文档库 最新最全的文档下载
当前位置:文档库 › 高中物理选修3-5动量练习2(包含答案)

高中物理选修3-5动量练习2(包含答案)

高中物理选修3-5动量练习2(包含答案)
高中物理选修3-5动量练习2(包含答案)

动量习题

1.在如图所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B,导轨左端的间距为L1=4l0,右端间距为l2=l0。今在导轨上放置AC、DE两根导体棒,质量分别为m1=2m0,m2=m0,电阻R1=4R0,R2=R0。若AC棒以初速度v0向右运动,求AC棒运动的过程中产生的总焦耳热Q AC,以及通过它们的总电量q。

2.如图所示,在足够长的光滑水平轨道上有三个小木块A、B、C,质量分别为m A、m B、m C,且;m A=m B = 1.Okg ,m c = 2.O kg,其中B与C用一个轻弹簧拴接在一起,开始时整个装置处于静止状态.A和B之间有少许塑胶炸药,A的左边有一个弹性挡板.现在引爆塑胶炸药,若炸药爆炸产生的能量中有E=9.0J转化为A和B的动能,A和B分开后,A恰好在B、C之间的弹簧第一次恢复到原长时追上B,并且与B发生碰撞后粘在一起.忽略小木块和弹性挡板碰撞过程中的能量损失.求:

(1) 塑胶炸药爆炸后瞬间A与B的速度各为多大?

(2) 在A追上B之前弹簧弹性势能的最大值;

(3) A与B相碰以后弹簧弹性势能的最大值.

3.(12分)如图,在光滑水平面上有一辆质量M=6Kg的平板小车,车上的质量为m=1.96Kg 的木块,木块与小车平板间的动摩擦因数μ=0.3,车与木块一起以V=2m/s的速度向右行驶。一颗质量m0=0.04Kg的子弹水平速度v0 =98m/s,在很短的时间内击中木块,并留在木块中(g=10m/s2)

(1)如果木块刚好不从平板车上掉下来,小车L多长?

(2)如果木块刚好不从车上掉下来,从子弹击中木块开始经过 1.5s木块的位移是多少?

4.以V0=2m/s的水平速度,把质量为m=20kg小行李包送到原来静止在光滑水平轨道上的质量为M=30kg的长木板上。如果行李包与长木板之间的动摩擦因数为0.4,取g=10m/s2,求:

(1)行李包在长木板上滑行多长时间才能与长木板保持相对静止?

(2)长木板至少多长才能使行李包不致滑出木板外?

5.(10分)如图所示,木板B 的质量M =2 kg ,与右墙距离为S .物体A (可视为质点)质量m =l kg ,以初速度v 0=6 m/s 从左端水平滑上B .己知A 与B 间的动摩擦因数μ=0.2,在B 第一次撞墙前,A 已经与B 相对静止.地面光滑,B 与两面墙的碰撞都是弹性的。求:

①S 的最小值:

②若A 始终未滑离B ,A 相对于B 滑行的总路程是多少?

6.如图所示,光滑的水平面上有两块相同的长木板A 和B ,长为l =0.5m ,在B 的右端有一个可以看作质点的小铁块C ,三者的质量都为m ,C 与A 、B 间的动摩擦因数都为μ。现在A 以速度ν0=6m/s 向右运动并与B 相碰,撞击时间极短,碰后A 、B 粘在一起运动,而C 可以在A 、B 上滑动,问:如果μ=0.5,则C 会不会掉下地面?

7.如图所示,光滑水平地面上有一足够长的木板,左端放置可视为质点的物体,其质量为m 1=1kg,木板与物体间动摩擦因数u=0.1。二者以相同的初速度V o =0.8m/s —起向

右运动,木板与竖直墙碰撞时间极短,且没有机械能损失。重力加速度g =10 m /s 2。

I .如果木板质量m 2=3kg,求物体相对木板滑动的最大距离;

II.如果木板质量m 2=0.6kg,求物体相对木板滑动的最大距离。

选修模块3-5(15分)

8.以下是有关近代物理内容的若干叙述:

A .紫外线照射到金属锌板表面时能够产生光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能也随之增大

B .康普顿效应揭示了光的粒子性

C .核子结合成原子核时一定有质量亏损,释放出能量

D .有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间就是该放射性元素的半衰期

其中正确的有 .

