文档库 最新最全的文档下载
当前位置:文档库 › 第三章 数列

第三章 数列

高中数学 第三章 数列

考试内容: 数列.

等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式. 考试要求:

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.

(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,井能解决简单的实际问题.

§03. 数 列 知识要点

⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n )

③b kn a n +=(k n ,为常数).

⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n

②112

-+?=n n n a a a (2≥n ,011≠-+n n n a a a )

① 注①:i. ac b =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.

ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0 ac

→为

a 、

b 、

c 等比数列的充要.

注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).

④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.

⑷数列{n a }的前n 项和n S 与通项n a 的关系:???≥-===-)

2()

1(111n s s n a s a n n n

[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件). ②等差{n a }前n 项和n

d a n d Bn An S n ??? ?

?-+??? ??=+=

22122

2

d 可以为零也可不为零→为等差

的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.

③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --;

②若等差数列的项数为2()+∈N n n ,则,

奇偶nd S S =-1

+=

n n a a S

S 偶

③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1

-=

n n S S 偶

得到所求项数

到代入12-?n n .

3. 常用公式:①1+2+3 …+n =()2

1+n n

②()()

6

1213212222++=

+++n n n n

③()2

213213333?

?

?

???+=++n n n

[注]:熟悉常用通项:9,99,999,…110-=?n n a ; 5,55,555,…()1

10

9

5-=

?

n

n a .

4. 等比数列的前n 项和公式的常见应用题:

⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:

.)

1(1])1([)

1(...)1()1(1

2r r a a r a r a r a a n

n +-+-=

+++++++-

⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:

)1(...)

1()

1()

1(10

11

12

r a r a r a r a ++++++++=

)

1(1]

)

1(1)[1(12

r r r a +-+-+.

⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.

()

()

()

()()

()

()

()

1

111

111 (1112)

1

-++=

?-+=

+?++++++=+--m

m

m

m

m m m

r r ar x r

r x r a x r x r x r x r a

5. 数列常见的几种形式:

⑴n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.

具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若2

1x x ≠可设n n n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .

⑵r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定.

①转化等差,等比:1

)(11-=

?-+=?+=+++P r x x Px Pa a x a P x

a n n n n .

②选代法:=

++=+=--r r Pa P r Pa a n n n )(21x P

x a P r

P

P r a a n n n -+=--

-+

=?--1

11

1)(1

)1

(

r

r P

a P

n n +++?+=--Pr 2

11

.

③用特征方程求解:

??

??

+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1

111-+--+=?-=-n n n n n n Pa

a P a Pa

Pa a )(.

④由选代法推导结果:P

r P

P r a c P

c a P r a c P

r c n n n -+

-+

=+=-+

=-=

--11

1

11

111

2121)(,,.

6. 几种常见的数列的思想方法:

⑴等差数列的前n 项和为n S ,在0

d 时,有最大值. 如何确定使n S 取最大值时的n 值,有

两种方法:

一是求使0,01 +≥n n a a ,成立的n 值;二是由n d a n

d S n )2

(2

12

-

+=利用二次函数的性质求n

的值.

⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:,...

2

1)

12,...(4

13,211n

n -?

⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.

2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(

1

1---n n n n a a a a 为同一常数。(2)通项公式法。(3)中项公式法:验证

212-++=n n n a a a N n a a a n n n ∈=++)(22

1都成立。

3. 在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足???≤≥+00

1m m a a 的项数m

使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0

1m m a a 的项数m 使得m s 取最小值。在解含绝

对值的数列最值问题时,注意转化思想的应用。 (三)、数列求和的常用方法

1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。

2.裂项相消法:适用于?

??

???+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部

分无理数列、含阶乘的数列等。

3.错位相减法:适用于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等比数列。

4.倒序相加法: 类似于等差数列前n 项和公式的推导方法.

5.常用结论

1): 1+2+3+...+n =

2

)

1(+n n

2) 1+3+5+...+(2n-1) =2

n

3)2

3

3

3

)1(2121?

?

?

???+=+++n n n 4) )12)(1(6

13212

222++=

++++n n n n

5)

111)1(1+-=+n n

n n

)2

1

1(21)

2(1+-=

+n n n n 6) )()11(

11q p q

p

p

q pq

<--=

高中数学 第三章 数列

考试内容: 数列.

等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式. 考试要求:

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.

(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,井能解决简单的实际问题.

