文档库 最新最全的文档下载
当前位置:文档库 › chap4主成分分析与典型相关分析

chap4主成分分析与典型相关分析

浅谈主成分分析与因子分析基本思想主要性质应用举例计算步骤主要区别

浅谈主成分分析与因子分析 1、主成分分析 主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标,同时根据实际需要从中可取几个较少的综合指标尽可能多地反映原来指标的信息。这种将多个指标化为少数互相无关的综合指标的统计方法叫做主成分分析,也是数学上处理降维的一种方法。主成分分析的一般目的是:(1)变量的降维;(2)主成分的解释。 1.1基本思想 主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。这些主成分不仅不相关,而且他们的方差依次递减。 1.2计算步骤 设有n个样品,每个样品观测P个指标,将原始数据写成矩阵。 (1)将原始数据标准化,即将每个指标的原始数据减去这个指标的均值后,再除以这个指标的标准差。 (2)建立变量的相关系数阵:。 (3)求R的特征根及相应的单位特征向量。 在解决实际问题时,一般不是取p个主成分,而是根据累计贡献率的大小取前k个,称第一主成分的贡献率为,这个值越大,表明第一主成分综合

主成分分析与因子分析的联系与区别

https://www.wendangku.net/doc/673526514.html,/ysuncn/archive/2007/12/08/1924502.aspx 一、问题的提出 在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此类问题而产生的多元统计分析方法。 近年来,这两种方法在社会经济问题研究中的应用越来越多,其应用范围也愈加广泛。因子分析是主成分分析的推广和发展,二者之间就势必有着许多共同之处,而SPSS软件不能直接进行主成分分析,致使一些应用者在使用SPSS进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生质疑。因此,有必要在运用SPSS分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。 二、主成分分析与因子分析的联系与区别 两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分)综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。 主要区别: 1. 主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。 2. 主成分分析是将主成分表示为原观测变量的线性组合, (1) 主成分的个数i=原变量的个数p,其中j=1,2,…,p,是相关矩阵的特征值所对应的特征向量矩阵中的元素,是原始变量的标准化数据,均值为0,方差为1。其实质是p维空间的坐标变换,不改变原始数据的结构。 而因子分析则是对原观测变量分解成公共因子和特殊因子两部分。因子模型如式(2),

主成分分析及二次回归分析的

基于主成分分析及二次回归分析的城市生活垃圾热值建模 1. 引言 随着人们经济水平的提高、环保意识的增强、环保法规日益严格和国家垃圾处理产业化政策的实施,垃圾填埋处理的弊端将引起重视、运营费用将大大增加,而垃圾焚烧处理的优势将逐渐呈现出来并最终获得人们的认可。以城市生活垃圾为燃料而建立垃圾电站进行电力生产,很好的实现了生活垃圾的无害化、资源化利用。 而我国的城市生活垃圾成分复杂,用作为燃料时稳定性较差,因此分析垃圾的成分、计算垃圾的热值模型是垃圾焚烧发电的工艺设计和运营管理中必不可少的基础性工作。 因为我国不同地区人们生活习惯及生活条件差异较大,导致城市生活垃圾成分也存在很大的地域性差异,因此,本文以深圳市为例,对深圳市宝安区的生活垃圾采样数据进行分析,并建立其计算模型。 2. 回归分析及主成分分析理论 2.1. 回归分析 回归分析是一种应用极为广泛的数量分析方法。它用于分析事物之间的统计关系,通过回归方程的形式描述和反应这种关系。 2.2. 一般回归模型 如果变量与随机p 变量y 之间存在着相关关系,通常就意味着当x , x ....x 1 2 p x , x ....x取定值后y 便有相应的概率分布与之对应,其概率模型为: = ( , ... ) +e (2-1)1 2 p y f x x x其中p为称自变量,y 称为因变量,为自变量的确定性关系,ε表示x , x ....x 1 2 ( , .... ) 1 2 p f x x x随机误差。 2.3. 线性回归模型 回归模型分为线性回归模型和非线性回归模型,线性回归又有一元线性回归和多元线性回归之分。当变量之间的关系是线性关系的模型都称为线性回归模 型,否则就称之为非线性回归模型。当概率模型(2-1)中的回归函数为线性函数时,有: = b + b + b +e (2-2)p p y x ... x 0 1 1其中βi 是p+1 个未知参数,β0 称为回归常数,β1...βp 称为回归系数。 2.4. 主成分分析 上述的线性回归模型的应用前提是作为自变量的各指标之间相互独立,即不