9.质量M=0.6kg的平板小车静止在光滑水面上,如图7所示,当t=0时,两个质量都为m=0.2kg的小物体A和B,分别从小车的左端和右端以水平速度

1 5.0/v m s =和

2 2.0/v m s =同时冲上小车,

当它们相对于小车停止滑动时,没有相碰。已知A、B两物体与车面的动摩擦因数都是0.20,取g=102

/m s ,求:

(1)A、B两物体在车上都停止滑动时车的速度;

(2)车的长度至少是多少?

10.如图所示,一个质量为m =60 kg 的人拽着一个氢气球的软绳,软绳的下端刚好与地面接触,此时人距地面的高度h =60 m ,气球与软绳质量M =120 kg ,整个系统处于平衡,现此人沿软绳向下滑,问他能否安全回到地面?

11.(10分)如图所示在光滑水平面上有两个小木块A 和B ,其质量mA =1kg 、mB =4kg ,它们中间用一根轻弹簧相连.一颗水平飞行的子弹质量为m0=50g ,以V 0=500m/s 的速度在极短的时间内射穿两木块,已知射穿A 木块后子弹的速度变为原米的3/5,且子弹射穿A 木块损失的动能是射穿B 木块损失的动能的2倍.求:

(1)射穿A 木块过程中系统损失的机械能;

(2)系统在运动过程中弹簧的最大弹性势能;

12.如图所示,A 、B 、C 三个物体质量均为m ,其中厚度相同的A 、B 位于光滑的水平面上,可视为质点的小物块C 放在静止的B 物体上,物体A 以速度v 0。向物体B 运动,与B 发生碰撞(碰撞时间极短),碰后A 、B 以相同的速度运动,但互不粘连;C 滑过B 后又在A 上滑行,最后停在A 上,与A 一起以0310

v 的速度运动。求: (1)物体B 最终的速度;

(2)小物块C 在物体A 和物体B 上滑行过程中由于摩擦产生的热量之比。

13.(10分)如图所示,C 是放在光滑的水平面上的地块木板,木板的质量为3m ,在木板的上面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ。最初木板静止,A 、B 两木块同时以方向水平向右的初速度v 0和2v 0在木板上滑动,木板足够长,A 、B 始终未滑离木板。求:

(1)木块B 从刚开始运动到与木板C 速度刚好相等的过程中,木块B 所发生的位移;

(2)木块A 在整个过程中的最小速度。

14.(10分)如图所示,光滑水平面上静止放置着一辆平板车A 。车上有两个小滑块B 和C (都可视为质点),B 与车板之间的动摩擦因数为μ,而C 与车板之间的动摩擦因数为2μ,开始时B 、C 分别从车板的左、右两端同时以大小相同的初速度v 0相向滑行。经过一段时间,C 、A 的速度达到相等,此时C 和B 恰好发生碰撞。已知C 和B 发生碰撞时两者的速度立刻互换,A 、B 、C 三者的质量都相等,重力加速度为g 。设最大静摩擦力大小等于滑动摩擦力。 求:

(1)开始运动到C 、A 的速度达到相等时的时间t ;

(2)平板车平板总长度L ;

(3)若滑块C 最后没有脱离平板车,求滑块C 最后与车相对静止时处于平板上的位置。

15.(10分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间距为l .导轨上面横放着两根导体棒PQ 和MN ,构成矩形回路.导体棒PQ 的质量为m 、MN 的质量为2m ,两者的电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒MN 静止在导轨上,PQ 棒以大小为v 0的初速度从导轨左端开始运动,如图所示.忽略回路的电流对磁场产生的影响.