§03. 数 列 知识要点

⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n )

③b kn a n +=(k n ,为常数).

⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n

②112

-+?=n n n a a a (2≥n ,011≠-+n n n a a a )

① 注①:i. ac b =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.

ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0 ac

→为

a 、

b 、

c 等比数列的充要.

注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).

④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.

⑷数列{n a }的前n 项和n S 与通项n a 的关系:???≥-===-)

2()

1(111n s s n a s a n n n

[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件). ②等差{n a }前n 项和n

d a n d Bn An S n ??? ?

?-+??? ??=+=

22122

2

d 可以为零也可不为零→为等差

的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.

③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --;

②若等差数列的项数为2()+∈N n n ,则,

奇偶nd S S =-1

+=

n n a a S

S 偶

③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1

-=

n n S S 偶

得到所求项数

到代入12-?n n .

3. 常用公式:①1+2+3 …+n =()2

1+n n

②()()

6

1213212222++=

+++n n n n

③()2

213213333?

?

?

???+=++n n n

[注]:熟悉常用通项:9,99,999,…110-=?n n a ; 5,55,555,…()1

10

9

5-=

?

n

n a .

4. 等比数列的前n 项和公式的常见应用题:

⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:

.)

1(1])1([)

1(...)1()1(1

2r r a a r a r a r a a n

n +-+-=

+++++++-

⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:

)1(...)

1()

1()

1(10

11

12

r a r a r a r a ++++++++=

)

1(1]

)

1(1)[1(12

r r r a +-+-+.

⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.

()

()

()

()()

()

()

()

1

111

111 (1112)

1

-++=

?-+=

+?++++++=+--m

m

m

m

m m m

r r ar x r

r x r a x r x r x r x r a

5. 数列常见的几种形式:

⑴n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.

具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若2

1x x ≠可设n n n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .

⑵r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定.

①转化等差,等比:1

)(11-=

?-+=?+=+++P r x x Px Pa a x a P x

a n n n n .

②选代法:=

++=+=--r r Pa P r Pa a n n n )(21x P

x a P r

P

P r a a n n n -+=--

-+

=?--1

11

1)(1

)1

(

r

r P

a P

n n +++?+=--Pr 2

11

.

③用特征方程求解:

??

??

+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1

111-+--+=?-=-n n n n n n Pa

a P a Pa

Pa a )(.

④由选代法推导结果:P

r P

P r a c P

c a P r a c P

r c n n n -+

-+

=+=-+

=-=

--11

1

11

111

2121)(,,.

6. 几种常见的数列的思想方法:

⑴等差数列的前n 项和为n S ,在0

d 时,有最大值. 如何确定使n S 取最大值时的n 值,有

两种方法:

一是求使0,01 +≥n n a a ,成立的n 值;二是由n d a n

d S n )2

(2

12

-

+=利用二次函数的性质求n

的值.

⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:,...

2

1)

12,...(4

13,211n

n -?

⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.

2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(

1

1---n n n n a a a a 为同一常数。(2)通项公式法。(3)中项公式法:验证

212-++=n n n a a a N n a a a n n n ∈=++)(22

1都成立。

3. 在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足???≤≥+00

1m m a a 的项数m

使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0

1m m a a 的项数m 使得m s 取最小值。在解含绝

对值的数列最值问题时,注意转化思想的应用。 (三)、数列求和的常用方法

1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。

2.裂项相消法:适用于?

??

???+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部

分无理数列、含阶乘的数列等。

3.错位相减法:适用于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等比数列。

4.倒序相加法: 类似于等差数列前n 项和公式的推导方法.

5.常用结论

1): 1+2+3+...+n =

2

)

1(+n n

2) 1+3+5+...+(2n-1) =2

n

3)2

3

3

3

)1(2121?

?

?

