文档库 最新最全的文档下载
当前位置:文档库 › 在高中数学中如何进行数学建模教学

在高中数学中如何进行数学建模教学

在高中数学中如何进行数学建模教学
在高中数学中如何进行数学建模教学

在高中数学中如何进行数学建模教学

专题1 从列方程解应用题到数学建模

专题2 韩信点兵的数学模型

专题3 函数建模——容器中小的深度与注水时间的关系

专题4 几何建模(一)——飞机飞行的最短路径

专题5 几何建模(二)追截走私船问题

专题6 有关复利的数学模型

专题7 最值模型

专题8 “命运的数学公式”

专题9 中奖概率

专题10 对策模型——嫌疑犯的选择

专题11 水污染治理方案的比较

专题12 “连环送”中的折扣问题

专题13 水库中鼻坝高度与挑角的确定

专题14 双瓶输液中的深度问题

附录数学建模与中学数学

在高中数学中如何进行数学建模教学

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何进行高中数学建模教学谈几点体会。

一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。

教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,要求学生学完后尝试解决这一类问题。

(1)、一个木材贮运公司,有很大的仓库,用于贮运出售木材。由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分贮存起来以后出售。已知:该公司仓库的最大贮藏量为20万立方米,贮藏费用为:(a+bu)元/万立方米,其中:

a=70,b=100,u为贮存时间(季度数)。已知每季度的买进、卖出价及预计的销售量为:

季度买进价(万元/立方米)卖出价(万元/立方米)预计销售量(万立方米)

冬410 425 100

春430 440 140

夏460 465 200

秋450 455 160

由于木材不易久贮,所有库贮木材于每年秋季售完。确定最优采购计划.(由于不能粘贴数学符号图片,所以没有解题)

这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。

二.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。

学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:

1、现实原型问题

2、数学模型

3、数学抽象

4、简化原则

5、演算推理

6、现实原型问题的解

7、数学模型的解

8、反映性原则

列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。

例如:购房购车模型

“自备款只需七万元人民币,其余由银行贷款,五年还清,相当于每月只需付1200元,就可拥有属于自己的住房。”“首付三四万元,就可开走一辆桑塔纳车。”报纸上此类广告比比皆是,买房与购车是未来消费的两大热点。若考虑现金支付与银行贷款相结合的办法,利用数学建模方法为工薪阶层制定购房或购车的消费决策及还贷办法。

(由于不能粘贴数学符号图片,所以没有解题)

三.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。

在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。

总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

第一章引论

教学时数:2学时

教学目标:了解数学建模的含义,数学建模的一般步骤,通过例子理解建模的有关环节,分析数学建模和列方程解应用题的差别。

教材分析:本节介绍了数学建模的含义,数学建模的一般步骤,并举例说明了建模的各个环节,最后给出了数学建模和列方程解应用题的差别,并简单介绍了建模竞赛的情况。

重点:建模的一般步骤。

难点:怎样建模

教学过程

一. 数学建模的含义

数学建模是指:根据实际问题,在一定的假设下把问题归结为数学问题,求出数学问题的解并对解进行检验的全过程。所归结的问题称为实际问题的数学模型。

注意:数学建模一般不是一蹴而就的,而是从实践到理论,再从理论到实践,不断反复修正(教材中说的“迭代”)以使模型最后与实际相符的过程。

二. 数学建模的一般步骤

包括六个环节:建模准备,作假设,建立模型,模型求解,讨论和验证,模型应用。各步骤的关系可以用下面的框图表示:

特别要注意图中:当通过讨论和验证,数学模型的解和实际情况不符时,必须重新研究实际问题,修改假设并重新建立模型;只有当模型的结果和实际情况相符时,才可以进入下一步在实践中应用所得的数学模型,即考虑利用模型或作预测或求最佳方案或解释客观实际现象等。

要弄请各环节的含义

各环节的含义:

模型准备:了解实际问题的背景、建模的目的,收集数据和相关信息,了解决定事物性质和发展的各种量及

其关系,找寻其变化的客观规律。

作假设:对各种量及其关系进行分析,抓住主要矛盾,忽略次要因素,对问题作出合理的假设。注意所作假设不能太粗略,这样会使所归结的数学模型不能反映事物的主要性质,从而难以在实际中应用;假设也不能太复杂,即考虑的因素太多,这样会使得到的数学模型过于复杂,从而得不到解或求解太困难。模型假设的恰当选择可能要经过多次反复才能达到。假设是推导模型的理论基础和依据。

建立模型:根据问题的要求和假设,应用适当的数学方法把问题化为数学研究的对象即数学模型。这里所用的数学方法会因人、因事而异。不同的建模者,可能会选择他所熟悉的方法;不同的实际问题,可能适宜用不同的数学方法去研究。模型可能是离散的,如归结为初等数学问题、规划问题、网络问题、马尔可夫链等;模型也可能是连续的,如归结为微积分问题、微分方程问题、变分问题等。这里,最终判断模型优劣的标准是模型的结果是否合乎实际,是否合乎解决实际问题的要求,而不是把问题所含数学知识是否高深作为标准。

模型求解:对归结的数学问题利用恰当的方法求解。有时可以求出解的表达式,有时只能求出数值解。通常还把解的结果列表或画出图形。大多数数学模型要使用计算机计算,这时要求能正确地使用各种软件。

讨论和验证:根据模型求解的结果,讨论得到的解是否和情况相符。模型的各个环节都可能影响模型的结果,例如假设是否合适,归结为数学问题时推理是否正确,求解所用的方法是否恰当,数据是否满足一定的精确度要求等等,都应该在讨论的范围之内。

模型应用:在模型的结果符合实际的前提下,可以利用所的模型对实际问题作预测、寻优、分析、解释、决策等。

三. 通过例子理解建模的有关环节

下面我们结合例 1 说明上述建模的有关环节:

〔例1〕一个星级旅馆有150个客房。经过一段时间的经营实践,旅馆经理得到一些数据:如果每间客房定价为160元,住房率为55%;每间客房定价为140元,住房率为65%;每间客房定价为120元,住房率为75%;每间客房定价为100元,住房率为85%。欲使每天的收入最高,问每间住房的定价应是多少?