(1)求PQ 棒刚开始运动时,回路产生的电流大小.

(2)若棒MN 在导轨上的速度大小为4

0v 时,PQ 棒的速度是多大. 16.如图所示,导体棒ab 质量为0.10kg ,用绝缘细线悬挂后,恰好与宽度为50cm 的光滑水平导轨良好接触,导轨上还放有质量为0.20kg 的另一导体棒cd ,整个装置处于竖直向上的匀强磁场中。将ab 棒向右拉起0.80m 高,无初速释放,当ab 棒第一次经过平衡位置向左摆起的瞬间,cd 棒获得的速度是0.50m/s 。在ab 棒第一次经过平衡位置的过程中,通过cd 棒的电荷量为1C 。空气阻力不计,重力加速度g 取10m/s 2,求:(1)ab 棒向左摆起的最大高度;(2)匀强磁场的磁感应强度;(3)此过程中回路产生的焦耳热

17.(19分)

水平固定的光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一阻值为R 的电阻(金属框架、金属棒及导线的电阻均可忽略不计),整个装置处在竖直向下的匀强磁场中,磁感应强度大小为B .现给棒一个初速度v 0,使棒始终垂直框架并沿框架运动.则

(1)金属棒从开始运动到达稳定状态的过程中,求通过电阻R 的电量和电阻R 中产生的热量.

(2)金属棒从开始运动到达稳定状态的过程中,求棒通过的位移.

(3)如果将U 型金属框架左端的电阻R 换为一电容为C 的电容器,其他条件不变,如题25图所示.求金属棒从开始运动到达稳定状态时电容器的带电量和电容器所储存的能量(不计电路向外辐射的能量).

参考答案

1.AC Q =200308405m v q =00

49mv Bl 【解析】

【错解分析】AC 棒在磁场力的作用下,做变速运动。运动过程复杂,应从功能关系的角度来分析。由于没有摩擦,最后稳定的状态应为两棒做匀速运动。根据动量守恒定律m 1v 0 = (m 1+m 2)v ′

03

2v v =' 整个回路产生的焦耳热

2002212013

1)(2121v m v m m v m Q ='+-=总 因为R 1=4R 0,R 2=R 0。所以AC 棒在运动过程中产生的焦耳热

20012

454v m Q Q AC ==总 对AC 棒应用动量定理 - Bll·Δt = m 1v′1 - m 1v 0

01106Bl mv Bl v m mv t I q ='-=?= 错解原因:AC 棒在磁场力的作用下做变速运动,最后达到运动稳定,两棒都做匀速运动的分析是正确的。但是以此类推认为两棒的运动速度相同是错误的。如果两棒的速度相同则回路中还有磁通量的变化,还会存在感应电动势,感应电流还会受到安培力的作用,AC ,DE 不可能做匀速运动。

【正解】由于棒l 1向右运动,回路中产生电流,l l 受安培力的作用后减速,l 2受安培力加速使回路中的电流逐渐减小。只需v 1,v 2满足一定关系,就有可能使回路的t

S B

??,及电动势为零,此后不再受安培力的作用。

两棒做匀速运动。

两棒匀速运动时,I =0,即回路的总电动势为零。所以有

Bl l v 1=Bl 2v 2

421v v =时,回路电流为零,此后两棒匀速运动,对AC 棒应用动量定理 011

11v m v m t l B -'=?- 再对DE 棒应用动量定理 Bl 2Δt = m 2v 2 解得:9490201v v v v ==

, 0

011020022221120194405308)212121(54Bl mv Bl v m mv t I q v m v m v m v m Q AC ='-=?==--= 【点评】以前我们做过类似的题。那道题中的平行轨道间距都是一样的。有一些同学不假思索,把那道题的结论照搬到本题中来,犯了生搬硬套的错误。差异就是矛盾。两道题的差别就在平行导轨的宽度不一样上。如何分析它们之间的差别呢?还是要从基本原理出发。平行

