文档库 最新最全的文档下载
当前位置:文档库 › 氟碱型烧结焊剂的电弧、冶金特性及其应用

氟碱型烧结焊剂的电弧、冶金特性及其应用

氟碱型烧结焊剂的电弧、冶金特性及其应用
氟碱型烧结焊剂的电弧、冶金特性及其应用

二氧化碳气体保护焊理论试题A卷

二氧化碳气体保护焊理论试题A卷 车间:姓名:保险编号 一、选择题(40×1=40分) 1.细丝二氧化碳保护焊时,熔滴应该采用()过渡形式。 A.短路.B颗粒状 C.喷射 D.滴状 2.CO2气体保护焊时,用的最多的脱氧剂是()。 A. Si Mn B. CSi C. Fe Mn D. C Fe 3.熔焊时,单位时间内完成的焊缝长度称为()。 A.熔合比 B.送丝速度 C.焊接速度 D.熔敷长度 4.CO2 气体保护焊用焊丝镀铜以后,既可防止生锈又可改善焊丝()。 A.导电性能 B.导磁性能 C.导热性能 D.热膨胀性 5 .焊丝牌号H08MnA中的“A”表示()。 A.焊条用钢 B.普通碳素钢焊丝 C.高级优质钢焊丝 D.特殊钢焊丝 6.贮存CO2气体的气瓶容量为L()。 A. 10L B. 25L C. 40L D. 45L 7.粗丝二氧化碳气体保护焊的焊丝直径为()。 A.小于1.2mm B. 1.2mm C.≥1.6mm D. 1.2~1.5mm 8.焊接过程中,对焊工危害较大的电压是()。 A.空载电压 B.电弧电压 C.短路电压 D.网路电压 9.表示在不同温度的条件下,不同含碳量的铁碳合金所处的状态、晶体结构及显微组织特征的图称为()。 A.金属结晶过程图 B.体心立方晶格图 C.面心立方晶格图 D.铁碳合金状态图 10.( )二氧化碳气体保护焊属于气——渣联合保护。 A.药芯焊丝 B.金属焊丝 C.细焊丝 D.粗焊丝 11.细丝CO2气体保护焊时,由于电流密度大,所以其()曲线为上升区。 A.动特性 B.静特性 C.外特性 D.平特性 12.焊接烟尘对焊工的危害是()。 A.尘肺和锰中毒 B.心脏病 C.胃痉挛 D.高血压

电弧产生现象原因及特点

电弧产生现象原因及特点 电弧产生现象原因及特点 在有触点电器中,触头接通和分断电流的过程中往往伴随着气体放电现象---电弧的产生及熄灭,电弧对电器具有一定的危害。 电弧属于气体放电的一种形式。气体放电分为自持放电与非自持放电两类,电弧属于气体自持放电中的弧光放电。试验证明,当在大气中开断或闭合电压超过10V、电流超过100MA的电路时,在触头间隙(或称弧隙)中会产生一团温度极高、亮度极强并能导电的气体,称为电弧。由于电弧的高温及强光,它可以广泛应用于焊接、熔炼、化学合成、强光源及空间技术等方面。对于有触点电器而言,由于电弧主要产生于触头断开电路时,高温将烧损触头及绝缘,严重情况下甚至引起相间短路、电器爆炸,酿成火灾,危及人员及设备的安全。所以从电器的角度来研究电弧,目的在于了解它的基本规律,找出相应的办法,让电弧在电器中尽快熄灭。 我们借助一定的仪器仔细观察电弧,可以发现,除两个极(触头)外,明显的分为3个区域,即近阴极区、近阳极区及弧柱区。

近阴极区的长度约等于电子的平均自由行程。在电场力的作用下正离子向阴极运动,造成此区域内聚集着大量的正离子而形成正的空间电荷层,使阴极附近形成高电场强度。正的空间电荷层形成阴极压降,其数值随阴极材料和气体介质的不同而有所变化,但变化不大,约在10-20V之间。 近阳极区的长度约等于近阴极区的几倍。在电场力的作用下自由电子向阳极运动,它们聚集在阳极附近而且不断被阳极吸收而形成电流。在此区域内聚集着大量的电子形成负的空间电荷层,产生阳极压降,其值也随阳极材料而异、但变化不大,稍小于阴极压降。由于近阳极区的长度比近阴极区的长,故其电场强度较小。 阴极压降与阳极压降的数值几乎与电流大小无关,在材料及介质确定后可以认为是常数。 弧柱区的长度几乎与电极间的距离相同。是电弧中温度最高、亮度最强的区域。因在自由状态下近似圆柱形,故称弧柱区。在此区中正、负电粒子数相同,称等离子区。由于不存在空间电荷,整个弧区的特性类似于一金属导体。每单位弧柱长度电压降相等。其电位梯度E。也为一常数,电位梯度与电极材料、电流大小、气体介质种类和气压等因素有关。 电弧按其外形分为长弧与短弧。长短之别一般取决于弧长与弧径之比。把弧长大大超过弧径的称为长弧。长弧的电压是近极压降(阴极压降与阳极压降)与弧柱压降之和。若弧长小于弧径,两极距离极短(如几毫米)的电弧称为短弧。此时两极的热作用强烈,近极区的过程起主要作用。电弧的压降以近极压降为主,几乎不随电流变化。 电弧还可按其电流的性质分为直流电弧和交流电弧。