要注意在例子中提到的情景和经分析后所作的三个假设之间的区别和联系。

假设一“每间客房的最高价为160 元”,这是原先情景中没有的。这个假设使我们在下面求函数的最小值时能够确定自变量的范围。同时要注意到这个假设是合理的,因为“无其它信息”。

假设二“住房率随房价下降而线性增长”也是原先情景中没有的。这个假设可以使得我们可以具体地写出旅馆一天的总收入函数的表达式。同时要注意到这个假设是合理的,其合理性容易从经理给出的数据中看出:房价每下降20 元,住房率就增加10 个百分点。

假设三“各间客房定价相等”的假设,一方面是由于情景中没有给出“各间客房定价不同”的信息,另一方面是为了计算的简便。容易理解:如果各间客房定价不同将会使问题变得复杂而难以分析。

这三个假设在下面的建模过程中的作用已在上面文字中用蓝色标出。

其次要注意把实际问题归结为数学问题的过程。

首先设变量:以记旅馆的总收入,以记与160 元相比降低的房价,即房价为。

通过分析可以得到和的关系为

注意这个表达式自变量的变化范围为.

问题就变成求

这就是问题的数学模型。

求解该数学问题。

这里应用配方法求得函数的最大值。此时定价应为

元。

最后是模型的讨论与验证。

教材中验证了得到的元确实是使总收入达到最大的房价。

在实际应用时,更重要的是上述结论是否符合实际。例如现在的定价不是25 元,改按这种方法定价是否能使旅馆的总收入有所增加?实际每间客房的房价不同是否对总收入影响很大而不可忽略,从而我们这里的假设三不再成立等等。

四. 数学建模和列方程解应用题的差别

作为中学教师,应该注意数学建模和列方程解应用题的差别。两者初看起来都和实际问题有关,但是至少在三个方面有着质的差别:

问题的起点不同:应用题的情景是经过数学教师加工提炼出来的,而数学建模面对的是实际问题本身。作为数学建模的例子来说,上述例 1 的情景可以设想为:旅馆提出了如何提高旅馆总收入的问题,即最原始的实际问题是“房价如何定可以使旅馆的总收入达到最大?” 为解决这个问题,经过调查,从旅馆经理那里得到了一些以往房价与住房率的关系;接着在分析后作出例中的三个假设。而对应用题来说,问题就从经理的数据和三个假设以后开始,即假设由题目给出。这样,对应用题来说,假设是否合理是否符合实际是不需要考虑的。而对数学模型来说,作出合理的假设是正确解决问题的一个至关重要的环节。

结果的讨论与验证不同:例如求方程根的问题,应用题会讨论在求解的过程中是否有失根或增根发生,根是否合乎题意等;数学模型除了需要讨论这些问题外,还要讨论求得的根是否合乎实际情况,有时还要根据实际情况讨论:当改变方程中的某些系数时,根会如何变化等。

解是否唯一不同:应用题的正确答案只有一个。但对数学建模而言,由于人们对实际问题的认识不同、分析的角度不同、所具有的数学知识的背景不同,即使是对同一个实际问题,也会得到不同的数学模型。判断数学模型的正确性只能看其结论是否符合实际情况,例如根据数学模型所计算的结果是否和已知的数据相符;根据数学模型对某些事物的发展所作的预测是否和事物后来的变化一致等等。在这里模型的不同,甚至计算得到的解的数值在一定的范围内有些差别都是允许的。

如果我们把例 1 改写成应用题,应该有不同的形式。

一个星级旅馆有150个客房,各个客房的房价一样。经过一段时间的经营实践,旅馆经理得到一些数据:如果每间客房定价为160元,住房率为55%;每间客房定价为140元,住房率为65%等等:即房价每降低20元,住房率上升

10个百分点。现在已知该旅馆的房价最高不超过160元。为欲使每天的收入最高,问每间住房的定价应是多少?

试将上述形式和例1作比较,看看应用题和数学建模问题有何不同?

课后作业题答案

1.初想想,把只比地球赤道长 1 米的铁丝“分配”到半径为 6400 千米的球面上,仍然会紧紧地“裹”在地球上而不会留下一个让老鼠钻过去的空隙。让我们用数学方法来研究研究,事情是否真是如此?

我们的假设是:地球是一个“严格”的球体,半径为 6400 千米。因而其赤道的长度为千米,铁丝的长度为米。用这样的铁丝作成的圆的半径为米。该圆的半径与地球的半径之差,也就是铁丝和地球表面的空隙,为0.159 米。这是大约 16 厘米的空隙,足以让一只老鼠自由通过。这个结论和我们开始的猜想完全不同,可见计算的重要性。

2. 鞋店共损失 20 元加上一双鞋子的成本价:如果鞋子进货为 20 元,则鞋店共损失为 40 元。

我们分别分析用假钞的顾客、鞋店老板、豆腐店老板的得失。

用假钞的顾客:无代价地得到了一双鞋子,又从鞋店老板处得到找回的 20 元。豆腐店老板:没有损失也没有收益。

鞋店老板在借到豆腐店老板的 50 元后找给顾客 20 元,还剩 30 元;还钱给豆腐店老板时要贴出 20 元;此外还白给了顾客一双鞋。

3. 除去从甲地出发时同时有一班从乙地来的船恰好到达甲地,以及到达乙地时恰有一班船从乙地出发外,在旅程中将遇到 11 班船:从甲地出发同时和以后将有 6 班船从乙地出发,这些船将会在途中相遇;另有在该船从甲地出发前已经出发而尚未到达甲地的 5 班船也将在途中相遇。

