile strength and com pressive buckling strength of the glass2fiberΠepoxy com posite are720MPa and380MPa,respectively.C onsequently,the percentages of the calculated maximum stress and the tested ultimate strength are respectively31.7%and52.9%. K ey w ords:com posite;wind turbine blade;structural analysis;ultimate flapwise load 风力机叶片是风力发电机组的关键部件之一,随着世界风力发电机组向大功率方向发展,风力机叶片的长度越来越长,目前世界最长的复合材料风力机叶片是丹麦LM公司生产的,其长度已达6115m,单片重约18t,从而对叶片结构的强度、刚度、重量等的设计提出了更高的要求[1-3]。复合材料具有比强度高、比刚度高、重量轻、可设计性强、承力性能好等特点[4-5],因而在大型风力机叶片中获得了广泛应用。风力机叶片的结构分析作为风力机叶片结构设计的技术基础之一,开始在大功率风力机叶片结构的校核与优化设计中发挥着日益重要的作用。 由于大型复合材料风力机叶片的外形结构和铺层结构都非常复杂,其外形由不同翼型构建而成,属Ξ收稿日期:2009-09-22 基金项目:国家863计划资助项目(2007AA03Z563);中国博士后科学基金资助项目(20070420832);湖南省科技资助项目(2008RS4033) 作者简介:周鹏展(1973—),男,博士后。

Ansys复合材料结构分析操作指导书

Ansys10.0 复合材料结构分析操作指导书

第一章概述 复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Ansys是个不错的选择。 Ansys软件由美国ANSYS公司开发,是目前世界上唯一一款通过ISO9001质量体系认证的分析设计软件,有着近40年的发展历史,经过多次升级和收购其它CAE(Computer Aided Engineering )软件,目前已经发展成集结构力学、流体力学、电磁学、声学和热学分析于一体的大型通用有限元分析软件,是一款不可多得的工程分析软件。Ansys在做复合材料结构分析方面也有不俗的表现,此书将介绍如何使用该款软件进行复合材料结构分析。在开始之前有以下几点需要说明,希望大家能对有限元法有大体的认识,以及Ansys软件有哪些改进,最后给出一些学习Ansys软件的建议。 1、有限元分析方法应用简介 有限元法(Finite Element Method,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相 连构成整个有限元模型,用该模型代替实际结构进行结构分析。在对结构离散后,要求解的基本未知量就转变为各个节点位移(Ansys中称之为DOF(Degree Of Freedom),试想一下,节点的位移包括沿x,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。 2、Ansys软件的发展近况 Ansys软件目前已发展到Ansys V12版本,从V10开始Ansys加入了一个新的工作环境Workbench,原先的Ansys被称为Ansys (classic),虽然操作界面不同,但两者的求解器是一样的。Ansys (classic)的前处理功能相对较弱(主要是建模方面),因而往往需要借助第三方软件,如CAD软件。也许是迫于另一个有限元分析软件ABQUS的竞争压力,Ansys推出了新的Workbench工作环境,Workbench在建模、划分网格、求解和后处理上都作了改进,尤其在建模和划分