常用焊剂介绍

HJ172是熔炼型无锰低硅高氟焊剂,为白色至浅灰色半透明玉石状颗粒,粒度为10~60目。用直流电源,焊丝接正极,焊接工艺性能良好。焊接含铌或钛的铬镍不锈钢时,无粘渣现象。其熔渣氧化性很弱,合金元素不易烧损,焊缝含氧量低,故具有较高塑性和韧性。 用途: 配合适当焊丝,可焊接高铬马氏体热强钢如15Cr12MoWV及含铌、含钛的铬镍不锈钢。 说明: HJ151是熔炼型无锰中硅中氟焊剂。呈蓝灰色至深灰色浮石状颗粒,粒度为10-60目(2.0~0.3mm)。采用直流电源,焊丝或焊带接正极。焊接工艺性能良好,脱渣容易,焊道成型美观。焊接奥氏体不锈钢时,具有增碳少和铬烧损少的特点。 用途: 配合奥氏体不锈钢焊丝或焊带如HOCr21Ni10,HOCr20Ni10Ti,HOOCr24Ni12Nb,HOOCr21Ni10Nb,HOOCr21Ni10等进行带极堆焊焊接。适用于核容器及石油化工设备耐腐蚀层堆焊,压力容器堆焊,热壁加氢炉的制造等。配合HOOCr16Mn16焊丝可用于高锰钢的补焊。 堆焊层性能: 配HOOCr26Ni12过渡层焊接,HOOCr26Ni10作表面层焊带,在厚度50mm,18MnMoNb钢板上堆焊。 1、机械性能(见附表) 2、堆焊层增碳≤0.01%,铬烧损≤1.5%。 3、晶间腐蚀试样经敏化处理后通过GB4334.5检验《不锈钢硫酸-硫酸铜腐蚀试验方法》。 焊剂化学成份(Chemical Composition)(%) 机械性能:(Mechanical Performance) 说明: HJ260是熔炼型低锰高硅中氟焊剂,呈灰色玻璃状颗粒,粒度为10~60目(2.0-0.3mm)。采用直流电源,焊丝接正极。电弧稳定,焊道成型美观,脱渣性能良好。 用途: 配合奥氏体不锈钢焊丝(如HOCr21Ni10,HOCr20Ni10Ti,H1Cr13,H3Cr13等),焊接相应的耐酸不锈钢结构,也可用于各种连铸辊、热轧辊、中、小型钢轧辊,耐腐轴、轮的埋弧堆焊,堆焊性能优良。 注意事项: 1、焊接前须清除焊接表面的油污、水份、铁锈等杂质。 2、焊接前焊剂须经300-400℃烘焙2小时。 焊剂化学成份(Chemical Composition)(%) 机械性能:(Mechanical Performance) 配合H08A焊丝(Applied to H08A welding wire)

气体保护焊电弧特性一

气体保护焊电弧特性 (一) 1.1 什么是焊接电弧? 电弧是一种气体放电现象,它能把电能有效而简便地转化为热能、机械能和光能。 定义:有焊接电源供给的,具有一定电压的两电极间或电极与母材间,在气体介质中产生的强烈而持久的放电现象称为焊接电弧。 1.2 焊接电弧的基本特点是什么? 焊接电弧的基本特点为: 1)维持电弧稳定燃烧的电弧电压很低,只有10~50V。 2)在电弧中能通过很大电流,可从几安~几千安。 3)电弧具有很高的温度,弧柱温度是不均匀的,中心温度最高,可达到5000~30000K,而远离中心则温度降低。 4)电弧能发出很强的光。电弧的光辐射波长为(1.7~50)×10-7m。它包括红外线,可见光和紫外线3个部分。 1.3 电弧由哪几部分组成?其特点是什么? 电弧是由3部分组成,即弧柱区、阴极区和阳极区,如图1所示。 1、弧柱区 弧柱区呈电中性,它是由分子、原子、受激的原子、正离子、负离子及电子所组成,其中带正电荷的离子与带负电荷的离子几乎相等,所以又称为等离子体。带电的粒子在等离子体定向移动,基本上不消耗能量,所以才能够在低电压条件下,传输大电流。传输电流的主要带电粒子是电子,大约占带电粒子总数的99.9%,其余为正离子。 因为阴极区和阳极区的长度极短,所以可以认为弧柱区长度为电弧长度。弧柱区的电场强度较低,通常只有5~10V/cm。

2、阴极区 阴极被认为是电子之源。它向弧柱提供99.9%的带电粒子(电子)。阴极发射电子的能力,对电弧稳定性影响极大。阴极区的长度为10-5~10-6cm,如果阴极压降为10V,则阴极区的电场强度为106~107V/cm。 3、阳极区 阳极区主要是接受电子,但还应向弧柱提供0.1%的带电粒子(正离子)。通常阳极区的长度为10-2~10-3cm,则阳极区的电场强度为103~104V/cm。由于阳极材料和焊接电流对阳极区压降影响很大,它可以在0~10V之间变化。例如当电流密度较大,阳极温度很高,使阳极材料发生蒸发时,阳极压降将降低,甚至到0V。 1.4 试述短路引弧法的原理及提高引弧成功率的方法。 熔化极气体保护电弧焊都是利用短路引弧法进行引弧,钨极氩弧焊大都采用非接触引弧法,但也有采用短路引弧法。下面以熔化极气体保护焊为例说明短路引弧法的原理。 熔化极气体保护电弧焊引弧时首先送进焊丝,并逐渐接近母材,如图2所示。一旦与母材接触,电源将提供较大的短路电流,利用在A点附近的焊丝爆断,进行引弧。如果在B点爆断,则引弧失败。所以在A点爆断是引弧成功的必要条件。 在A点还是在B点爆断主要是由于焊丝在该点附近产生电阻热的大小,也就是其接触电阻的大小。A、B两点的接触电阻如图3所示。B点为焊丝与导电嘴的接触处,其接触电阻R B 随时间变化很小,基本上不变。在A点却不同,A点为焊丝端头与母材的接触点。R A为接触电阻,在焊丝与母材接触瞬间R A为无穷大;随着短路电流的增加,A点迅速软化,使接触面积增加,于是R A急剧减小。可见,为确保引弧成功,希望短路电流增长速度di S/dt越大越好,R A衰减速度越慢越好。也就是在R A很大时,短路电流i S增加到较高的值,使得在A点发生爆断。