轨道间距一样的情况两根导体棒的速度相等,才能使回路中的磁通量的变化为零。本题中如果两根导轨的速度一样,由于平行导轨的宽度不同导致磁通量的变化不为零,仍然会有感应电流产生,两根导体棒还会受到安培力的作用,其中的一根继续减速,另一根继续加速,直到回路中的磁通量的变化为零,才使得两根导体棒做匀速运动。抓住了两道题的差异之所在,问题就会迎刃而解。

2.(1) (2)

【解析】

3.(12分)解:(1)由动量守恒有:m0v0 - mv=(m+m0)v1 (1)

v 1 =0….. 1分

若它们相对平板车滑行L ,则它们恰好不从小车上掉下来,它们跟小车有共同速度V ’,有:Mv =(m+m 0+M )v ’ (1)

v ’=1.5m/s …. 1分

由能量守恒定律有:

Q=μ(m 0+m )g L =2,02)(2

121v M m m Mv ++- ……③ 1分 由①②③,代入数据可求出

但要使木块不掉下来:L=0.5m …………1分

(2)加速度:a =μg =3m/s 2。1分

经过时间t 1速度为v ’,有v ’= at 1………. 1分

解得:t 1=0.5s 。1分

在这段时间内通过的位移:S 1= m at 375.02121=1分

在t 2 = t-t 1=1s 内做匀速运动,通过位移为:s 2 = v ’t 2=1.5m 。1分

在3S 内的总位移S 总=S 1+S 2=1.875m …. 1分

【解析】

4.(1)s g

V V t 3.00=--=μ(2)0.3m 【解析】分析:当行李包滑上木板上之后,在摩擦力作用下,行李包作匀减速运动,木板作匀加速运动,最后达到共同速度,设其共同速度为V 。对行李包和长木板组成的系统,满足动量守恒条件,根动量守恒定律有:mV 0=(M+m )V ,得共同速度为s m m M mV V /8.00=+=

(1)、对行李包,所受动摩擦力为f=μmg ,其加速度大小为a=μg=4m/s 2

s 3.

(S 2及木板长度L 间的几何

对长木板:m t V S 12.02

1=?= ○3 得木板最小长度L= S 2 -S 1=0.3m

本题主要考查的是动量守恒问题。关键是分析其过程,将动量守恒与运动学公式相结合。

5.2m 9m

f

【解析】①设B 与挡板相碰时的速度大小为v 1,

由动量守恒定律得mv 0=(M+m )v 1,(2分)

求出v 1=2m/s. (1分)

A 与

B 刚好共速时B 到达挡板S 距离最短,对B 用动能定理,

212

mgs Mv μ=(2分) S 的最小值为s= 2m (1分)

②经过足够多次的碰撞后,由于不断有摩擦力做功,最终AB 速度都变为零,则在整个过程中,平板车和物块的动能都克服摩擦力做功转化为内能,因此有:

22

1mv mgx =μ (3分) x =9m (1分)

6.(1)不会掉在地面上

【解析】 A 与B 碰后,速度为v 1,由动量守恒定律有

m v o =2 m v 1 …………………①

A 、

B 、

C 的共同速度为v 2, 由动量守恒定律有

m v o =3 m v 2 …………………②

A 、

B 、

C 达到共同速度时,C 在AB 上滑过的距离为?S ,由能量守恒定律有

μmg ?S=

21×2m v 12 -2

1×3 m v 2 2 …………………③ 由①、②、③得?S=0.6m <1m 小铁块C 不会掉在地面上

7.Ⅰ. s 1=0.96m II. s 2=0.512m

【解析】Ⅰ.木板与竖直墙碰撞后,以原速反弹,由动量守恒定律

201012()m v m v m m v -=+…………………………………… ⑴(1分)

v = 0.4m/s ,方向向左,不会与竖直墙再次碰撞 (1分)