???+=+++n n n 4) )12)(1(6

13212

222++=

++++n n n n

5)

111)1(1+-=+n n

n n

)2

1

1(21)

2(1+-=

+n n n n 6) )()11(

11q p q

p

p

q pq

<--=

高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结 知识网络

二、知识梳理 ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) 三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0 1m m a a 的项数m 使得m s 取最小值。在解含绝对值

的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项. (2)利用公式法求数列的通项:①???≥-==-) 2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式. (3)应用迭加(迭乘、迭代)法求数列的通项: ①)(1n f a a n n +=+;②).(1n f a a n n =+ (4)造等差、等比数列求通项: ① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12. 第一节通项公式常用方法 题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S . 总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:???≥-==-) 2() 1(11n S S n S a n n n 若1a 适 合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ?=+“;⑵迭加法、迭乘法公式: ① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 11 22332211a a a a a a a a a a a a n n n n n n n ??????= ----- . 题型3 构造等比数列求通项 例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式. 总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:

数列解答题练习答案

13-14学年度上学期高三理数综合练习 高三理科数学寒假作业 数列答案 1.在等差数列{a n}中,a3+a4+a5=84,a9=73. (1)求数列{a n}的通项公式; (2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求 数列{b m}的前m项和S m. 解(1)因为{a n}是一个等差数列, 所以a3+a4+a5=3a4=84,即a4=28. 设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9. 由a4=a1+3d得28=a1+3×9,即a1=1. 所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*). (2)对m∈N*,若9m<a n<92m, 则9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1, 故得b m=92m-1-9m-1. 于是S m=b1+b2+b3+…+b m =(9+93+…+92m-1)-(1+9+…+9m-1) =9×(1-81m) 1-81 - 1-9m 1-9 =92m+1-10×9m+1 80. 2.已知两个等比数列{a n},{b n},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. (1)若a=1,求数列{a n}的通项公式; (2)若数列{a n}唯一,求a的值. 解(1)设数列{a n}的公比为q,则b1=1+a=2,b2=2+aq=2+q,b3=3+aq2=3+q2,由b1,b2,b3成等比数列得(2+q)2=2(3+q2). 即q2-4q+2=0,解得q1=2+2,q2=2- 2. 所以数列{a n}的通项公式为a n=(2+2)n-1或a n=(2-2)n-1. (2)设数列{a n}的公比为q,则由(2+aq)2=(1+a)(3+aq2),得aq2-4aq+3a -1=0(*), 由a>0得Δ=4a2+4a>0,故方程(*)有两个不同的实根. 由数列{a n}唯一,知方程(*)必有一根为0, 代入(*)得a=1 3. 3.在等比数列{a n}中,a2=6,a3=18,(1)求数列{a n}的通项公式;

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

等差数列与等比数列学案

专题三 数 列 第1讲 等差数列与等比数列 等差、等比数列的基本运算(基础型) 通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n - 1. 求和公式 等差数列:S n =n (a 1+a n )2=na 1+n (n -1) 2d ; 等比数列:S n =a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). 性质

1.(2018·贵阳模拟)设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则S 11 S 5=( ) A.11 5 B.522 C.1110 D.225 解析:选D.S 11S 5=11 2(a 1+a 11) 52(a 1+a 5 )=11a 65a 3=22 5 .故选D. 2.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 解析:选B.设等差数列{a n }的公差为d ,因为3S 3=S 2+S 4,所以3(3a 1+3×22d )=2a 1+d +4a 1+4×32d ,解得d =-3 2a 1,因为a 1=2,所以d =-3,所以a 5=a 1+4d =2+4×(-3) =-10.故选B. 3.(2018·郑州模拟)等比数列{a n }的前n 项和为S n ,若对任意的正整数n ,S n +2=4S n +3恒成立,则a 1的值为 ( ) A .-3 B .1 C .-3或1 D .1或3 解析:选C.设等比数列{a n }的公比为q ,当q =1时,S n +2=(n +2)a 1,S n =na 1,由S n +2 =4S n +3得,(n +2)a 1=4na 1+3,即3a 1n =2a 1-3,若对任意的正整数n ,3a 1n =2a 1-3恒成立,则a 1=0且2a 1-3=0,矛盾,所以q ≠1, 所以S n =a 1(1-q n )1-q ,S n +2=a 1(1-q n + 2)1-q , 代入S n +2=4S n +3并化简得a 1(4-q 2)q n =3+3a 1-3q ,若对任意的正整数n 该等式恒成 立,则有?????4-q 2 =0,3+3a 1-3q =0,解得?????a 1=1,q =2或? ????a 1=-3,q =-2,故a 1=1或-3,故选C. 4.(2018·南宁模拟)在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20 a 10 =________. 解析:法一:设等比数列{a n }的公比为q ,由a 2a 6=16得a 21q 6=16,所以a 1q 3 =± 4.由a 4+a 8=8,得a 1q 3(1+q 4)=8,即1+q 4=±2,所以q 2=1.于是a 20 a 10 =q 10=1. 法二:由等比数列的性质,得a 24=a 2a 6=16,所以a 4=±4,又a 4+a 8=8,