烧结焊剂简明表

牌号GB标准AWS标准焊接电源主要用途 JQ.SJ101F4A2-H08MnA F5A4-H10Mn2 F6A4-EM12 F7A0-EA2-A2 配合适当的焊丝(如H08MnA、H10Mn2、H08MnMoA、H08Mn2MoA等),可焊接多种低合金结构钢,如船体、锅炉压力容 器、管道等。可用于多层焊、双面单道焊、多丝焊及窄间隙埋弧焊。 JQ.SJ101C F4A4-H08MnA F5A4-H10Mn2 F6A4-EM12配合适当的焊丝(如H08MnA、H10Mn2等),用于船体结构的焊接,也可用于锅炉、压力容器、管道等重要结构的焊接。 JQ.SJ101G F4A4-H08MnA F5A4-H10Mn2 F6A4-EM12配合H10Mn2、H08C等焊丝,可焊接输油、输气管道的螺旋焊管接头;配合H08C焊丝,尤其适用于焊接×65、×70级的螺旋焊 管,焊接速度可达70m/h以上。 JQ.SJ102F4A4-H08MnA F5A4-H10Mn2 F6A4-EM12 F7A0-EA2-A2 配合适当的焊丝(如H08MnA、H10Mn2、H08MnMoA),可焊接多种低合金结构钢,较高强度船体结构钢、压力容器用钢。 可用于多道焊、双面单道焊、多丝焊及窄间隙埋弧焊。 JQ.SJ102Ni F5A5-H10Mn2 F5A4-H10Mn2 F7A5-EAH14配合适当焊丝(如H10Mn2,H08MnMoA, H08Mn2MoA等),可焊接多种低合金钢、较高强度船体结构钢、压力容器钢。 JQ.SJ105配合适当的焊丝(如WM-210药芯耐磨合金焊丝),可用于轧辊的表面堆焊。 氟碱型烧结焊剂使用说明: 采购及使用焊剂时应注意以下问题: 1、焊剂一般为袋装,应妥善运输,以防止包装破损;应存放在干燥的房间内,防止受潮而影响焊接质量。 2、使用前,焊剂应按说明书所规定的参数进行烘焙。烘焙时,焊剂散布在盘中,厚度最大不超过50mm。 3、焊前,母材焊接处应清除铁锈、油污、水分等杂质。 4、使用回收的焊剂,应清除掉里面的渣壳、碎粉及其它杂物,与新焊剂混匀后再使用。 5、使用直流电源时,一般采用直流反接,即焊丝接正极。 氟碱型烧结焊剂简明表

水洗性助焊剂TDS、物质安全资料表MSDS、使用方法说明

编写日期:2020.10.23版本号:A1 规格表/ SPECIFICATIONS 项目/Item 规格/Specs 测试标准/ Standard 助焊剂分类/Flux Grade ORM0 J-STD-004 外观/Physical State 液体/Liquid 颜色/Color of Liquid 无色透明/Transparent 比重/Specific Gravity(20℃) 0.822±0.010 GB/T 4472-84 酸价/Acid Value (mgKOH/g) 49.00±5.00 IPC-TM-650 固含/Solid Content(w/w%) 7.50±0.50 JIS-3197 卤化物含量/Halides Content 无/Halide Free IPC-TM-650 表面绝缘阻抗值/ Surface Insulation Resistance(Ω)≥1011JIS-3197 焊点颜色/Joints Color 光亮/Bright 目测 吸入容许浓度/Threshold Limit Value (ppm) 400 使用方法/A pplications 手浸焊/Dipping 使用稀释剂/Thinner Used NL786 产品保质期限/ Shelf Life 1年 ※本产品样本中提供的技术参考仅供参考,它们会随不同的工作条件,如设备类型、材质、工艺条件等改变。(如有改动,以最新规格表资料为准)

编写日期:2020.10.23版本号:A1 物质安全资料/MSDS 一.化学品及企业标识/CHEMICAL AND COMPANY INFORMATION 化学品中(英)文名 Chemical name 助焊剂 Flux 生产企业名称 Company name 地址 Address 邮编/Postcode 电子邮件/E-mail 企业应急电话/Telephone 传真号码/Fax 编写日期/Compile date 生效日期/Inure date 2020.10.23 二.成分/组成信息/COMPOSITION INFORMATION ON INGREDIENTS NA=Not available/不适用 物质成份 /Ingredient 百分含量 /Weight Content(w/w%) 吸入容许浓度 /OSHA PEL ppm 最高容许浓度 /TLV STEL ppm 表面活性剂/S u rfactant 2.00NA NA 活化剂/Flux Activator 7.00 NA NA 起泡剂/Foaming Agent 0.50 NA NA 混合醇溶剂/Mix Alcohol 90.5 400 500 有害成分/HAZARDOUS INGREDIENTS 危害物质 /Hazardous Ingredient 百分含量 /Weight Content(w/w%) 危规号 CAS NO. 混合醇溶剂/Mix Alcohol 90.567-63-0