主成分分析和因子分析-回归分析和相关分析的区别

主成分分析和因子分析的区别 通过主成分分析所得来的新变量是原始变量的线性组合,每个主成分都是由原有P个变量线组合得到,在诸多主成分z中,Z1在总方差中占的比重最大,说明它综合原有变量的能力最强,其余主成分在总方差中占的比重依次递减,说明越往后的主成分综合原信息的能力越弱。以后的分析可以用前面几个方差最大的主成分来进行,一般情况下,要求前几个z 所包含的信息不少于原始信息的85%,这样既减少了变量的数目,又能够用较少的主成分反映原有变量的绝大部分信息。如利用主成分来消除多元回归方程的多重共线性,利用主成分来筛选多元线性回归方程中的变量等。 通过因子分析得来的新变量是对每一个原始变量进行内部剖析。打比喻来说,原始变量就如成千上万的糕点,每一种糕点的原料都有面粉、油、糖及相应的不同原料,这其中,面粉、油、糖是所有糕点的共同材料,这正好象是因子分析中的新变量即因子变量。正确选择因子变量后,如果想考虑成千上万糕点的物价变动,只需重点考虑面粉、油、糖等公共因子的物价变动即可。所以因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。即因子分析就是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它把原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子构成的,另一部分是每个原始变量独自具有的因素,即特殊因子。 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各个变量的线性组合。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。 2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这种区分不是绝对的。

主成分分析法概念及例题.doc

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

(完整版)主成分分析与因子分析的优缺点

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构.综合指标即为主成分.所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关.因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法. 聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程.其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似. 三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益. 二、基本思想的异同 (一) 共同点 主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题.并且新的变量彼此间互不相关,消除了多重共线性.这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量.在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到.在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱.因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分.公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子.对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度. 聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的

主成分、因子分析步骤

主成分分析、因子分析步骤 不同点主成分分析因子分析 概念具有相关关系的p个变量,经过线性组合后成为k个不相关的新 变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量 主要目标减少变量个数,以较少的主成分 来解释原有变量间的大部分变 异,适合于数据简化 找寻变量间的部相关性及潜在的共同因素,适 合做数据结构检测 强调重点强调的是解释数据变异的能力, 以方差为导向,使方差达到最大 强调的是变量之间的相关性,以协方差为导向, 关心每个变量与其他变量共同享有部分的大小 最终结 果应用 形成一个或数个总指标变量反映变量间潜在或观察不到的因素 变异解释程度它将所有的变量的变异都考虑 在,因而没有误差项 只考虑每一题与其他题目共同享有的变异,因 而有误差项,叫独特因素 是否需要旋转主成分分析作综合指标用, 不需要旋转 因子分析需要经过旋转才能对因子作命名与解 释 是否有假设只是对数据作变换,故不需要假 设 因子分析对资料要求需符合许多假设,如果假 设条件不符,则因子分析的结果将受到质疑 因子分析 1 【分析】→【降维】→【因子分析】 (1)描述性统计量(Descriptives)对话框设置 KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置 方法:默认主成分法。主成分分析一定要选主成分法 分析:主成分分析:相关性矩阵。 输出:为旋转的因子图 抽取:默认选1. 最大收敛性迭代次数:默认25. (3)因子旋转(Rotation)对话框设置 因子旋转的方法,常选择“最大方差法”。“输出”框中的“旋转解”。

(整理)(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析.

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。 偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。 (2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。 (3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。 一、偏最小二乘回归的建模策略\原理\方法

SPSS对主成分回归实验报告

《多元统计分析分析》实验报告 2012 年月日学院经贸学院姓名学号 实验 实验成绩名称 一、实验目的 (一)利用SPSS对主成分回归进行计算机实现. (二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释. 二、实验内容 以教材例题为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用 三、实验步骤(以文字列出软件操作过程并附上操作截图) 1、数据文件的输入或建立:(文件名以学号或姓名命名) 将表数据输入spss:点击“文件”下“新建”——“数据”见图1: 图1 点击左下角“变量视图”首先定义变量名称及类型:见图2: 图2: 然后点击“数据视图”进行数据输入(图3): 图3