数列解答题专练(含答案版)

数列高考真题汇编 1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14n a n a n +1 ,求数列{b n }的前n 项和T n . 解析 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12,(3分) 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1. 所以a n =2n -1.(5分) (2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1) =(-1)n -1? ?? ??12n -1+12n +1.(6分) 当n 为偶数时, T n =? ????1+13-? ????13+15+…+? ????12n -3+12n -1-? ?? ??12n -1+12n +1=1-12n +1=2n 2n +1 . 当n 为奇数时, T n =? ????1+13-? ????13+15+…-? ????12n -3+12n -1+? ?? ??12n -1+12n +1=1+12n +1=2n +22n +1 .(10分) 2.已知数列{a n }的前n 项和S n =n 2+n 2 ,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解析 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2 =n . 故数列{a n }的通项公式为a n =n .

6708第三章数列提高测试题一

提高测试一 1.两个等差数列2,5,8,…,197和2,7,12,…,197,中相同的数之和是() (A ) 1196; (B )1391; (C )1393; (D )1169 答案:C 2.已知{}n a 是各项为正数的等比数列,252645342=++a a a a a a ,那么53a a +为() (A ) 5; (B )10; (C )15; (D )20 答案:A 3.已知等差数列{}n a 中,38,0,012121==+-≠-+-n n n n n S a a a a ,则n 等于() (A ) 38; (B )20; (C )19; (D )10 答案:D 4.两个等差数列,它们的前n 项和之比为 1235-+n n ,则这两个数列的第九项的比是_________ (答案:8∶3) 5.在数列{}n a 中,n n a n S a 21,1==,则=n a ______________。 (答案:() 12+n n ) 6.已知数列1, )211(+,)41211(++,…, )8141211(+++,…)21...41211(1-++++n ,则此数列的前n 项和=n S ________________. (答案:121 22-+-n n ) 7.已知数列{}n a 中,S n 是它的前n 项和,且()1,2411=∈+=+a N n a S n n . (1)设()N n a a b n n n ∈-=+21,求证数列{}n b 是等比数列; (2)设()N n a C n n n ∈=2,求证数列{}n c 是等差数列 (答案: 7.(1)由题意,得n n n n a a S S 44112-=-+++, 即n n n a a a 4412-=++,变形得()n n n n a a a a 222112-=-+++, 即n n b b 21=+,再由已知,12 3-?=n n b (2)由n n n a C 2=,得112++=-n n n n b C C ,又如123-?=n n b ,故431=-+n n C C ) 8.已知等差数列{}n a 的首项为211=a ,公差4-=d .

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学必修五第二章数列学案 等差数列的前n项和(2)

§2.3 等差数列的前n 项和(2) 主备人: 王 浩 审核人: 马 琦 学习目标 1. 进一步熟练掌握等差数列的通项公式和前n 项和公式; 2. 了解等差数列的一些性质,并会用它们解决一些相关问题; 3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值. 学习过程 一、复习回顾 1:等差数列{n a }中, 4a =-15, 公差d =3,求5S . 2:等差数列{n a }中,已知31a =,511a =,求和8S . 二、新课导学 ※ 探究一:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? ※探究二:记等差数列{}n a 的偶数项和为S 偶,奇数项和为S 奇.当项数为2n 时,则有 S S nd -=奇偶 ;当项数为21n -时,则有n S S a -=奇偶 。 ※探究三:当等差数列{}n a 的项数为21n -时,有12-n S = 。 ※ 典型例题 例1、已知数列{}n a 的前n 项为212 n S n n =+,求这个数列的通项公式. 这个数列是等差数列

吗?如果是,它的首项与公差分别是什么? 变式:已知数列{}n a 的前n 项为212 343n S n n =++,求这个数列的通项公式. 小结:数列通项n a 和前n 项和n S 关系为 n a =11(1) (2)n n S n S S n -=??-≥?,由此可由n S 求n a . 例2、等差数列{}m a 共有2n 项,其中奇数项的和为90,偶数项的和为72,且 2133n a a -=-,求该数列的公差d 。 变式:已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且745 3 n n A n B n +=+,求n n a b 。 例2、已知等差数列24 54377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值. 变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