二氧化碳气体保护焊的冶金特性

二氧化碳气体保护焊的冶金特性 常温下,CO2气体的化学性质呈中性,但在电弧高温下,CO2气体被分解呈很强的氧化性,能使合金元素氧化烧损,降低焊缝的力学性能,还能成为产生气孔和飞溅的根源。因此,CO2焊的焊接冶金具有特殊性。 1、合金元素的氧化与脱氧 (1)合金元素的氧化 在电弧热量作用下,二氧化碳发生分解,放出氧气: 2CO2? 2CO + O2 氧气又进一步分解为氧原子: O2? 2O 因此,二氧化碳电弧具有很强的氧化性,使铁及合金元素(Si、Mn、Cr、Ni、Ti、C等)发生氧化。 氧化反应的不利后果:合金元素大量烧损,降低力学性能; 溶入液态金属的FeO与C反应,生成CO气体,使熔滴和熔池金属发生爆破,产生飞溅,也易于导致CO气孔。(2)脱氧 在焊丝中加入适量的脱氧剂,脱氧剂与O的亲和力比Fe 及C强,因此可阻止Fe、C等与O发生不利的反应。脱氧剂在完成脱氧任务之余,所剩余的量作为合金元素留在焊缝中,起着提高焊缝机械性能的作用。

常用的脱氧元素有: Mn、Si、Al、Ti等。 二氧化碳焊焊丝一般采用Mn、Si联合脱氧,有些焊丝中还加少量的Ti。采用Mn、Si联合脱氧生成的MnO、SiO2可以形成复合物浮出熔池,形成一层微薄的渣壳。 2、CO2焊的气孔问题 CO2焊可能产生的气孔有以下三种: (1)CO气孔: 一氧化碳气孔产生的主要原因脱氧剂不足时,发生以下反应: FeO + C = Fe + CO 该反应通常发生于熔池尾部,此处的液态金属温度接近结晶温度,反应很强烈且CO没有时间逸出,因此,CO易残留于熔池中形成气孔。但只要选择的焊丝正确,焊丝中的脱氧元素就会抑制FeO生成,产生CO气孔的可能性很小。(2)氢气孔: 氢气主要来源于焊丝、焊件表面的铁锈、水分、油污和CO2气体中的水分。 二氧化碳电弧中有大量的氧原子,氧原子可与焊接区的氢结合成不溶于熔池的羟基,因此CO2焊对氢气孔不敏感。只要是CO2气体中的水分含量不超过规定值,工件及焊丝上的铁锈及油污不很严重,一般不会产生氢气孔。 (3)氮气孔:

烧结焊剂

烧结焊剂与熔炼焊剂即使用同一焊丝,焊缝金属化学成分有很大的差异,因为它们的合金过渡系数不同,烧结焊剂碱度较高,过渡系数大,加之本身能加入合金成分,所以烧结焊剂过渡系数大于熔炼焊剂。 烧结焊剂施焊时无烟无味无毒。 比重轻,焊同一物件,要比熔炼焊剂节省20%以上。 目前大企业(重注工人环保的企业)都改用了烧结焊剂,熔炼焊剂是50年代产品,烧结焊剂是80年代产品,国外80-90%在使用烧结焊剂 烧结焊剂中也有不过渡合金元素的不能一概而论 烧结焊剂也会产生有害物质只要含有S P就会产生有害气体. 烧结焊剂在焊接过程中烧损比较多,不会达到真正的节省20% 熔炼焊剂回收率比烧结的高现在熔炼焊剂的渣壳可以卖到680元/吨烧结的一分钱也卖不了. 随化工猛矿石的不断涨价与环保要求的升高熔炼焊剂的价格也越来越高. 抗拉强度屈服强度伸长率冲击值 SJ101 H08MnA 450~550 ≥360 ≥24 ≥34(-40) H10Mn2 480~600 ≥400 ≥24 ≥34(-40) H08MnMoA 550~650 ≥430 ≥20 ≥34(-20) H08Mn2MoA 620~750 ≥500 ≥20 ≥34(-20) SJ102 H08MnA 490~560 ≥400 ≥24 ≥40(-40) H10Mn2 540~660 ≥450 ≥24 ≥60(-40) H08MnMoA 580~690 ≥500 ≥20 ≥60(-40)

SJ105 WM-210药芯HRC≥45 SJ107 H08MnA 450~550 ≥360 ≥24 ≥34(-40) H10Mn2 480~600 ≥400 ≥24 ≥34(-40) H08MnMoA 550~650 ≥430 ≥20 ≥34(-20) H08Mn2MoA 620~750 ≥500 ≥20 ≥34(-20) SJ201 H08MnA 460~650 ≥380 ≥22 ≥27(-40) H10Mn2 480~690 ≥400 ≥22 ≥27(-40) H08Mn2MOA 600~730 ≥450 ≥22 ≥27(-40) SJ202 H3Cr2W8 HRC≥50 H3Cr2W8V H30CrMnSi SJ301 H08A 460~560 ≥360 ≥24 ≥34(-20) H08MnA 500~600 ≥400 ≥24 ≥34(-20) H10Mn2 530~630 ≥400 ≥24 ≥34(-20) H08MnMoA 600~700 ≥480 ≥24 ≥34(-20) SJ401 H08A 410~550 ≥330 ≥22 ≥27(0)SJ402 H08A 480~650 ≥400 ≥22 ≥34(0)SJ403 H08A 410~550 ≥330 ≥22 ≥27(0)YD137 HRC≥35