完成数据输入 2、具体操作分析过程: (1)首先做因变量Y与自变量X1-X3的普通线性回归: 在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4): 图4 将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5): 然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。选完后点击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9) 其他选项按软件默认。最后点击“确定”,运行线性回归,输出相关结果(见表1-3)

主成分分析和因子分析的区别

更多精彩统计学相关文章,请访问“统计之都”Capital of Statistics——https://www.wendangku.net/doc/673526514.html,
主成分分析和因子分析的区别
一、二者在 SPSS 中的实现
(一) 、因子分析在 进行因子分析主要步骤如下: 1. 2. 3. 4. 5. 指标数据标准化(SPSS 软件自动执行) ; 指标之间的相关性判定; 确定因子个数; 综合得分表达式; 各因子 Fi 命名; 例子:对沿海 10 个省市经济综合指标进行因子分析 (一)指标选取原则 本文所选取的数据来自 《中国统计年鉴 2003》 2002 年的统计数据,在沿海 10 省市经济状况主要指标 中 体系中选取了 10 个指标: X1——GDP X3——农业增加值 X5——第三产业增加值 X7——基本建设投资 X9——海关出口总额 X2——人均 GDP X4——工业增加值 X6——固定资产投资 X8——国内生产总值占全国比重(%) X10——地方财政收入
SPSS 中的实现
图表 1 沿海 10 个省市经济数据 社会消 农业增加 工业增加 第三产业 固定资产 基本建设 费品零 值 值 增加值 投资 投资 售总额 14883.3 1390 950.2 83.9 1122.6 86.2 680 663 1023.9 591.4 1376.2 3502.5 1406.7 822.8 3536.3 2196.2 2356.5 1047.1 4224.6 367 2258.4 3851 2092.6 960 3967.2 2755.8 3065 1859 4793.6 995.7 1315.9 2288.7 1161.6 703.7 2320 1970.2 2296.6 964.5 3022.9 542.2 529 1070.7 597.1 361.9 1141.3 779.3 1180.6 397.9 1275.5 352.7 2258.4 3181.9 1968.3 941.4 3215.8 2035.2 2877.5 1663.3 5013.6 1025.5
地区
GDP
人均 GDP 13000 11643 9047 22068 14397 40627 16570 13510 15030 5062
海关出 地方财 口总额 政收入 123.7 211.1 45.9 115.7 384.7 320.5 294.2 173.7 1843.7 15.1 399.7 610.2 302.3 171.8 643.7 709 566.9 272.9 1202 186.7
辽宁 5458.2 山东 10550 河北 6076.6 天津 2022.6 江苏 浙江 福建 广东 10636 7670 4682 11770 上海 5408.8
广西 2437.2
(二)因子分析在 SPSS 中的具体操作步骤
1

主成分分析和因子分析十大不同点

主成分分析和因子分析十大不同点 主成分分析和因子分析无论从算法上还是应用上都有着比较相似之处,本文结合以往资料以及自己的理解总结了以下十大不同之处,适合初学者学习之用。 1.原理不同 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,而且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维(线性变换)的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)。 2.线性表示方向不同 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3.假设条件不同 主成分分析:不需要有假设(assumptions)。 因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。4.求解方法不同 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)。 注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况)。 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。

最新SPSS 因子分析和主成分分析

S P S S因子分析和主成分分析

实验课:因子分析 实验目的 理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。 因子分析 一、基础理论知识 1 概念 因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。 两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。

2 特点 (1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 (2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。 3 类型 根据研究对象的不同,把因子分析分为R型和Q型两种。 当研究对象是变量时,属于R型因子分析; 当研究对象是样品时,属于Q型因子分析。 但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。

(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析教学内容

(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。 (2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。 (3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对