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

复合材料的性能和应用

摘要:近年来,各种复合材料制备技术日益更新,从陶瓷基复合材料、金属基复合材料到聚合物基复合材料,各种制备技术都得到了很大改善,使得复合材料的性能和应用得到了显著提高。本文综述陶瓷基复合材料、金属基复合材料、聚合物基复合材料等几种重要的研究方法以及应用。 关键词:先进,复合材料,制造技术。 正文:一·陶瓷基复合材料 工程陶瓷的开发是目前国内外甚为重视的新型材料研究领域。纯陶瓷材料因其脆性,不能满足苛刻条件下的使用要求。因此,目前广泛采取增韧技术来提高陶瓷的使用性能。纤维和晶须增韧陶瓷是一类有效的方法。用纤维来增韧陶瓷的技术是十年代以后开始的,最初是用碳纤维增强陶瓷,八十年代以来又开发了用陶瓷纤维和晶须增韧陶瓷,增韧效果不断取得进展,增韧技术也不断有所创新。连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。 连续纤维补强陶瓷基复合料(Continuous Fiber Reinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用.20世纪70年代初,科学家在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。 由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[5-6],因此,在重复使用的热防护领域有着重要的应用和广泛的市场。连续纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,不会发生灾难性破坏。其耐高温和低密度特性,使其成为发展先进航空发动机、火箭发动机和空天飞行器防热结构的关键材料。 二·金属基复合材料 金属基复合材料具有比强度高,比刚度高,耐热,耐磨,导热,导电,尺寸稳定等优点,是一种很有发展前途的新材料,金属基复合材料广泛应用于制造航空抗天零部件,也用于制造各种民用产品。 按基体分,金属基复合材料分为:铝基、镁基、钛基、锌基、铁基、铜基等金属基复合材料;按增强材料分,可分为:纤维增强金属基复合材料;其纤维有C、SiC、Si3N4、B4C、Al2O3等纤维;粒子增强金属基复合材料,增强粒子有:Al2O3、TiC、SiC、Si3N4、BN、SiC、MgO等。 纤维增强金属基复合材料的制造方法: (1)叠层加压法:工艺过程是:将金属(合金)箔片或纤维增强金属片按要求剪裁,并一层一层的进行叠层,然后加热加压进行成型和连接,一般是在真空或气体中进行。适于这种方法的材料有铝、钛、铜、高温合金,其增强纤维随需要而定。为了改善连接性能,有事在两片之间加入中间金属或在待连接表面涂覆或沉积一层中间金属。 (2)辊轧成型连接法:其主要的基材是铝、钛箔片,增强纤维主要是B、C、SiC、Si3N4等,有时在基材表面要涂覆一层低熔点的中间金属,增强纤维表面要预先浸沾铝或经物理气相沉积(PVI)、化学气相沉积(CVI)处理。 (3)钎焊法:在增强纤维与基材之间加入箔状、粉末状或膏状的钎料,经真空钎焊或保护钎焊而成。钎焊法可以制造管材、型材、叶片等。 (4)热等静压法:如图2所示,其工艺过程是:将纤维与基材进行叠层并装入一模具中,

-复合材料结构分析与成形原理

树脂基复合材料缠绕成型工艺的研究与应用 姓名:刘伟萍 (西北工业大学机电学院, 陕西西安710072) 摘要:随着我国航空事业的发展,先进材料方面的需求越来越急迫,复合材料各方面的 优秀性能使得它在飞机上的应用越来越广泛。现阶段我国在复合材料方面虽然取得了一 定进展,但在成型工艺方面与欧美等国家还存在一定差距。复合材料的成型工艺方法很 多,本文主要介绍了树脂复合材料缠绕成型工艺的特点、工艺流程、及现阶段还存在的 一些问题和相应的解决办法。 关键字:树脂基复合材料缠绕成型工艺流程 The Research and Application of Winding And Forming Process of Polymer Composites Abstract:With the development of Chinese aviation industry,the demand in the spects of advanced materials become more urgent.Because of the excellent properties of composites,it is applied more and more widely in the aircraft.Nowadays,China has made some progress in terms of composite materials ,But in terms of composites forming process,there is still a gap between China and westen developed countries like America and UN.There is A lot of methods in c omposites and winding forming process,this paper describes the characteristics、forming process of polimer composites,it also introduces some problems and corresponding solutions. Keyword:Polymer Composites Winding And Forming Process technological process 1 绪论 1.1复合材料的应用与研究 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料具有质量轻、比强度、比模量高,较好的延展性、抗腐蚀、隔热、隔音、耐高温、性能可设计性等特点,因此被大量用于航空航天等军事领域和民用领域,是制造飞机、火箭、航天飞行器等的理想材料。 在航空工业中,复合材料的应用越来越广泛,而且成为衡量飞机性能的重要参数。复合材料成型技术在应用过程中不断积累应用经验,提高技术水平, 完善

复合材料力学性能表征(教学资料)

复合材料力学性能表征(characterization of mechanical properties of composites) 力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。 此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。 拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。通过拉伸试验可获得如下材料的性能指标: 式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。 式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。 拉伸弹性模量Et 式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目: σL:∥纤维方向的拉伸强度; σT:⊥纤维方向的拉伸强度; EL:∥纤维方向的拉伸模量; ET:⊥纤维方向的拉伸模量。 应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。 压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:

由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测 σL:∥纤维方向的压缩强度; σT:⊥纤维方向的压缩强度; EL:∥纤维方向的压缩模量; ET:上纤维方向的压缩模量。 弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。用弯曲试验作为筛选试验是简单易行的方法。 复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。材料的弯曲强度σ f为: 式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。 弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算: 式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。 剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。层问剪切强度测试方法有直接剪切法和短梁弯曲法等。 (1)直接剪切法。试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。 式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