思考题:

1.两只同样大小的杯子分别盛有数量相同的咖啡和牛奶。先从牛奶杯子里舀出一满匙牛奶放入咖啡杯里,搅匀后,再从掺有牛奶的咖啡杯子里舀出一满匙咖啡放入牛奶杯里,搅匀。这样,两只杯子中的液体又一样多了。问,咖啡杯子里的牛奶和牛奶杯子里的咖啡,哪个更多一些?

2. 试分析在例 3 的数学模型中作了哪些情景中没有的假设?

3. 报纸上报道: “在离某城 A 的正东方向 300 千米处有一台风中心, 该台风中心以每小时 40 千米的速度向西北方向移动, 离台风中心 250 千米以内的地方将受其影响.” 请作适当的假设, 建立数学模型以分析: 大约经过多少时间该城将受到台风影响? 影响的持续时间将是多少?

浅谈初中数学建模和应用性问题的教学

浅谈初中数学建模和应用性问题的教学 永安市第三中学陈贤平 摘要:落实新课程的理念,全面实施素质教育,是提高全民族的素质重要途径与手段,数学作为学校的三大基础科目,应该担负起应尽的责任。数学建模就是中学数学的一条主线,应该把视野更开阔些,以这样的观念处理具体的数学内容,紧扣数学建模,努力让学生学会从实际问题中获取信息,建立数学模型,分析问题与解决问题。明确数学建模和应用性问题教学的意义,初中应用性问题与数学建模的教学的基本原则,常见的建模方法及类型。 关键词:应用性问题、数学建模数学教学 由于社会的发展,必须培养学生具有从实际问题中获取信息,建立数学模型,分析问题与解决问题的基本能力。而中学数学中的数、代数式、方程、函数等都是反映现实世界的数学模型,因而在一定程度上,可以说数学建模就是中学数学的一条主线,应该把视野更开阔些,以这样的观念处理具体的数学内容。如对于方程,按新课程标准编写的教材没有按照原有的习惯分类,一个个讨论工程问题、行程问题、浓度问题等,而是紧扣数学建模,努力让学生学会从实际问题中获取信息,建立数学模型,分析问题与解决问题,实际上,一种数学模型也不可能是某一种问题所特有的。对于函数内容的处理同样如此,从实际问题出发,引入函数模型,研究函数性质,又回到实际中去。因此必须努力缩短数学课程与现代社会的距离,与学生的距离,与学生生活实际的距离,与学生终身需求的距离。作为初级中学数学教师应如何正确认识数学建模与应用性问题教学和进行数学建模与应用性问题教学,全面落实数学课程标准?面向所有的学生,让所有的学生获得更多可以广泛应用、与现实世界及其他学科密切相关的数学!让所有的学生学到有价值的、富有挑战性的数学!让所有的学生学会数学地思考,并积极地参与数学活动,进行自主探索! 一、数学建模和应用性问题教学的意义 1、数学建模就是建立数学模型的过程,数学模型是近似表达现象特征的一种数学结构,实际上数学建模就是用数学作工具来解决现实生活中的实际问题的过程。开展数学建模活动是促进数学教育改革,实现从应试教育向的素质转变的切实可行的改革之路,是培养学生应用意识和创新精神的有效途径;是人类探索自然和社会的运行机理中所运用的有效方法;是数学应用于数学和社会的最基本的途径。新的课程标准中对各年段数学课程的教学要求都专门列出了问题解决能力的标准,并特别强调了数学建模作为问题解决的一

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

初中数学建模

初中数学建模教学有感 摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为: 一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中

数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元? ②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元? (2)模型建立 问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?

浅谈对数学建模的认识

浅谈对数学建模的认识 【摘要】数学建模在数学和其他学科的发展过程中具有重要的意义。数学 建模有助于学生感受数学在解决实际问题中的价值和作用,体验综合运用知识和方法解决实际问题的过程;有助于激发学生学习数学的兴趣,培养学生的创新意识和实践能力。数学建模竞赛的开展有力地推动了高等院校数学教学体系、教学内容和教学方式的改革。 【关键词】数学建模认识数学建模竞赛 目录 引言 (2) 第一章数学建模 (3) 一、数学建模的起源 (3) 二、数学建模的定义 (3) 三、数学建模的特点 (4) 四、数学建模的分类 (5) 五、数学建模过程 (6) 六、数学建模的实际意义 (8) 第二章数学建模竞赛 (9) 一、数学建模竞赛的形式 (9) 二、对数学建模竞赛的认识 (9) 三、数模竞赛的团队 (9) 四、参加数学建模活动的好处 (10) 五、数学建模竞赛的局限性 (10) 六、数学建模竞赛对学生能力的培养 (11) 小结 (12) 参考文献 (13)

引言 世界上一切事物都是按照一定的客观规律运动变化着,事物之间彼此联系和相互制约,无论是从浩瀚的宇宙到渺小的粒子,还是从自然科学到社会科学都是这样。恩格斯精辟地指出:数学是研究现实世界的空间形式与数量关系的科学。数学区分于其它学科的明显特点有三个:高度的抽象性;严谨的逻辑性;应用的广泛性。事物的变化规律和事物之间的联系,必然蕴含着一定的数量关系,所以数学是认识世界和改造世界的必不可少的重要工具。著名数学家华罗庚教授曾指出的:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不在,凡是出现量的地方就少不了用数学,研究量的关系,量的变化,量的变化关系,量的关系的变化等现象都少不了数学。 随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识……数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术。 在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。 大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革。 在现代的社会生活中,到处可见模型的存在,而各种模型的存在都在一定的程度上离不开数学建模的学习。数学是研究现实世界数量关系和空间形式的学科,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。 数学技术的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济,管理,金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机);数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