多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。 一、 偏最小二乘回归的建模策略\原理\方法 1.1建模原理 设有 q 个因变量{q y y ,...,1}和p 自变量{p x x ,...,1}。为了研究因变量和自变量的统计关系,我们观测了n 个样本点,由此构成了自变量与因变量的数据表X={p x x ,...,1}和.Y={q y y ,...,1}。偏最小二乘回归分别在X 与Y 中提取出成分1t 和1u (也就是说, 1t 是p x x ,...,1 的线形组合, 1u 是q y y ,...,1 的线形组合).在提取这两个成分时,为了回归分析的需要,有下列两个要求: (1) 1t 和1u 应尽可能大地携带他们各自数据表中的变异信息; (2) 1t 与1u 的相关程度能够达到最大。 这两个要求表明,1t 和1u 应尽可能好的代表数据表X 和Y,同时自变量的成分 1t 对因变量的成分1u 又有最强的解释能力。 在第一个成分1t 和 1u 被提取后,偏最小二乘回归分别实施X 对 1t 的回归以及 Y 对1u 的回归。如果回归方程已经达到满意的精度,则算法终止;否则,将利用 X 被1t 解释后的残余信息以及Y 被1t 解释后的残余信息进行第二轮的成分提取。如此往复,直到能达到一个较满意的精度为止。若最终对 X 共提取了 m 个成分1 t ,…, m t , 偏最小二乘回归将通过实施 k y 对1 t ,…, m t , 的回归,然 后再表达成k y 关于原变量 x 1 ,…, x m , 的回归方程,k=1,2,…,q 。

主成分分析法与因子分析法的区别

主成分分析和因子分析有十大区别: 1.原理不同 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系) 2.线性表示方向不同 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3.假设条件不同 主成分分析:不需要有假设(assumptions), 因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。 4.求解方法不同 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。 (实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计) 注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况); 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。 5.主成分和因子的变化不同 主成分分析:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的独特的; 因子分析:因子不是固定的,可以旋转得到不同的因子。 6.因子数量与主成分的数量 主成分分析:主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。 因子分析:因子个数需要分析者指定(SPSS和sas根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同; 7.解释重点不同: 主成分分析:重点在于解释个变量的总方差, 因子分析:则把重点放在解释各变量之间的协方差。 8.算法上的不同: 主成分分析:协方差矩阵的对角元素是变量的方差; 因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变

主成分回归分析

如何利用SPSS进行主成分回归实例分析 主成分回归分析数据编辑、定义格式 第一步,进行一般的线性回归分析: 首先给出各个变量的平均值,标准差,膨胀系数VIF,以便进行多重共线性诊断。 变量平均值标准差膨胀系数VIF x1 148.27588 161.03858 9597.57076 x2 18163.23529 21278.11055 7.94059 x3 4480.61824 4906.64206 8933.08650 x4 106.31765 107.95415 23.29386 x5 5.89353 1.58407 4.27984

以及一般线性回归模型分析结果: 方差分析表 方差来源平方和df 均方F值显著水平 回归490177488.12165 5 98035497.62433 237.79008 0.00000 剩余4535052.36735 11 412277.48794 494712540.48900 16 30919533.78056 变量x 回归系数标准系数偏相关标准误t值显著水平b0 1962.94803 1071.36166 1.83220 0.09184 b1 -15.85167 -0.45908 -0.04888 97.65299 -0.16233 0.87375 b2 0.05593 0.21403 0.62148 0.02126 2.63099 0.02194 b3 1.58962 1.40269 0.15318 3.09208 0.51409 0.61652 b4 -4.21867 -0.08190 -0.17452 7.17656 -0.58784 0.56754 b5 -394.31413 -0.11233 -0.49331 209.63954 -1.88091 0.08446 剩余标准差sse=642.08838,Durbin-Watson d=2.73322。 第二步,对自变量进行主成分分析,给出主成分分析结果: No 特征值百分率% 累计百分率% 1 4.1971 2 83.94234 83.94234 2 0.66748 13.34968 97.29202 3 0.09463 1.89266 99.18469 4 0.04071 0.81423 99.99892 5 0.00005 0.00108 100.00000 并显示如下选择主成分个数的用户操作界面: 特征向量(转置)