氟胶、硅胶、丁睛的区别

丁腈橡胶 丁腈橡胶nitrile butadiene rubber 由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24等五种。丙烯腈含量越多,耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 硅胶 透明或乳白色粒状固体。具有开放的多孔结构,吸附性强,能吸附多种物质。如吸收水分,吸湿量约达40%。如加入氯化钴,干燥时呈蓝色,吸水后呈红色。可再生反复使用。 一般来说,硅胶按其性质及组分可分为有机硅胶和无机硅胶两大类。 无机硅胶是一种高活性吸附材料,通常是用硅酸钠和硫酸反应,并经老化、酸泡等一系列后处理过程而制得。硅胶属非晶态物质,其化学分子式为 mSiO2 .nH2O。不溶于水和任何溶剂,无毒无味,化学性质稳定,除强碱、氢氟酸外不与任何物质发生反应。各种型号的硅胶因其制造方法不同而形成不同的微孔结构。硅胶的化学组份和物理结构,决定了它具有许多其它同类材料难以取代的特点:吸附性能高、热稳定性好、化学性质稳定、有较高的机械强度等。 硅胶根据其孔径的大小分为:大孔硅胶、粗孔硅胶、B型硅胶、细孔硅胶。由于孔隙结构的不同,因此它们的吸附性能各有特点。粗孔硅胶在相对湿度高的情况下有较高的吸附量,细孔硅胶则在相对湿度较低的情况下吸咐量高于粗孔硅胶,而B型硅胶由于孔结构介于粗、细孔之间,其吸附量也介于粗、细孔之间。大孔硅胶一般用作催化剂载体、消光剂、牙膏磨料等。因此应根据不同的用途选择不同的品种。 氟橡胶 氟橡胶是含有氟原子的合成橡胶,氟橡胶具有耐高温、耐油及耐多种化学药品侵蚀的特性,是现代航空、导弹、火箭、宇宙航行等尖端科学技术不可缺少的材料。近年,随着汽车工业对可靠性、安全性等要求的不断提升,氟橡胶在汽车中的用量也迅速增长。 氟橡胶(fluororubber)是指主链或侧链的碳原子上含有氟原子的合成高分子弹性体。最早的氟橡胶为1948年美国DuPont公司试制出的聚-2-氟代-1.3-丁二烯及其与苯乙烯、丙烯等的共聚体,但性能并不比氯丁橡胶、丁橡胶突出,而且价格昂贵,没有实际工业价值。50年代后期,美国Thiokol公司开发了一种低温性好,耐强氧化剂(N2O4)的二元亚硝基氟橡胶,氟橡胶开始进入实际工业应用。此后,随着技术进步,各种新型氟橡胶不断开发出来。 中国从1958年开始也开发了多种氟橡胶,主要为聚烯烃类氟橡胶,如23型、26型、246型以及亚硝基类氟橡胶;随后又发展了较新品种的四丙氟橡胶、全氟醚橡胶、氟化磷橡胶。这些氟橡胶品种都首先以航空、航天等国防军工配套需要出发,逐步推广应用到民用工业部门。是含有氟原子的合成橡胶,氟橡胶具

电弧的静特性和电源的外特性

电弧的静特性: 在电极材料、气体介质和弧长一定的情况下,电弧稳定燃烧时焊接电流和电弧电压变化的关系称为电弧的静特性。电弧静特性曲线呈U形,它有三个不同的区域(I、II、III)。当电流在I区较小时,电弧静特性属于下降特性区,随着电流的增加,电弧电压减小;当电流在II时,电弧特性属于水平特性区,当电流变化是而电弧电压几乎不变;当电流在III区内增大时,电弧特性属于上升特性区,电弧电压随电流的增大而升高。 不同的电弧焊接方法,其电弧在正常的使用范围内只工作于静特性曲线中的某一段或两段上。如焊条电弧焊的电弧主要工作于I和II区,当弧长变化时静特性曲线上下平移,弧长越长静特性曲线向上移动量越大,弧长过长时断弧。工作在II区的有埋弧焊、不熔化极气体保护焊和微束等离子弧焊等弧焊方法。工作在III区的有细丝熔化极气体保护焊、等离子弧焊和水下焊等弧焊方法。 焊条电弧焊的电弧对电源的要求: 电弧焊机是为电话提供电能的装置,为了保证电弧稳定工作的要求,弧焊电源在工艺性能和结构方面应该达到引弧容易;保证电弧稳定燃烧;保证焊接电流、电弧电压等工艺参数稳定;可以方便调节焊接工艺参数,以适应焊接不同性质和厚度不同的钢板;电源节能环保、质量轻、结构简单、制造成本低;安全可靠、工作性能良好、维修简单方便等。 为了达到以上要求弧焊电源应该具备以下性能。 弧焊电源具有下降的外特性曲线:在电弧稳定燃烧时,焊接电源输出稳定电流和电源输出稳定电压间的关系称为电源的外特性。电弧焊时,弧焊电源供电,电弧是电源用电的负载,电源与电弧构成完整的供电系统,为保证该系统的稳定性电源外特性曲线的形状和电弧静特性曲线的形状必须适当配合。 弧焊电源的外特性包括下降特性、平特性和上升特性。下降的外特性曲线是随着弧焊电源输出电流的增大,电源的输出电压下降。对于焊条电弧焊电源一般要求为陡降的外特性曲线。 电弧的静特性曲线与电源的外特性曲线的交点就是电弧燃烧的工作点,焊条电弧焊采用的下降特性曲线与电弧的静特性曲线交点有两点。 电弧电源具有适当的空载电压:外特性曲线上,焊接电流为0时的输出电压称为空载电压,它与电弧的引弧性能、电弧的稳定性有关。空载电压太低使引弧困难,电弧燃烧不稳定。过高则生产成本高,焊工的安全性差。 适当的短路电流:焊条电弧焊电弧的产生是通过电极与焊件进行短路后,提起焊条产生的,短路时电弧电压为0,如果短路电流过大,不但会因过载引起焊机过热以致烧坏,同时还会使焊条过热引起药皮脱落,液态金属飞溅增多;相反,短路电流太小,会使引弧和熔滴过渡发生困难。 弧焊电源能方便的调节焊接电流。焊条电弧焊接不同厚度的焊件,不同位置的焊缝,采用不同的焊条直径和适应不同的接头形式都是通过调节焊接电流来实现的。为此要求弧焊电源应该能在一定的范围内,对焊接电流灵活、均匀地进行调整。电流的调节是通过改变电源外特性来实现的。 弧焊电源具有良好的动态特性。为了适应电弧长短变化和经常短路的需要,要求弧焊电源供给的电压和电流能够随着负载的改变而迅速改变。所以动态品质是用来表示弧焊电源对负载瞬时变化的反应能力。它对电弧的燃烧稳定性、熔滴过渡、金属飞溅、焊缝成形等有