小学数学建模教学初探

小学数学建模教学初探The final revision was on November 23, 2020

拨使学生对实际问题的简化更加恰当。但又要防止教师对问题的理解代替学生的想法,虽然教师的数学知识比学生丰富,但在想象能力方面可以说教师不如学生,所以在对实际问题进行简化时学生有学生的优势,我曾例举过两个数学老师和一个六年级学生同做一道数学应用题的例子,这道应用题是这样描述的:“某市举行篮球选拔赛,报名参赛的球队有20个,比赛采用淘汰制(没有平局),最终决出一名冠军参加省级篮球比赛,问一共要比赛几场”教师在简化这个实际问题时先给每个参赛队分别编上号,再根据比赛的顺序把实际问题简化为如下形式:而学生在简化这个实际问题时,抓住“淘汰”这个词进行简化。学生是这样想的:因为是淘汰赛,所以无论是谁和谁比,每赛一场必定淘汰一个队。因此学生把这个实际问题简化为减法。我们先不说他们最终构建模型如何,从简化的角度讲,显然学生比教师的想法更简便、更明了。为什么学生在这个实际问题的简化中优势比教师明显除了以上所讲的学生有丰富的想象力外,还有一个不可忽视的因素那就是简化还受到生活经验的干扰,一般说来生活经验越丰富越有利于对实际问题的简化,但反过来生活经验中的定势思维有可能会干扰对实际问题的简化。上例中由于教师受日常比赛模式的影响,对这个实际问题有了定势思维,所以他们在简化这个实际问题时,免不了受比赛顺序的影响,而学生对如何安排比赛顺序没有经验,所以不会受比赛顺序的干扰,他们就能抓住问题的本质“淘汰”进行想象和简化。3、运用数学知识构建合理的数学模型,并解读数学模型从以上例子中我们看到了两种不同的简化方式,接下来的工作就是对简化了的实际问题构建数学模型,一般来讲,如果数学模型中所用的数学工具愈简单,那么这样的数学模型愈有价值,先看教师的数学模型:20÷2=10 10÷2=5(场)5÷2=2(场)……1 (2+2)÷2=1(场)……1(1+1)÷2=1(场)解读模型:10+5+2+1+1=19(场)再看学生的数学模型:20-1 解读模型:20-1=19 从以上两种数学模型分析,教师的数学模型繁琐,采用的数学工具也比学生的复杂,相比之下显然学生的数学模型比教师的价值大。4、展示和评价数学模型当学生数学建模完成后,要让学生展示自己的建模思维过程,充分暴露学生的思维过程。同时也要鼓励学生对别人的数学模型进行评价,在展示、评价中比较每个数学模型的优点和缺点。使学生之间相互学习,取长补短。四、数学模型的应用数学模型来自生活实际,数学建模的目的是解决实际问题。因此,每个数学模型都应有其本身的应用价值,如果一个数学模型只能解决当前的一个实际问题,那么这样的数学模型就失去了应用价值,同时也就失了去数学建模的意义。就拿以上例子来讲,学生所建构的这个数学模型它适用于任何的淘汰赛,无论是几个球队进行淘汰赛总可以用这个数学模型进行求解,比如“100个球队进行淘汰赛,最终决出一名冠军和一名亚军,那么需要比赛几场”其数学建模结果是100- 2=98(场),当然有些数学模型投入应用后可能发现不合理,那就必须重新建模,重新求解,这一过程可以循环,直到求得满意结果为止。通过以上分析我们可以发现,在小学数学中实施数学建模教学是完全可行的,通过数学建模能使学生真正体会到数学的应用价值,培养学生的数学应用意识,增强数学的学习兴趣,使学生真正了解数学知识的发生过程,提高学生分析问题和解决问题的能力,培养学生的创造能力。 设为首页收藏本站管理入口投稿信箱:

一个数学建模案例的教学设计

一个数学建模案例的教学设计 ——二次函数在给定区间的最值 一、教学目标 1.知识与技能目标:领会函数的最值及其几何意义,会用函数的单调性求一些函数的最值,逐步培养学生的数学建模能力。 2.过程与方法目标:引导学生进行数学建模,提高应用知识去发现问题、分析问题和解决问题的能力。 3.情感、态度与价值观目标:培养学生的数学应用意识,认识到数学在现实世界中有着广泛的应用,数学来源于生活,又服务于生活。 二、学情分析 首先从学生的知识结构来看,高中学生在新课的学习中已掌握二次函数的定义,图像及性质等基本知识,学生的分析,理解能力较学习新课时有明显提高,学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力,学生能力差异较大,两极分化明显. 其次是从知识系统来看,数形结合和分类讨论思想是数学最基本的思想方法,渗透于高中教学的全过程,但却是学生不易接受的内容。在几何画板的帮助下,可以让学生经历直观感知、观察发现、归纳类比、抽象概括、运算求解、演绎证明、反思与构建等思维过程,这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。 求函数的最大(小)值的常用方法很多,有配方法、判别式法、不等式法、换元法、数形结合法、单调性法等,建立函数模型的应用题,常常是求最值的问题。新课程引入了导数后,利用单调性求函数的最值成了非常常规的方法,是学习函数必须掌握的重要知识内容。二次函数是重要的基本初等函数,引入参数后,其内容千姿百态,丰富多彩,是倡导学生自主探索、动手实践、合作交流的良好题材,有助于发挥学生学习的主动性,使学生的学习过程成为教师引导下的“再创造”过程。