由能量守恒定律

22120121111()()22

m m v m m v m gs μ+=++……………………………(2)(2分) 解得 s 1=0.96m (1分)

Ⅱ.木板与竖直墙碰撞后,以原速反弹,由动量守恒定律

201012()t m v m v m m v -=+ (3)

(1分) v '= - 0.2m/s ,方向向右,将与竖直墙再次碰撞,最后木板停在竖直墙处(1分) 由能量守恒定律

2120121()2

m m v m gs μ+= …………………………………………(4)(1分) 解得 s 2=0.512m (1分)

8.BC

9.(1)0.6/v m s = (1分)方向向右(1分)(2)12 6.8L L L m ≥+=

【解析】(1)BC (5分)

(2).(10分)解:(1)设物体A、B相对于车停止滑动时,车速为v ,根据动量守恒定律 12()(2)m v v M m v -=+ (3分)

0.6/v m s = (1分)

方向向右(1分)

(2)设物体A、B在车上相对于车滑动的距离分别为1L 2、L ,车长为L,由功能关系

22212121

11()(2)222

mg L L mv mv M m v μ+=+-+ (3分) 12 6.8L L L m ≥+= (2分)

10.:不能

【解析】:当人到达软绳的末端时,软绳已离开地面一段高度H ,人能否安全到达地面决定于H 的大小.

由人船模型得:m (h -H )=MH

解得:H =mh M +m =60×60120+60

m =20 m 人要回到地面得从20米高的地方跳下来,这是很危险的.所以不能.

11.(1) J v m v m v m E A A 39502

121212210200=--=? (2) J E P 5.22= 【解析】(10分)

(1)子弹射穿A 时,子弹与A 动量守恒:1000v m v m v m A A +=------------(1分)

得:s m v /101= -----------------(1分)

射穿A 木块过程中,系统损失的机械能

J v m v m v m E A A 39502

121212210200=--=?--------------(2分) (2) 子弹射穿B 时,子弹与B 动量守恒:2010v m v m v m B B +=----------(1分) 又由已知得:)2

121(22121220210210200v m v m v m v m -=-----------(1分) 得:s m v B /5.2=-------------(1分)

子弹射穿B 以后,弹簧开始被压缩,A 、B 和弹簧组成的系统动量守恒:

共v m m v m v m B A B B A A )(+=+------------(1分) 由能量关系:222)(2

12121共v m m v m v m E B A B B A A P +-+=-----------(1分) 得:J E P 5.22=------------(1分)

12.(1)从最初A 以速度υ0运动到最终AC 以共同速度υ4运动、同时B 以速度υ2匀速运动的过程中,对ABC 组成的系统全过程由动量守恒定律有:042()mv m m v mv =++(2分) 求得:2025

v v = (2分) (2)如图1,从A 以速度υ0运动到与B 相碰获得共同速度(设为υ1)的过程中,对AB 组成的系统由动量守恒定律得:01()mv m m v =+ (2分)

设C 离开B 的瞬时速度为υ3,AB 整体的速度减小为υ2,如图2所示,对ABC 组成的系统由动量守恒定律得:123()()m m v m m v mv +=++ (2分)

设该过程中C 在B 上滑行由于摩擦产生的热量为B Q ,由能量关系可得:

222123111()()222

B m m v m m v mv Q +=+++(2分)

C 以速度υ3离开B 滑上A 后,AB 分离,B 以速度υ2匀速运动,C 和A 相互作用至达到共同速度υ4,如图3所示。该过程中对A 、C 组成的系统由动量守恒定律有234()mv mv m m v +=+ (2分)

设该过程中C 在A 上滑行由于摩擦产生的热量为A Q ,由功能关系可得:222234111()222

A mv mv m m v Q +=++ (3分) 联立以上各式及题中已知40310v v =可得:17

A B Q Q = (3分)