等差数列的性质导学案

§等差数列(第二课时) 教学目标: 1、进一步了解等差数列的项数与序号之间的规律; 2、理解等差数列的性质; 3、掌握等差数列的性质及其应用。 教学难点:等差数列的灵活应用 预习案 自主学习:等差数列的常用性质: 1.若数列{a n }是公差为d 的等差数列: (1)d>0时,{a n }是 ;d<0时,{a n }是 ;d=0时,{a n } (2)等差数列的通项公式:n a = 通项公式的推广:n m a a =+ ()* ,N n m ∈ 结论:若数列{n a }的通项公式为q pn a n +=的形式,p,q 为公差的等差数列。 (3)多项关系:若q p n m +=+,()*,,,N q p n m ∈则m n a a +=

2、等差数列的性质: (1)若数列{n a }是公差为d 的等差数列,则下列数列: ①{c+a n }(c 为任一常数)是公差为______的等差数列; ②{c a n }(c 为任一常数) 是公差为______的等差数列; (2) 若数列{n a }、{}分别是公差为d 1和d 2的等差数列,则数列{n n pa qb + } (pq 是常数)是公差为________的等差数列。 (3)若{a n }为等差数列,公差为d ,则{a 2n }也是 ,公差为 ; a m ,a m+k ,a m+2k ,a m+3k ,…,成 ,公差为 ; 合作探究: 问题1:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 应满足什么条件 问题2:在直角坐标系中,画出通项公式为53-=n a n 的数列的图象,这个图象有什么特点 (2)在同一直角坐标系中,画出函数y=3x-5的图象,你发现了什么据此说说等差数列q pn a n +=的图象与一次函数y=px+q 的图象之间有什么关系

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

2.2等差数列教学设计(第一课时)

2.2等差数列教学设计(第一课时)

2.2.1《等差数列》教学设计 教材分析1.教学内容分析 本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。主要内容是等差数列定义和等差数列的通项公式。 2.地位与作用数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法. 教学目标知识目标 1.理解并掌握等差数列的定义,能用定义判断一个数 列是否为等差数列; 2.掌握等差数列的通项公式. 能力目标 1.通过概念的引入与通项公式的推导,培养学生分析 探索能力,增强运用公式解决实际问题的能力; 2.培养学生观察、归纳能力,在学习过程中,体会归 纳思想和化归思想并加深认识. 情感目标 通过对等差数列的研究,使学生明确等差数列与一般 数列的内在联系,渗透特殊与一般的辩证唯物主义观 点,加强理论联系实际,激发学生的学习兴趣. 教学重难点重点 1.等差数列的概念; 2.等差数列的通项公式的推导过程及应用. 难点 理解等差数列“等差”的特点及 通项公式的含义. 教学设想 本课教学,重点是等差数列的概念,在讲概念时,通过创设情境引导学生理解概念,进一步引导学生通过概念来判断一个数列是否是等差数列。整个过程以学生自主思考、合作探究、教师适时点拨为主,

真正体现课堂教学中学生的主体作用。 教学过程 教学环节 教师活动 学生 活动 设计意图 环节一 环节1 创设情境,提出问题 在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星: (1)1682,1758,1834,1910,1986,( ) 你能预测出下一次的大致时间吗? 主持人问: 最近的时间什么时候可以看到哈雷慧星? 天文学家陈丹说: 2062年左右。 学生活动 通过情景 引出数列,观察发现 其规律,并通过规律 填写内容。 情景引入 提高学生 的学习兴 趣, 调动 学生的积极性

数列解题技巧

第四讲数列与探索性新题型的解题技巧 【命题趋向】 从2007年高考题可见数列题命题有如下趋势: 1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有. 2.数列中a n与S n之间的互化关系也是高考的一个热点. 3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用. 4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等. 因此复习中应注意: 1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等. 4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳. 5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是

学好本章的关键. 6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果. 7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用. 【考点透视】 1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.