浅谈初中数学建模思想的培养

浅谈初中数学建模思想的培养 作者姓名:邓小宏单位:于都县乱石初中邮编:342321 内容摘要:数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也是新大纲中提出的“学数学,做数学,用数学”理念的体现。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。 关键词:初中数学建模思想培养 数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也体现出新大纲中提出的“学数学,做数学,用数学”的理念。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。现在谈谈如何在教学中渗透数学建模的思想过程: 1、激发学生的学习兴趣,培养学生数学建模思想 数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。例如:如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程;例如,在水塘中投进一块石头,水面上产生圈圈荡漾的水波,便是一个个圆的形象,然后使学生抽象出圆的概念以及圆心、半径等等。研究这样问题,学生积极性很高,就可以激发学生的创造欲望。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会。 2、重视课本知识的功能,形成学生数学建模思想 数学建模应结合正常的教学内容切入。把培养学生的应用意识落实到平时的教学过程中。从课本的内容出发,联系实际,以教材为载体,拟编与教材有关的建模问题或把课本的

浅谈学习数学建模课程的体会

浅谈学习数学建模课程的体会 数学学院12级创新班余松 摘要:数学建模就是应用数学模型来解决实际问题的方法。即是以学生为中心, 以问题为主线,以计算机为工具,培养学生应用数学求解实际问题及从实际问题中研究数学的能力和意识,同时在教学中加深学生对数学概念及定理本质的直观理解,全面体现数学与实际,理论与应用的关系。 关键字:数学建模数学模型实际问题应用实践 一、数学建模的教学和意义 数学建模就是应用建立数学模型来解决各种实际问题的方法,即通过对实际问题的抽象、简化、确定变量和参数,应用某些“规律”建立其变量、参数间的确定的数学模型,并对数学模型求解,解释、验证所得到的结论,从而确定是否能应用与实际问题的多次验证、循环并不断深化的过程。它作为联系数学与实际问题的桥梁,是数学在各个领域里广泛应用的媒介,是数学理论知道和应用能力的共同提高的最佳结合点,在培养学生过程中,数学建模教学起到了启迪学生的创新意识和创新思维、培养综合素质个实际动手能力的作用,是培养新型人才的一条重要途径。 二、中国数学建模的兴起 数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。 可以说在十年以前,数学建模这个词对于大多数大学生甚至是大学教师来说还是陌生的、遥远的。然而只经过了短短十年,数学建模竞赛已经在全国各高校广泛开展起来,声势浩大,数学建模因此广为人知。 三、数学建模的教学内容与方法 数学建模教学的根本宗旨是学生能力的培养和综合素质的提高,而能力和素质的培养应以知识及教学活动为载体,同时辅之以相应的教学内容与方法,其主要的特点有:(1)主要的“载体”是具体的问题,这些问题大多是实际问题的抽象与简化。(2)数学建模的问题涉及各个领域,且具有一定的深度与广度,并非单靠数学知识与专业知识就可以的。所以,数学建模常常需要跨学科的多专业知识的综合施用。 四、学习数学建模的体会 学完数学建模,使我感触良多,它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得以到很好的锻炼和提高。 数学模型来源于现实生活之中,主要是将现实对象的信息加以翻译,归纳的