【解析】略

13.(1)g

v s μ509120= (2)025

v v '= 【解析】

(1)木块A 先做匀减速直线运动,后做匀加速直线运动;木块B 一直做匀减速直线运动;

木板C 做两段加速度不同的匀加速直线运动,直到A 、B 、C 三者的速度相等后匀速运动,速度设为v1。对A 、B 、C 三者组成的系统,由动量守恒定律得:

解得:v 1=0.6v 0

对木块B 运用动能定理,有:

解得:g v s μ509120= (2)设木块A 在整个过程中的最小速度为v′,所用时间为t ,由牛顿第二定律:

对木块A :g m

mg a μμ==

1 对木板C :32322g m mg a μμ== 当木块A 与木板C 的速度相等时,木块A 的速度最小,因此有:t g gt v 320μμ=

- 解得:g

v t μ530= 木块A 在整个过程中的最小速度为:5

2010v t a v v =-=' 14.(1)03v g μ,(2)202v g

μ;(3)滑块C 最后停在车板右端 【解析】

试题分析:(1)设A 、B 、C 三者的质量都为m ,从开始到C 、A 的速度达到相等这一过程所需的时间为t ,对C 由牛顿运动定律和运动学规律有:2C C f mg ma μ==,0C C v v a t =- 对A 由牛顿运动定律和运动学规律有:2C B A f f mg mg ma μμ-=-=

A A v a t =,A C v v = 联立以上各式解得:03v t g

μ= (2)对C ,在上述时间t 内的位移:()012

C C x v v t =+ 对B ,由牛顿运动定律和运动学规律有:B B f mg ma μ==,0B B v v a t =-,

()012B B x v v t =+ C 和B 恰好发生碰撞,有:C B L x x =+

解得:202v L g

μ= (3)对A ,在上述时间t 内的位移:12

A A x v t = 将t 代入以上各式可得A 、

B 、

C 三者的位移和末速度分别为:

2018A v x g μ=(向左),20518B v x g μ=(向右),2029C v x g

μ=(向左) 013

A C v v v ==(向左),023

B v v =(向右) 所以:

C 相对A 向左滑动的距离:2016C A v s x x g

μ=-= 骣B 发生碰撞时两都速度立即互换、则碰后C 、B 的速度各为:

'023C v v =(向右),'013

B v v =(向左) 碰后B 和A 的速度相等。由分析可知,碰后B 和A 恰好不发生相对滑动,即保持相对静止一起运动。设

C 最后停在车板上时,共同速度为v t ,由A 、B 、C 组成的系统动量守恒可知:

''23C B t mv mv mv -= 解得:v t =0

这一过程中,设C 相对于A 向右滑行的距离为S 2,由能量关系可知:

'2'22112222C B mgs mv mv μ=+? 解得:2026v s g

μ= 所以:滑块C 恰好回到原来的位置,即滑块C 最后停在车板右端。

考点:碰撞、动能定理应用,牛顿第二定律

15.(1)R Blv R E I 220==

(2)201v v = 【解析】

试题分析:(1)由法拉第电磁感应定律,棒PQ 产生的电动势0Blv E =① (2分) 则回路产生的电流大小 R

Blv R E I 220== ②(3分) (2)棒PQ 和MN 在运动过程中始终受到等大反向的安培力,系统的动量守恒。(2分) 有4

2010v m mv mv ?+= ③ (2分) 得:2

01v v = ④ (1分) 考点:电磁感应 动量守恒

16.(1)设ab 棒下落到最低点时速度为 v 1,由机械能守恒有:m 1gh 1=21112

m v 8.0102211??==gh v m/s=4m/s … (1分)

设ab 棒向左摆动的最大高度为h 2 ,ab 棒与导轨接触时与cd 棒组成的系统,在水平方向动

量守恒,定水平向左为正方向 111

22mv m v m v ''=+ '1122110.140.20.530.1

m v m v v m s m s m '-?-?====3m/s … (1分) 再由机械能守恒 2111212m v m g h '= 10

2322212?='=g v h =0.45m (1分) (2) 设匀强磁场的磁感应强度为B ,cd 棒通电时间为t ?,对cd 棒由动量定理有22BIL t m v '??= (1分)

q I t =?? (1分)

220.20.50.210.5m v B qL '?===T ?