主成分分析与因子分析的主要方法和思想

1.(10分)数据中心化和标准化在回归分析中的意义是什么? 在多元线性回归分析中,因为涉及多个自变量,自变量的单位往往不同,会给分析带来一定的困难,又由于涉及的数据量很大,就可能会以舍入误差而使得计算结果不理想. 1.中心化处理后可以减少一个未知参数,减少了计算的工作量,对手工计算尤为重要. 2.标准化处理后有利于消除量纲不同和数量级的差异所带来的影响,避免不必要的误差. 2.(10分)在实际问题中运用多元线性回归应注意哪些问题? 在实际问题中,人们用复相关系数R来表示回归方程对原有数据拟合程度的好坏,但是拟合优度并不是检验模型优劣的唯一标准,有时为了使模型从结构上有较合理的经济解释,R2等于0.7左右也给回归模型以肯定的态度. 在多元线性回归分析中,我们并不看重简单相关系数,而认为偏相关系数才是真正反映因变量y与自变量x i以及自变量x i与x j的相关性的数量. 用相关系数R2大小来衡量模型的拟合优度,不能仅由R2值很大来推断模型优劣. 在实际应用回归方程进行控制和预测时,给定的x0值不能偏离样本均值太大,如果太大,用回归方程无论是作因素分析还是经济预测,效果都不会理想. 得到实际问题的经验回归方程后,还不能马上用它去作分析和预测,还需运用统计方法对回归方程进行检验. 3.(15分)主成分分析与因子分析的主要方法和思想是什么?两者有何联系与区别? 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。 一、主成分分析的基本思想 在对某一事物进行实证研究中,为了更全面、准确地反映出事物的特征及其发展规律,人们往往要考虑与其有关系的多个指标,这些指标在多元统计中也称为变量。这样就产

主成分分析与因子分析

一、问题的提出 在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避 免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此类问题而产生的多元统计分析方法。 近年来,这两种方法在社会经济问题研究中的应用越来越多,其应用范围也愈加广泛。因子分析是主成分分析的推广和发展,二者之间就势必有着许多共同之处,而 SPSS 软件不能直接进行主成分分析,致使一些应用者在使用SPSS 进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生质疑。因此,有必要在运用SPSS 分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。 二、主成分分析与因子分析的联系与区别 两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分)综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。 主要区别: 1. 主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。 2. 主成分分析是将主成分表示为原观测变量的线性组合, 1o i ij j j Y X γ==∑ (1) 主成分的个数i=原变量的个数p ,其中j=1,2,…,p , 是相关矩阵的特征值所对应的特征向量矩阵中的元素, 是原始变量的标准化数据,均值为0,方差为1。其实质是p 维空间的坐标变换,不改变原始数据的结构。 而因子分析则是对原观测变量分解成公共因子和特殊因子两部分。因子模型如式(2), (2) 其中i=1,2,…,p, m 是因子分析过程中的初始因子载荷矩阵中的元素, 是第j 个公共因子,是第i 个原观测变量的特殊因子。且此处的与的均值都为0,方差都为1。 3. 主成分的各系数,是唯一确定的、正交的。不可以对系数矩阵进行任何的旋转,且系数大小并不代表原变量与主成分的相关程度;而因子模型的系数矩阵是不唯一的、可以进行旋转的,且该矩阵表明了原变量和公共因子的相关程度。 4. 主成分分析,可以通过可观测的原变量X 直接求得主成分Y ,并具有可逆性;因子分析

因子分析和主成分分析

因子分析和主成分分析 实验目的 学习利用SPSS进行因子分析和主成分分析。 二、实验性质 选修,基础层次 三、主要仪器及试材 计算机及SPSS软件 四、实验内容 因子分析 五、实验学时 2学时 六、实验方法与步骤 1. 开机; 2. 找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS; 3. 按要求建立数据文件; 4. 进行统计分析; 5. 撰写实验报告; 6. 关闭SPSS,关机。 七、实验注意事项 1. 实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。 2. 遇到各种难以处理的问题,请询问指导教师。 3. 为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动 存储器。 4. 每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验 室管理人员同意。 5. 上机时间,禁止使用计算机从事与课程无关的工作。 八、上机作业 例1:下表资料为25名健康人的7项生化检验结果,7项生化检验指标依次命名为X1至X7,请对该资料进行因子分析。

实验步骤: 1.建立数据文件。定义变量名:分别为X1、X2、X3、X4、X5、X6、X7,按顺序输入相应数值,建立数据文件,保存为“生化检验”。 2.选择菜单“分析→降维→因子分析”,弹出“因子分析”对话框。在对话框左侧的变量列表中选变量X1至X7,进入“变量”框,如图1。 3.单击“描述”按钮,弹出“因子分析:描述统计”对话框,在“统计量”中选“单变量描述性”项,输出各变量的均数与标准差,“在相关矩阵”栏内选“系数”,计算相关系数矩阵,并选“KMO 和Bartlett的球型度检验”项,对相关系数矩阵进行统计学检验,如图2。

相关文档
相关文档 最新文档