探讨小学数学建模教学策略

探讨小学数学建模教学策略 发表时间:2017-11-29T13:56:00.490Z 来源:《素质教育》2017年10月总第250期作者:范红丽 [导读] 数学教育应该从小学阶段便开始进行“模型”及“模型意识”的渗透,重视对学生数学建模能力的培养。江苏省连云港市灌云县下坊中心小学222213 摘要:从本质讲,数学是经历发现——概括——模式化的一系列过程中逐渐丰富发展而来的。因此,数学教育应该从小学阶段便开始进行“模型”及“模型意识”的渗透,重视对学生数学建模能力的培养,使之成为数学教学的重要部分。 关键词:小学数学建模教学模型 《数学课程标准》将模型思想作为十大核心概念之一,同时强调:“从学生已有的经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。”在小学阶段渗透建模思想已显得越来越重要。 一、关注小学数学建模的合理定位 数学建模是建立数学模型并用它解决问题这一过程的简称。叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环和不断深化的过程。无论站在大学、中学还是小学的视野,其独特的教学价值对学生当下以及今后的学习和工作无疑会产生积极的影响。然而,对于小学数学教学而言,需要特别关注和正确把握数学建模的合理定位。 1.定位于儿童的生活经验。数学建模要从儿童的视角,将校园或者家庭中发生的与数学学习有关的素材及时引入课堂,并努力将教材上的内容转化为儿童日常生活数学问题的思考,使学生产生学习的内驱力,积极调动自身经验,感知数学模型的存在。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。 2.定位于儿童的思维方式。小学生年龄小,思维方式较简单。小学数学建模要结合学生的实际水平、分层次逐步推进,更要适合儿童的认知水平,恰当把握问题的难易度。实践表明,教师只有较好地把握了数学建模中儿童的认知起点、情感起点和思维起点,才能够调动学生主动思考的积极性,提高学生应用数学的意识和解决实际问题的能力。 二、在多元表征中丰富概念意象 以《认识公顷》教学为例。跟以往学过的平方米、平方分米等小面积单位相比,学生无法在生活中直接找到公顷的概念原型。因为缺乏直观的表象支撑,所以比较抽象。那么,如何帮助学生理解概念?(课前教师先带领学生走出教室,走上操场,开展以下活动。一是在100米的直跑道上走一走,感受一下100米有多长。二是在长100米、宽50米的长方形活动场上跑一圈,感受这个活动场有多大。三是28个同学手拉手围成一个边长约10米的正方形,观察这个正方形的大小。) 师:边长是100米的正方形面积就是1公顷。你能根据课前的活动谈谈自己的感受吗? 师:回顾一下我们学过的面积单位。 师:观察这张图,你有什么想说的? 生1:我发现,边长扩大10倍,面积就要扩大100倍;边长扩大100倍,面积就扩大10000倍。 生2:我们以前学过的面积单位,相邻两个单位进率都是100,但平方米到公顷进率是10000。 生3:我觉得如果在平方米和公顷之间添上一个单位,那么每相邻两个单位的进率就一样了。 师:你的猜想很有道理。确实,在平方米和公顷之间还有一个面积单位。还记得我们课前28个同学手拉手围成的正方形吗?这个正方形的边长大约是10米,面积是100平方米。在国际上把这样的正方形面积叫做1公亩。虽然在我们国家这个单位不常用,但我们不妨了解一下。 教师在构建概念模型的过程中,从数学知识结构和儿童的数学认知结构出发,首先在课前引导学生参与具体的数学实践活动,初步建立概念的直观表象。接着对各面积单位之间的关系比较对照,使学生对概念的认识经历了从生活到数学,从线到面的过程,对概念的认识更加丰满。同时通过对“公亩”这个“中介”的简单介绍,把面积单位连成一个“知识串”,将新概念纳入学生原有的知识体系中,实现了概念的“同化”。 数学建模的过程,其实质就是数学知识“重构”的过程,是“数学化”的过程,而不是抽象的“形而上”和空洞的“形式化”。这就需要我们追溯知识的源头,关注数学知识本身,站在整体、系统和结构的高度把握和处理教材,引导学生充分经历知识的形成过程,亲历数学建模的过程,从而培养学生的模型思想和建模能力。 参考文献 [1]傅海伦论课程标准下的数学建模教学的优化[J].中小学教师培训,2008,(4)。 [2]徐刚小学数学活动教学的探索与实践[J].中国校外教育:理论,2007,(6)。 [3]许万明在实践活动中培养学生的数学能力:新课程理念下小学数学教学策略[J].云南教育,2014,(7)。

数学建模教学设计说明

《函数模型的应用实例--数学建模》教学设计说明 郑州市第九中学郑敏 本节课是数学建模的入门课.数学建模是高中数学新课程中新增的研究性学习的内容,《课程标准》中没有对数学建模的内容做具体安排,只是建议将数学建模穿插在相关模块的教学中,要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.而以函数为模型的应用题是中学数学中最重要的内容之一,从应用题中抽象出问题的数学特征,找出函数关系,解决实际问题也是中学数学教学的重要任务之一.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,综合分析对比一次函数、二次函数、指数函数、对数函数、幂函数在实际生活中应用的优缺点,为以后的数学建模打基础,但未能使学生全面认识数学建模的全过程,于是又在本题的基础上有所改编,从实际问题出发,通过分析探究、交流合作、小组展示、总结归纳、深化反思等数学活动引导学生建立完整的数学模型解决实际问题,从而深化数学建模思想.因此本节课是从函数出发,综合运用数学知识、思想和方法,尝试数学建模,让学生从不同的角度理解数学的魅力. 高一下学期的学生学习过一次函数、二次函数、指数函数、对数函数、幂函数各自的函数特点,基于学校的支持,学生对于图形计算器已经有一定的基础,知道数形结合、转化化归、由特殊到一般的思想方法,但对于如何建立数学模型尚不明确.从数学活动经验上来说,学生具备了一定的数学活动经验,有主动参与数学活动的意识和小组合作学习的经验,好奇心强,学习比较积极主动. 本节课是数学建模的基础课,对学生来说是一个全新的认识,在认知方式和思维难度上对学生有较高的要求,而学生的抽象概括能力比较薄弱,学生在建立数学模型及优化数学模型的过程中会比较困难. 在领会以上精神后,我在设计本节课时注意了以下问题: 从主导思想上:本节课依据“教评学一致性”的理念进行课堂教学设计,实施目标导引教学.基于学习目标创设学习问题,激发学生的学习兴趣,基于目标设计与之匹配的评价设计和教学方案,引导学生主动参与学习过程,动手动脑动口,在学习过程中逐步锻炼分析问题、抽象概括的能力. 从内容上:本节课是数学建模的基础课,数学建模是高中数学新课程中研究性学习的内容,《课程标准》中要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,对于选择数学模型这一难点,通过分析探究、交流合作、小组展示、师生释疑等环节,设计一系列环环相扣的问题,引导学生思考、讨论、对比各自函数的特点,得出符合题意的数学模型,从而突出本节课的重点.但在实际生活中,符合题意的数学模型不一定符合实际情况,于是在题目的基础上加以修改,用实际问题去检验数学模型,不断拟合出最优的数学模型,让学生体会数学