复合材料的结构及作用

复合材料的结构及作用 一、复合材料的结构及作用 是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合包装材料一般由基层、功能层和热封层组成。 a.基层也是材料的外层,从商品对包装性能的要求出发,外层应具有良好的光学性能、良好的印刷适性、耐磨、耐热、一定的强度和刚度,这样使包装外观具有极佳的表现力,增加了对消费者的吸引力; b.功能层也是材料的中间层,从商品对包装性能的要求出发,应具有很高的阻隔性以及特殊性能,如防潮性、阻气性、阻氧性、保香性、耐化学性、防紫外线、防静电、防锈等,使内装物得到保护,延长其货架寿命,这是包装功能性的体现; c.热封层也是材料的内层,从商品对包装性能的要求出发,内层与内装物直接接触,起适应性、耐渗透性要好,特别的包装食品的复合材料,内层还应符合食品安全的要求,卫生、无毒、无味,要对其进行封合,因此还要有良好的热封性和粘合性。 复合包装一般要满足以下性能: a.强度性能,包括抗张(拉伸)强度,范围一般在40-100MPa,撕裂强度,范围一般在 0.3-3N,破裂强度范围一般在30-50MPa,热封强度范围一般在20-80N/20mm,另外根据不同使用场合,还要求刚性、耐磨性、断裂伸长率; b.阻隔性能,包括透气性能(透空气、O2、CO2、N2)、防潮性能、透湿性能、透光性能(尤其对特定波长的光线)、保香性能; c.耐候与稳定性能,包括抗油性能、抗化学介质、耐温性能、耐候性能、抗降解性能; d.加工性能,包括自动化包装适性、印刷适性、防静电性能、热收缩与尺寸稳定性; e.安全卫生性能,包括材料成分是否安全,细菌微生物的种类和含量多少,其它一些影响安全卫生的成分; f.其它性能,包括光学性能、透明度、白度、光泽度、废弃物处理的难易、展示性等。 被包物不同,对复合包装材料性能的要求也不同,应从被包物对包装功能的要求出发,选择和设计复合包装材料,使用最少的材料,达到保护内装物的目的,节约成本和资源。二、举例说明 聚乳酸/纳米碳管防静电复合材料。此材料是以纳米碳管为导电料通过球磨和密炼2种方法添加到聚乳酸基体中制备的防静电复合材料。具体工艺流程如下:纳米碳管的纯化处理(p-CNT)——纳米碳管功能化(f-CNT)——球磨法或密炼法混合——热压——成型。 聚乳酸可以看做复合材料的基层,是复合材料的基材框架。PLA是一种新型的生物可降解材料,有较好的生物相容性,属于环境友好型材料,符合绿色环保的要求,并且具有良好的透气性及拉伸强度,但抗冲击性能差,对热不稳定。

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

压电结构纤维及复合材料要点

[1]Brei D, Cannon B J. Piezoceramic hollow fiber active composites[J]. Composites Science and Technology, 2004, 64(2):245-261. 图1 中空压电纤维 一、背景介绍 一般压电纤维复合材料中的压电纤维为实心截面,当驱动该类压电复合材料时,电极放在基体表面,电场因需要穿透非导电基体因而其达到压电纤维时产生大的损耗,因而需要高的驱动电压。另外,该类复合材料的基体必须用不导电材料,这限制了其的应用范围。中空压电纤维复合材料可以降低驱动电压,并且基体材料选择广泛,可以涵盖不导电的环氧树脂和各类导电的金属材料。本文讨论了中空圆环形截面压电纤维的制造和应用,以及纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性问题。 Thin-wall纤维最理想,但存在严重的可靠性问题。总之,对中空压电纤维复合材料,要同时考虑压电纤维品质、制造及可靠性问题。 空心压电纤维复合材料驱动用31模式,实心压电纤维复合材料用33模式。尽管31模式纵向应变比33模式小一半,但所需驱动电压仅需33模式的1/10或更少。 传统的制备技术可以制备出壁厚在压电材料晶粒尺寸量级的中空纤维,但是长度仅有10mm或更短。混合共挤技术可以制备100mm以上的空心纤维。