二氧化碳气体保护焊和氩气保护焊

二氧化碳气体保护焊(简称co2焊),是利用从喷嘴中喷出的二氧化碳气体隔绝空气,保护熔池的一种先进的熔焊方法。这种方法焊接薄板,比手工电弧焊有着明显的优越性。在我公司的产品中,薄板焊接件占了很大的比重,焊接接头以角接和搭接为主,材质为普通碳素结构钢,其厚度在1-3mm之间。以前,对薄板零件的焊接,一直采用手工电弧焊和气焊,此方法虽然有其优点,但它能耗高,焊后工件变形大,严重影响了机器的装配精度和外观质量。经过广泛的调研和论证后,决定推广使用co2气体保护焊技术,以提高产品的质量。下面,谈谈笔者对此技术的认识和看法。 一、二氧化碳气体保护焊与手工电弧焊对比试验 为了对co2气体保护焊和手工电弧焊的一些参数进行对比,我们对co2气体保护焊与手工电弧焊进行了对比焊接,试验结果表明: 熔深有重要的影响。 以短路结束后的电流变化过程是燃弧能力的重要组成部分。也就是说,焊机的动态特性对焊缝成形和熔深 熔深 动特性越慢,短路结束后电流过渡时间越长,所提供的燃弧能力越大,焊缝成形越好,熔深 熔深越大。但过慢的动特性又会使电 熔深 流增长率过缓,而导致飞溅严重,甚至破坏电弧的稳定性。所以,必须选用适当的动特性电源来保证焊接工艺的要求。 浅析CO2气体保护焊焊接电源特性的构成 CO2气体保护焊是以CO2气体作为电弧介质并保护电弧和焊接区的电弧焊方法。由于CO2源丰富、价格低廉等原因,在现代生产和工程中应用已经很普遍。CO2气体保护焊机的工艺性能(电弧的稳定性、焊接飞溅和焊缝成形等)都直接受焊接电源特性的影响。所以CO2气体保护焊要求使用平硬特性的直流电源,并具有良好的动特性,是有科学依据的。 一、CO2气体保护焊的工艺特点分析 CO2气体保护焊具有焊接效率高、抗锈能力强、焊接变形小、冷裂倾向小、熔池可见性好、以及适用于全位置焊接等优点。究其不足主要是:很难使用交流电源,焊接飞溅多。特别是采用短路过渡形式时,在焊接过程会产生大量的金属飞溅。造成大量金属的损失,使熔敷率降低,焊后清理工作量增加。同时,飞溅的产生降低了电弧的稳定性,严重影响焊接质量。 熔深浅、焊缝成形窄而高,此外采用短路过渡的CO2体保护焊还存在焊缝成形差的工艺缺点。主要表现为焊缝表面不光滑、熔深 熔深 容易出现未熔合的焊接缺陷。所以要使CO2气体保护焊在工业生产中得以广泛推广和应用,则必须解决和控制这些工艺问题。 二、CO2气体保护焊中短路过渡的工艺分析 CO2体保护焊中短路过渡的初期和后期都会产生飞溅。每次燃弧时,电弧会冲击熔池而产生飞溅;当焊丝熔化形成熔滴与熔池接触,液桥还没有铺展开时,由于接触面积小,电流密度大,而发生汽化和爆炸产生“瞬时短路”飞溅;当熔滴与熔池短路金属液桥铺展开时,在液态金属的表面张力、重力、以及流过液桥的电流所产生的电磁收缩力的作用下,形成液桥缩径并急剧减小,短路电流密度剧增,使液态金属在瞬间发生汽化和爆炸而产生飞溅。同时,液桥金属的汽化和爆炸,不仅产生飞溅,还会引起熔池的剧烈震荡,从而导致焊缝成形不良和电弧的稳定性降低。 焊接时对母材的加热的热源主要是燃弧能量。CO2气体保护焊过程中,短路时间占了很大的比例,且短路过程几乎不会 熔深浅、给母材提供热能。其燃弧时间比其它焊接工艺都短,所以导致对母材的加热不足,从而造成焊缝余高大、焊缝窄、熔深 熔深 未熔合等焊缝成形缺陷。 三、CO2气体保护焊焊接电源特性的构成 从上述对CO2气体保护焊短路过渡特点的分析可知,焊接电弧的工艺效果将取决于电源特性的不同。电源特性包括电源静特性和动特性。