[复习]高中数学课题教学设计案例.docx

高中数学课程可选内容的资源 ——数学建模、数学课题学习的教学设计的案例 1.升旗中的数学问题 (一)问题情景和任务 问题情景:在不同地区,同一天的H出和H落吋间不尽相同;对一个地区而言,H岀日落时间又是随FI期的变化而变化的。北京的天安门广场上的国旗每天伴着太阳升起、伴着太阳降落,下表给出了是天安门广场2003年部分LI期的升、降旗时刻表: 任务1:试根据上表提供的数据,分析升、降旗时间变化的人致规律;建立坐标系,将以上数据描在坐标系中; 任务2:分别建立I」出时间和I」落时间关于I」期的近似函数模型;利用你建立的函数模型,计算“五一”国际劳动节、“十一”国庆节的升、降旗时间; 任务3:利用年鉴、互联网或其它资料,查阅北京天安门2003年升旗时间表,检验模型的准确度,分析误差原因,考虑如何改进口己的模型。 任务4:你所生活地区(城市、省、乡村等)某年不同的日期的“日出和FI落”的时间, 建立一个函数关系。 (二)实施建议与说明 通过对升旗中数学问题的求解和讨论,进一步了解相关数学知识的意义和作用,体验数学

建模的基木过程,增强数学知识的应用意识。理解用函数拟合数据的方法,捉高对数据的 观察、分析、处理、从中获取有益信息的能力。 在这个探求活动屮,要特别重视观察、分析、处理数据的一般方法、现代技术的合理使用、数学得到的结果与实际情况不同的原因分析。 1?组成学习探究小组,集体讨论,互相启发,形成可行的探究方案,独立思考,完成每个人的“成果报告”。 2.任务1的建议: 为了便于在坐标系中观察表中数据,选择适当的计最单位,如升旗时刻以10分之为一个单位,H期可以天为单位,即1月1 H为第0天,12月31日为第364天;可借助图形计算器或其它工具绘制各点, 3.任务2的建议: 利用自己的生活经验,或者访问家长、地理老师等,结合散点图,选择学过的适当函数, 作为刻画该关系的模型;要应注意关键数据(如最早升(降)旗时间和最迟升(降)旗时间等)在确定拟合函数参数小的作用; 4.任务3的建议: 根据观察坐标平而上所绘制点的走向趋势,对以考虑分段拟合函数。 5.“成果报告”的书写建议 成果报告可以下表形式呈现。 表1:探究学习成果报告表年级 ________ 班—完成时间_________

浅谈初中数学建模教学

浅谈初中数学建模教学 发表时间:2013-07-08T16:20:14.593Z 来源:《教育研究·教研版》2013年7月上供稿作者:熊兴波陈凤祥[导读] 注意结合学生的实际水平 熊兴波陈凤祥 〔摘要〕学校教育的根本任务在于教会学生如何学习以及如何应用知识解决问题。然而,作为数学教育工作者,我们应该教育学生学会把实际问题转化为数学问题加以解决,这就是数学教学中的一个重点,所以,如何构造数学模型和探讨建模在初中数学教学中对提高学生分析问题、解决问题的能力是我们教师的工作重点。 〔关键词〕初中数学建模教学应用意识近年来数学建模的题目在中考试题中也逐渐增大了权重。中考试题加强了应用题的考查,这些应用题以数学建模为中心,考查学生应用数学的能力,但学生在应用题中的得分率远低于其他题目,原因之一就是学生缺乏数学建模能力和应用数学意识。因此,我们应加强数学建模的教学,提高学生数学建模能力,培养学生应用数学的意识。 1 建模的四个重要步骤 1.1 要认真审题。建立数学模型,首先要认真审题。实际应用题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 1.2 要进行必要简化。根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。 1.3 抽象。将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。 1.4 数学模型求解、寻找现实原型问题的解,返回解释。数学模型求解也是很关键的一步,如果不能用数学方法正确求解的话,就不能让数学回归至正确解决实际问题,所有的工作将是功亏一篑,所以要让学生掌握数学模型的简捷快速高效的求解方法。完成模型求解之后,我们还需要验证求解数据对解决实际问题的合理性和适用性,找到实际应用题的解。显然,这一步是非常重要的,并且是必不可少的。这一步是体现数学应用价值的非常重要的一个环节,也是培养学生数学应用意识的最重要的一个环节。 2 建模教学的特点 2.1 活动性和趣味性。初中生的年龄特点决定了易于接受有趣味的,自身能参与的,活动性强的事物,感性思维多于理性思维,而他们对感兴趣的东西乐于学习和参与,而往往也比较容易学好,以前的教材学生觉得比较枯燥,提不起学习兴趣,阻碍了学生的发展。新教材给内容注入了很多有趣的现实情境,很多都是建模的好材料。 2.2 起点较低,容易掌握.根据学生现有的水平,结合课程标准的要求,降低教学起点,以便全体学生都能真正参与,选取的素材要贴近学生的生活实际、符合学生的认知经验,如利用温度计、刻度尺作为实际背景感受数轴模型;再如用丢番图的墓志铭或猜老师的年龄来感受方程模型;或从课本中出现的问题出发设置实际背景,学生比较熟悉,易于接受和掌握。如学习了一次函数有关知识后,则可把行程问题中的追击相遇类问题设计为一次函数模型来解决。 2.3 重方法,重思想。数学思想方法是数学的灵魂,没有思想方法的教学是机械的、低效的、扼杀创造力的教学,因此思想方法的指导应该贯穿在教学的各个环节。“授人以鱼,不如授人以渔”。时间推移,知识会遗忘,但思想方法会一直指导我们的人生。 3 数学建模教学要重视其发展过程 由于发展过程本身就蕴含着丰富的数学建模思想,因此教师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理与过程,数学知识、方法的转化与应用,不能仅仅讲授数学建模结果,忽略数学建模的过程。 4 鼓励学生主动地参与建模学习中来数学应用与数学建模的目的并不是仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,更多地表现活动的特性。 5 注意结合学生的实际水平 数学建模对教师对学生都有一个逐步的学习和适应的过程。教师在数学建模教学实践中,特别应考虑学生的实际能力和水平,起始点要低,形式多样有利于更多的学生参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景。在应用的重点环节结合比较多的训练,逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题,到独立地运用数学建模的方法解决教师提供的数学应用问题,最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 6 结语 总而言之,培养学生解决实际问题的能力,也就是培养他们的建模能力,如果能够成功的培养学生建模能力,那将对提高学生学习的兴趣,培养创新意识,具有十分重要的作用.另外,作为教师的我们也要加强初中数学建模教学,培养学生应用数学的意识,重要的是在教学中坚持以学生为主体。让学生感受到学数学是为了用数学,数学就在我们的身边,自觉地在学习过程中构建数学模型意识。参考文献 1 教育部. 全日制义务教育数学课程标准(实验稿)[M].2001 2 冯永明.中学数学建模的教学构想与实践[J].数学通讯,2000.7 3 教育部. 全日制义务教育数学课程标准(实验稿)[M],2001.7 作者单位:重庆市丰都县滨江中学__