第三章 等数列与等比数列

第三章 等差数列与等比数列 1、数列6,9,14,21,30,……的一个通项公式是( ) A .33+n B. 122+n C. 32++n n D. 52+n 2、在等差数列}{n a 中,若45076543=++++a a a a a ,则82a a +的值是( ) A .45 B. 75 C. 180 D. 300 3、若21 +x ,11 +x ,11 -x 是某等差数列的前3项,则这个数列的第50项是( ) A .521 - B. 496 - C. 415 D. 823 4、在等差数列}{n a 中,若A a a a a a k k k k k =++++++++4321,则51+-+k k a a 的值是( ) A .A B. 3A C. 5A D. 52A 5、在等差数列}{n a 中,,0≠d 若n >1且* N n ∈,则( ) A .11+?n a a <n a a ?2 B. 11++n a a >n a a +2 C. 11++n a a <n a a +2 D. 11+?n a a >n a a ?2 6、首项为24-的等差数列,从第10项起开始为正数,则公差d 的取值范围是( ) A .d >38 B. d <3 C. 38 ≤d <3 D. 38 <d ≤3 7、在等差数列}{n a 中,若45741=++a a a ,39852=++a a a ,则=++963a a a ( ) A .33 B. 30 C. 27 D. 24 8、在等差数列}{n a 中,263,143,234212===n a a a ,则=n ( ) A .70 B. 71 C. 72 D. 73 9、若3lg 2lg 2,2lg ,,++y y x 成等差数列,则y x ,的值分别为( ) A .32 lg ,23 lg B. 23 lg ,3lg C. 3lg ,23 lg D. 3lg ,3lg 2lg + 10、已知等差数列}{n a 前20项之和是p S 1020=,那么p 应是( ) A .155a a + B. 1022a a + C. 220a a + D. 129a a + 11、在等差数列}{n a 中,531a a a +++…6099=+a ,公差21 =d ,则321a a a +++…+=100a ( )

新人教A版必修5高中数学2.2等差数列(1)学案(三)

高中数学 2.2等差数列(1)学案 新人教A 版必修5 学习目标 1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断 一个数列是等差数列; 2. 探索并掌握等差数列的通项公式; 3. 正确认识使用等差数列各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定项. 学习重难点 1.重点: 等差数列的通项公式 2.难点: 灵活运用通项公式求等差数列的首项、公差、项数、指定项 一、课前准备 (预习教材P 36 ~ P 39 ,找出疑惑之处) 复习1:什么是数列? 复习2:数列有几种表示方法?分别是哪几种方法? 二、试一试 问题一:等差数列的概念 1:请同学们仔细观察,看看以下四个数列有什么共同特征? ① 0,5,10,15,20,25,… ② 48,53,58,63 ③ 18,15.5,13,10.5,8,5.5 ④ 10072,10144,10216,10288,10366 新知: 1.等差数列:一般地,如果一个数列从第 项起,每一项与它 一项的 等于同一个常数, 这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示. 2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项, 用等式表示为A = 问题二:等差数列的通项公式 2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么? 若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: 21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+ …… 由此归纳等差数列的通项公式可得:n a = ∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a . ※ 学习探究 探究1 ⑴求等差数列8,5,2…的第20项; ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

高一单招数学数列全章知识点(完整版)

数列知识梳理 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) 三、在等差数列{n a }中,有关S n 的最值问题: (1)当1a >0,d<0时,满足?? ?≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0 1m m a a 的项数m 使得m s 取最小值。在解含绝对值的数列最值问题时,注意 转化思想的应用。 四.数列通项的常用方法:

(1)利用观察法求数列的通项. (2)利用公式法求数列的通项:① ? ? ? ≥ - = = - )2 ( )1 1 1 n S S n S a n n n (;②{} n a等差、等比数列{}n a公式. 1、已知{a n}满足a n+1=a n+2,而且a1=1。求a n。 例1已知 n S为数列{}n a的前n项和,求下列数列{}n a的通项公式: ⑴1 3 22- + =n n S n ;⑵1 2+ =n n S. (3)应用迭加(迭乘、迭代)法求数列的通项: ①) ( 1 n f a a n n + = + ;②). ( 1 n f a a n n = + 数列求和的常用方法 一公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、等差数列求和公式:d n n na a a n S n n2 )1 ( 2 ) ( 1 1 - + = + = 2、等比数列求和公式: ?? ? ? ? ≠ - - = - - = = )1 ( 1 1 ) 1( )1 ( 1 1 1 q q q a a q q a q na S n n n 二.裂项相消法:适用于 ? ? ? ? ? ? +1 n n a a c 其中{ n a}是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。 例2 求数列 )1 (n 1 + n 的前n项和 ***这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1) 1 1 1 )1 ( 1 + - = + = n n n n a n

高二数学数列练习题(含答案)

高二《数列》专题 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

(3)累乘法( n n n c a a =+1型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+00 1 m m a a 的项数m使得m S 取最大值. (2)当 0,01>

相关文档
相关文档 最新文档