目前对中空压电纤维复合材料的研究大多限于利用短纤维的径向应变(水声听音设备),本文则研究利用纵向应变。目前对中空纤维的研究主要内容如下:(1)纤维壁内的电场分布(2)电场和应变之间的关系。本文主要研究(3)纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性影响(4)中空纤维质量对复合材料制备和性能的影响。 二、单个纤维及层板的有效性质 中空纤维中的电场: tw E V /t = thin-wall approximation V E(r)r ln(1) -=--α 在这篇文献里没有提到这个公式是近似的,还用这个公式计算了各种厚度的中空纤维的电场,但在后面Lin 和Sodano 的文献中,似乎说为近似的。在一般情况,由该表达式电场内表面大外表面小,最大与最小差值随α增加而增大,这样在外表面达到极化时,内表面处材料有可能由于大的电场产生的应力而损坏。同样在驱动中空纤维时,在外表面难以达到最大工作电压。因此,α小的中空纤维是一个好的选择。 纤维有效31d : F 31tw 31,eff tw d E d E ln(1)(1/0.5)-??ε== ?-αα-??,F 31,eff d 随着α的增加而降低,即薄壁中空纤维可以产生 高的应变。 单层有效31d : F 31,eff f f L la min a tw 31,eff tw lam f f m f lam d Y E d E ,Y Y Y (1)Y ??νε===ν+-ν ? ??? 讨论:(1)纤维密度(纤维数/能放入的最大纤维数) 代替纤维体积分数,f f (2)?ν=-αα??,通 过计算发现,thin-wall 纤维虽然d31最高,但由于体积分数的限制,不能使单层达到最高的d31;thick-wall 纤维虽d31不及thin-wall ,但由于可以达到高的体积分数,因而层板的d31较大。(2)层板d31随基体模量增加而降低。最大基体模量由单个纤维能承受的嵌入应力决定,嵌入应力由制备过层中基体与纤维的热应变差别引起(两种材料热膨胀系数不匹配)。纤维的环向、轴向和V on Mises 应力由作者另一篇研究工作给出。研究表明:硬的基体容易导致纤维发生强度破坏,而软的环氧树脂基体容许各种α和f ν而不发生强度破坏。 三、中空纤维制备与评估:

Ansys复合材料结构分析操作指导书 - 副本

第四章复合材料计算实例 在有了前几章知识做铺垫,这一章我们来学习两个复合材料分析的例子,加深复合材料分析的理解,也希望读者能从中收获一些经验。在这里将第二章的流程图再次拿出来,进一步熟悉ANSYS有限元分析的基本过程。 图7 Ansys 结构分析流程图 4.1 层合板受压分析 4.1.1 问题描述 层合板指的是仅仅由FRP层叠而成的复合板材,中间不包含芯材,板材的性能不仅与纤维的弹性模量、剪切模量有关,还与纤维的铺层方向有着密切关系。本例中的板材有4层厚度为0.025m的单元板复合而成,单元板的铺层方向为0°、90°、90°、0°,见图13所示。单元板的材料属性见表4.1。 表 4.1 单元板材料属性 图13 复合材料板

4.1.2 求解步骤 根据问题描述,所要分析的问题为壳体结构的复合材料板,可以采用SOLID46单元建立3D有限元模型进行分析。结合图7的一般步骤进行分析。 步骤一:选取单元类型,设置单元实常数 ⑴、在开始一个新分析前,需要指定文件保存路径和文件名。 文件保存路径GUI:【Utility Menu】|【File】|【Change Directory】见图14 指定新的文件名GUI:【Utility Menu】|【File】|【Change Jobname】见图15所示 图14 指定文件保存路径 图15 修改文件名 ⑵、选取单元类型

1)选取单元类型的GUI操作:【Main Menu】|【Preprocessor】|【Element Type】|【Add/Edit/Delete】,执行后弹出Element Types对话框。2)在Element Types对话框点击Add定义新的单元类型,弹出“Library of Element Types”对话框,见图16所示,按图中所示选择,单元 类型参考号输入框中输入数字1。 图16 单元类型对话框 3)点击“OK”,回到“Element Types”对话框见图17所示,从图中可以看到,定义的单元类型参考号为1,单元类型对应为SOLID46。 图17 已经定义好的单元类型 4)接下来,还要对单元类型做一些选项设置,点击“Options”,弹出“SOLID46 element type options”对话框,在“Form of input”下拉 选择列表中有三个选项,分别是各材料层厚度相同、变厚度材料层、 自定义宏观材料本构矩阵,选择不同的选项,会导致后面需要输入 的材料参数不同。由于本例各层厚度相同,选择“Const thk layer” 项,点击“OK”,弹出“More SOLID46 element type options”,在 K8选项中选择“All layers”,然后单击OK,随后单击ElementTypes 对话框上的Close,关闭该对话框,完成单元类型选择,见图18。

相关文档