高中常见数学模型案例(最新整理)

高中常见数学模型案例 中华人民共和国教育部2003年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。 分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有化简得,所以25.0)2.01()25.01()2.01(?-=---b a b a b 4 5=,即x a bx y ??==2.0452.0+ ∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离x km 与时间t h 之间的关系式是:,图略。 ?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x 速度vkm/h 与时间t h 的函数关系式是:,图略。 ?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。

初中数学建模浅析

初中数学建模浅析 随着科学技术的发展,“人们愈来愈多地要求数学和计算科学来加速技术转移,并更深入地介入开发制造业中管理决策工具的工作中去”。这就要求我们在数学教学改革中,必须十分重视数学建模。 什么是数学建模呢?“数学建模是解决各种实际问题的思考方法,它从量和型的侧面去考察实际问题,尽可能通过抽象(简化)确定出主要的参量、参数,应用与各学科有关的定律、原理建立起它们之间的某种关系,这样一个明确的数学问题就是某种简化层次上的一个数学模型”。一个真实的具体问题,要去建立其数学模型是一项很复杂的工作,一般情况下将远远超出初等数学的范畴。但是,只要是“实际问题”,使其达到“某种简化层次”,在初中数学中仍然可以进行有关数学建模方面的教学。 一、数学建模不是问题别解在初中数学教学中,为了拓广学生思路,提高学生的解题能力,贯通各种知识,强调问题别解无疑是很有意义的。有些人以为所谓数学模型是一种解题模式,因此把上述的“解法”冠以“模型”,成为数学问题的“模型”,认为这就是一种数学建模的教学和训练,由于问题本身已是离开了实际背景的纯数学形式,并非是原指的“实际问题”,对于从实际问题归结为数学问题的能力的提高毫无帮助,因而这不是数学建模。 二、应用题未必是数学建模为了提高学生应用数学的能力,训练思维逻辑,在初中数学教学中有不少应用题。有些人认为这些应用题就是一种数学建模的训练,因此,不

必再花力气去钻研什么数学建模的问题。诚然,应用题的讲练克能提高数学建模能力,因为它有一个从具体问题(注意不是实际问题)到数学问题的抽象、归纳过程,而且其中不乏来自于实际的应用题,但是决不能在应用题与数学建模之间划上等号。因为很多应用题的条件仅是数学假设,不可能是实际问题的简化假设。例如:学生若干人,宿舍若干间,如果每间住4人则余19人;如每间住6人,则有一间不空也不满。求宿舍间数χ和学生人数。作为一个一元一次不等式应用的课题,这无疑是一个好的应用题,但由此归结出数学问题: 0<4χ+19-6(χ-1)<6却不是数学建模,因为在实际问题中,不可能要去求学生数和宿舍数,这仅是一种数学假设。 三、把应用题必造为数学建模数学建模问题对不少初中数学教学工作者来说既缺乏学习经历,也缺乏实践经验,几乎没有教学参考资料,因此常感心有余而力不足。把现有应用题经过适当改造,使之成为数学建模问题,不失为应急及积累经验之举。例如:货轮上卸下若干只等重箱子,其总重量为10吨,每只箱子不超过1吨。为了保证能把这些箱子一次运走,问至少需多少辆载重量为3吨的卡车? 这是一个应用题,但把箱子只数作为一个未知数是一种数学假设,很难认为是一个数学建模问题,把总理改述为: 货轮上卸下总重量为m吨的等重货箱k只(k≥m),用载重量为3吨的货车装运,每车运费为a元;用载重量为5吨的货车装运,每车运费为b元,若需一次运回全部货箱,应派3吨、5吨车各几辆运费最省?

浅析数学建模的重要意义

浅析数学建模的重要意义 【摘要】本文针对数学建模在工程技术、自然科学等领域的重要地位,在查阅大量文献的基础上,在数学建模的优势、建模步骤、应用等方面进行了探讨,并与结语部分总结了数学建模在教学中的重要性及其未来发展的趋势。 【关键词】数学建模教学创新 数学建模[1]就是用数学语言描述实际现象的过程,是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。高新技术的发展离不开数学的支持,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高。 一、优势 数学建模具有很大的优势,特别是在培养创新意

识和创造能力、训练快速获取信息和资料的能力、锻炼快速了解和掌握新知识的技能、培养团队合作意识和团队合作精神、增强写作技能和排版技术、荣获国家级奖励有利于保送研究生、荣获国际级奖励有利于申请出国留学、更重要的是训练人的逻辑思维和开放性思考方式等方面尤为突出。 二、建模步骤 第一步――准备工作,了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。第二步――假设,根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。第三步――建模,在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构,利用获取的数据资料,对模型的所有参数做出计算(或近似计算[2])。第四步――分析,对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。第五步――检验,将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,

相关文档
相关文档 最新文档