焊剂类型及用途

焊剂类型及用途 型号焊剂类型用途: HJ130 熔炼焊剂-无 锰高硅低氟 配合H10Mn2焊丝及其他低合金钢焊丝,埋弧焊接低碳钢或 其他低合金钢(如16Mn等) HJ131 熔炼焊剂-无 锰高硅低氟 配合镍基焊丝焊接镍基合金薄板结构 HJ150 熔炼焊剂-无 锰中硅中氟 配合适当焊丝,加H2Cr13或H3Cr2W8,堆焊轧辊 HJ151 熔炼焊剂-无 锰中硅中氟 配合奥氏体不锈钢焊丝或焊带如 H0Cr21Ni10,H0Cr20Ni10Ti H00Cr24Ni12Nb,H00Cr21Ni10Nb,H00Cr26Ni12,H00Cr21Ni10 等进行带极堆焊或焊接,用于核容器及石油化工设备耐腐蚀 层堆焊和构件的焊接.配合H0Cr16Mn16焊丝可用于高锰钢 补焊.配方中若加入适量氧化铌,还可解决含铌钢焊后脱渣 难的问题 HJ172 熔炼焊剂-无 锰低硅高氟 配合适当焊丝,可焊接高铬马氏体热强钢如Cr12MowV及含 铌的铬镍不锈钢 HJ230 熔炼焊剂-低 锰高硅低氟 配合H08MnA,H10Mn2焊丝及某些低合金钢焊丝,焊接低碳钢 及某些低合金(16Mn)等结构 HJ250 熔炼焊剂-低 锰中硅中氟 配合适焊丝(H08MnMoA,H08Mn2MoA及H08MN2MoVA)可焊接低 合金钢(15MnV,14MnMoV,18MnMoNb等),配合Ho8Mn2MoVA焊 丝焊接 -70℃低温钢(如09Mn2V),具有较好的低温冲击韧 性 HJ251 熔炼焊剂-低 锰中硅中氟 配合铬钼钢焊丝焊接珠光体耐热钢(如焊接汽机轮子) HJ252 熔炼焊剂-低 锰中硅中氟 配合H0Mn2NiMoA,H08Mn2MoA,H10Mn2焊丝焊接低合金钢 15MnV,14MnMoV,18MnMoNb等,焊缝具有良好的抗裂性和较 好的低温韧性,可用于核容器、石油化工等压力容器的焊接 HJ260 熔炼焊剂-低 锰高硅中氟 配合奥氏体不锈钢焊丝(如H0CR21Ni10,H0Cr20Ni10Ti等) 焊接相应的耐酸不锈钢结构,也可用轧锟堆焊 HJ330 熔炼焊剂-中 锰高硅中氟 配合H08MnA,H08Mn2Si及H10MnSi等焊丝,可焊接低碳钢和 某些低合金钢(如16Mn,15MnTi,15MnV等)结构,如锅炉、压 力容器等 HJ350 熔炼焊剂-中 锰中硅中氟 配合适当焊丝,可以焊接低合金(如16Mn,15MnV,15MnVn等) 重要结构,船舶、锅炉、高压容器等.细粒度焊剂可用于细丝 埋弧焊,焊接薄板结构 HJ351 熔炼焊剂-中 锰中硅中氟 用于埋弧自动焊和半自动焊,配合适当焊丝可焊接锰-钼、锰 硅及含钼的低合金钢重要结构,如船舶、锅炉、高压容器等. 细粒度焊剂可用于焊接薄板结构 HJ360 熔炼焊剂-中 锰高硅中氟 主要用于电渣焊,配合H10MnSi,H10Mn2,H08Mn2MoVA, H102MoA等,焊接低碳钢及某些合金钢大型结构(A3.20g,

助焊剂的特性(精)

助焊剂的特性 1、化学活性(Chemical Activity) 要达到一个好的焊点,被焊物必须要有一个完全无氧化层的表面,但金属一旦曝露于空气中回生成氧化层,这中氧化层无法用传统溶剂清洗,此时必须依赖助焊剂与氧化层起化学作用,当助焊剂清除氧化层之后,干净的被焊物表面,才可与焊锡结合。 助焊剂与氧化物的化学放映有几种:1、相互化学作用形成第三种物质;2、氧化物直接被助焊剂剥离;3、上述两种反应并存。 松香助焊剂去除氧化层,即是第一中反应,松香主要成份为松香酸(Abietic Acid)和异构双萜酸(Isomeric diterpene acids),当助焊剂加热后与氧化铜反应,形成铜松香(Copper abiet),是呈绿色透明状物质,易溶入未反应的松香内与松香一起被清除,即使有残留,也不会腐蚀金属表面。 氧化物曝露在氢气中的反应,即是典型的第二种反应,在高温下氢与氧发生反应成水,减少氧化物,这种方式长用在半导体零件的焊接上。 几乎所有的有机酸或无机酸都有能力去除氧化物,但大部分都不能用来焊锡,助焊剂被使用除了去除氧化物的功能外,还有其他功能,这些功能是焊锡作业时,必不可免考虑的。 2、热稳定性(Thermal Stability) 当助焊剂在去除氧化物反应的同时,必须还要形成一个保护膜,防止被焊物表面再度氧化,直到接触焊锡为止。所以助焊剂必须能承受高温,在焊锡作业的温度下不会分解或蒸发,如果分解则会形成溶剂不溶物,难以用溶剂清洗,W/W级的纯松香在280℃左右会分解,此应特别注意。 3、助焊剂在不同温度下的活性 好的助焊剂不只是要求热稳定性,在不同温度下的活性亦应考虑。 助焊剂的功能即是去除氧化物,通常在某一温度下效果较佳,例如RA的助焊剂,除非温度达到某一程度,氯离子不会解析出来清理氧化物,当然此温度必须在焊锡作业的温度范围内。另一个例子,如使用氢气做为助焊剂,若温度是一定的,反映时间则依氧化物的厚度而定。 当温度过高时,亦可能降低其活性,如松香在超过600℉(315℃)时,几乎无任何反应,如果无法避免高温时,可将预热时间延长,使其充分发挥活性后再进入锡炉。 也可以利用此一特性,将助焊剂活性纯化以防止腐蚀现象,但在应用上要特别注意受热时间与温度,以确保活性纯化。 4、润湿能力(Wetting Power) 为了能清理材表面的氧化层,助焊剂要能对基层金属有很好的润湿能力,同时亦应对焊锡有很好的润湿能力以取代空气,降低焊锡表面张力,增加其扩散性。 5、扩散率(Spreading Activity) 助焊剂在焊接过程中有帮助焊锡扩散的能力,扩散与润湿都是帮助焊点的角度改变,通常“扩散率”可用来作助焊剂强弱的指标。