(1分) (3)设产生的焦耳热为Q ,由能量守恒可知:

1111221122

Q m gh m v m v ''=--=0.325J … 【解析】略

17.(1)0mv q BL =;

202mv Q = (2)

(3)

【解析】(1)由动量定理得00Ft mv -=- 即00BILt mv -=- (2分)

所以 0mv q BL =

(2分)

由能量守恒定律得

202mv Q =(2分) (2)B S BLs E t t t ???===??? E t B L s q I t R R ?=?==

(3分

所以022

mv R qR s BL B L ==(2分) (3)当金属棒ab 做切割磁力线运动时,要产生感应电动势,这样,电容器C 将被充电,ab 棒中有充电电流存在,ab 棒受到安培力的作用而减速,当ab 棒以稳定速度v 匀速运动时, C C Q BLv U C

==(2分) 而对导体棒ab 利用动量定理可得 0C BLQ mv mv -=-(2分) 由上述二式可求得:022mv v m B L C =

+ (2分)

22C CBLmv Q CBLv m B L C ==+(2分)

2

22020220)(21212121C L B m mv m mv mv mv E +-=-=[

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高中物理动量定理动量守恒定律习题带答案

动量练习 ;类型一:弹簧问题 1、一轻质弹簧,两端连接两滑块A和B,已知m A=0.99kg ,m B=3kg,放在光滑水平桌面上,开始时弹簧处于原长。现滑块A被水平飞来的质量为m c=10g,速度为400m/s的子弹击中,且没有穿出,如图所示,试求: (1)子弹击中A的瞬间A和B的速度 (2)以后运动过程中弹簧的最大弹性势能 类型二:板块问题 2. (18分) 如图所示,质量为20kg的平板小车的左端 放有质量为10kg的小铁块,它与车之间的动摩擦因数 为0.5。开始时,车以速度6m/s向左在光滑的水平面上运动,铁块以速度6m/s向右运动,小车足够长。(g=10m/s2)求: (1) 小车与铁块共同运动的速度大小和方向。 (2)系统产生的内能是多少? (3)小铁块在小车上滑动的时间 3矩形滑块由不同材料的上下两层粘合在一起组成,将其放在光滑 的水平面上,如图所示,质量为m的子弹以速度v水平射向滑块.若射向上层滑块,子弹刚好不射出;若射向下层滑块,则子弹整个儿刚好嵌入滑块,由上述两种情况相比较()A A.子弹嵌入两滑块的过程中对滑块的冲量一样多 B.子弹嵌入上层滑块的过程中对滑块做的功较多 C.子弹嵌入下层滑块的过程中对滑块做的功较多 D.子弹嵌入上层滑块的过程中系统产生的热量较多 类型三:圆周运动 4.(18分)质量为m的A球和质量为3m的B球分别用长为L的细线a和b悬挂在天花板下方,两球恰好相互接触,.用细线c水平拉起A,使a偏离竖直方向θ= 60°,静止在如图8所示的位置.b能承受的最大拉力F m=3.5mg,剪断c,让A自由摆动下落,重力加速度为g. ①求A与B发生碰撞前瞬间的速度大小. ②若A与B发生弹性碰撞,求碰后瞬间B的速度大小. ③A与B发生弹性碰撞后,分析判断b是否会被拉断? 5、半径为R的圆桶固定在小车上,有一光滑小球静止在圆桶的最 低点,如图38所示,小车以速度v向右匀速运动,当小车遇到障 碍物突然停止时,小球在圆桶中上升的高度可能是()ACD A.等于v2/2g B.大于 B A b a c h θ 图8

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求: (1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2 014 mv ;(2) 0mv 【解析】 【详解】 解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以 2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速 度相等,有:2 12 v v = 而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0 12 v v = ,20 v v = 所以第一次碰撞中的机械能损失为:2 2 22012011 11222 2 24 E m v m v mv mv ?=--=g g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-= 2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理动量习题集

动量和冲量 一.选择题1 1、关于冲量和动量,下列说法正确的是() A.冲量是反映力的作用时间累积效果的物理量 B.动量是描述物体运动状态的物理量 C.冲量是物理量变化的原因 D.冲量方向与动量方向一致 2、质量为m的物体放在水平桌面上,用一个水平推力F推物体而物体始终不动,那么在时间t内,力F推物体的冲量应是() A.v B.Ft C.mgt D.无法判断 3、古有“守株待兔”寓言,设兔子头受到大小等于自身体重的打击力时即可致死,并设兔子与树桩作用时间为0.2s,则被撞死的兔子其奔跑的速度可能(2 g=)() 10m/s A.1m/s B.1.5m/s C.2m/s D.2.5m/s 4、某物体受到一2N·s的冲量作用,则() A.物体原来的动量方向一定与这个冲量的方向相反 B.物体的末动量一定是负值 C.物体的动量一定减少 D.物体的动量增量一定与规定的正方向相反 5、下列说法正确的是() A.物体的动量方向与速度方向总是一致的 B.物体的动量方向与受力方向总是一致的 C.物体的动量方向与受的冲量方向总是一致的 D.冲量方向总是和力的方向一致 参考答案: 1、ABC 2、B 3、C 4、D 5、AD 一.选择题2 1.有关物体的动量,下列说法正确的是() A.某一物体的动量改变,一定是速度大小改变 B.某一物体的动量改变,一定是速度方向改变 C.某一物体的运动速度改变,其动量一定改变 D.物体的运动状态改变,其动量一定改变 2.关于物体的动量,下列说法中正确的是() A.物体的动量越大,其惯性越大 B.同一物体的动量越大,其速度一定越大 C.物体的动量越大,其动量的变化也越大 D.动量的方向一定沿着物体的运动方向 3.下列说法中正确的是() A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.匀速圆周运动物体的速度大小不变,它的动量保持不变 D.匀速圆周运动物体的动量作周期性变化 4.有一物体开始自东向西运动,动量大小为10/ ?,由于某种作用,后来自西向东运动,动量 kg m s

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理动量定理试题经典及解析(1)

高中物理动量定理试题经典及解析(1) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

高中物理选修3-2知识点汇总

第一章电磁感应 1.磁通量 穿过某一面积的磁感线条数;标量,但有正负;Φ=BS·sinθ;单位Wb,1Wb=1T·m2。 2.电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3.感生电场 变化的磁场在周围激发的电场。 4.感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5.楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6.右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7.法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的磁通量的变化率

成正比;E=n t? ?Φ。 8.动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv·sinθ。 9.互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ? ?;日光灯的应用。12.自感系数 上式中的比例系数L叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章直流电路 1.电流 电荷的定向移动;单位是安,符号A;规定正电荷定向移动的 方向为正方向;宏观定义I= t q;微观解释I=neSv,n为单位体积

高中物理二轮复习 专项训练 物理动量定理

高中物理二轮复习 专项训练 物理动量定理 一、高考物理精讲专题动量定理 1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。 (1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。 (2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。请运用所学物理知识分析说明这样做的道理。 【答案】详情见解析 【解析】 【详解】 (1)根据牛顿第二定律F ma =,加速度定义0i v v a t -=解得 0=-i Ft mv mv 即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理 0=-i Ft mv mv 在动量变化相等的情况下,作用时间越长,作用力越小。充满气体的塑料袋富有弹性,在

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

相关文档
相关文档 最新文档