§3-1 二氧化碳气体保护焊的原理及特点

河南经济贸易高级技工学校 授课教案 授课教师刘广宝授课时间课程名称焊工工艺学 课题名称§3-1 二保焊的原理及特点教学方法讲授法 重点难点二保焊与其他焊接方法的区别 教具课本、多媒体作业布置见后 辅导反馈审批签字 【教学目标】 1、了解二保焊的原理 2、理解二保焊的特点 3、掌握二保焊的冶金特点 【教学课时】 【教学过程】 Ⅰ:组织教学:点名 Ⅱ:复习旧课 1、焊条的选择依据是? 2、焊接电流的选择依据是? 3、焊接速度的决定因素? Ⅲ:导入新课 第三章二氧化碳气体保护焊 §3-1 CO2气体保护焊的原理及特点 一、CO2气体保护焊的原理 CO2气体保护焊是利用CO2作为保护气体(有时采用CO2+Ar的混合气体)的气体保护电弧焊,简称CO2焊。二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。在应用方面操作简单,适合自动焊和全方位焊接。在焊接时不能有风,适合室内作业。 在应用方面操作简单,适合自动焊和全方位焊接。焊接时抗风能力差,适合室内作业。

由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断,因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。 因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。 焊接原理示意图 二、CO2气体保护焊的特点 1、优点: ①生产效率高和节省能量。 ②焊接成本低。 ③焊接变形小。 ④对油、锈的敏感度较低。 ⑤焊缝中含氢量少,提高了低合金高强度钢抗冷裂纹的能力。 ⑥电弧可见性好,短路过渡可用于全位置焊接。 2、缺点: ①焊接过程中金属飞溅较多,焊缝外形较为粗糙,特别是当焊接参数匹配不当时飞溅就更严重。

Stockwell发布军用级氟硅橡胶

第33卷?254? oor thermaC conductivity of single-layer graphene'J]. Nano Let i,2008,8 (3 ):902-907. '6]BOLOTIAK I,SIKES KJ,JIANG Z,et aC.Ultrahigh electron mobility in suspended graphene'J].Solid Statr Commun,2008,146(9-10):351—355. '7]CHEN D,FENG H B,LI J H.Graphene oxide:preparation,functionalization,and electrochemicat ap-plications[J].ChemRev,2012,112:6027-6053. :8]幸松民,王一璐.有机硅合成工艺及产品应用:M]. 北京:化学工业岀版社,2000:550-565. [9]赵云峰.有机硅材料在航天工业的应用:J].有机 硅材料,2013,27(6):451-456. :10]吴敏娟,周玲娟,江国栋,等?导热电子灌封硅橡胶的研究进展:J].有机硅材料,2006,20(2):81-85. [11]张雅春,赵志强,周长城,等.硅橡胶在高压电 缆附件中的应用:J].有机硅材料,2013,27(5): 365-367. :12(陶小乐,郑苏秦,高建军,等.硅橡胶在太阳能光伏组件领域的应用:J].有机硅材料,2014,28 (1):44-48. :13(张承??硅橡胶在生物医学领域的应用:J].有机硅材料,2002,16(6):14-17. :14(马丹丹,赵东林,张东东,等.石墨烯增强室温硫化硅橡胶复合材料的制备及力学性能[J].高分 子材料科学与工程,2013,29(10):138-141. :15(马文石,邓帮君.纳米功能化石墨烯/室温硫化硅橡胶复合材料的制备与表征:J]?复合材料学报, 2011,28(4):40-45. :16(刘刚,孙全吉,任河,等.石墨烯复合室温硫化硅橡胶的研究[J].粘接,2017,38(1):19-22. Preparation of Silane Modified Graphene Nanoplatelets Reinforced Silicone Rubber Composites REN He,WANG Lei,SUN Quan-Ji,LIL Mei,FAN Zhao-Dong (AECC Beijing Institute of Aeronauticai Materials,Beijing100089) Abstract:The silane modified graphene nanoplatelets(f-GNP_Si)wera prepared vic the reaction betreen aminopropyl-trimethoxysilane(APTMS)and ccrboxylated graphene nanoplatelates(fGNP)synthesized by the solvent-J ree reaction of1,3-dipolaa cyclo addition(DCA).GNP ot f-GNP-Si reinforced RTVSR was subse-quently prepared by solvent—ssisted mechanicot blending with RTVSR as matriy.The chemicat and physicot properties of GNPs,as well as theia distributions across the cross-section of Si-GNP_SR were characterized by SEM,XPS and Raman spectroscopy,etc.Results show that the compatibilito and dispersibilitr of the modified graphene and silicone rubbea composites are sicnificontty improved,and the mechanicot properties of Si_GNP_SR are sicnificontty inipToved.The silicone rubbea increases its Young's modulus of0.2MPa(8%),tensile strength of1.0MPa(24%),and elongation at break of35%,with2.0parts of f_GNP_Si for commer-tiaause. Keywords:graphene,corboxylated,silane modiied,silicone rubber 研发动态 StockwelC发布军用级氟硅橡胶 费城-斯托克韦尔(Stockwell)公司新推出高性能氟硅橡胶SSP4773及氟硅橡胶触觉小册子。SSP4773氟硅橡胶经历了一系列高性能过氧化物催化和热硫化测试,符合MIL-DTL-25988的军事标准要求,能在最严苛的环境下使用,确保关键部件在不损害性能的前提下能更好地满足性能预期%SSP4773有4种硬度规格:邵尔A硬度40、50、60和70度%StockwelC表示,此种氟硅橡胶交货时间短,订货量小。新手册中包括7种不同氟硅材料的触觉按钮,旨在帮助工程师在工业、航空航天、航空和分析仪器应用中确定使用不同的氟硅橡胶, 以实现静态密封和缓冲%

相关文档
相关文档 最新文档