文档库 最新最全的文档下载
当前位置:文档库 › 第2章 第2讲 拉氏变换及传递函数final

第2章 第2讲 拉氏变换及传递函数final

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉普拉斯变换习题集

1. 求下列函数的拉式变换。 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 3. 求下列函数的拉普拉斯逆变换。 4. 分别求下列函数的逆变换的初值和终值。 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求()t v r 并讨 论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向”“2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()() () s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到()()()()()∑∞ =-= =0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()() () s E s V s H 2= ; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。 12. 如图7所示电路, (1) 若初始无储能,信号源为()t i ,为求()t i 1(零状态响应),列出转移函数()s H ; (2) 若初始状态以()01i ,()02v 表示(都不等于0),但()0=t i (开路),求()t i 1(零输入 响应)。

求下列函数的拉氏变换

B2.1 求下列函数的拉氏变换: B2.2 求下列函数的拉氏反变换: B2.3 求下列矩阵的逆矩阵: B2.4 在图B2.4所示的电路中电压u1(t)为输入量,试以电压u2(t)或u C2(t)作为输出量,分别列写该系统的微分方程。 图B2.4 电路原理图 B2.5 图B2.5是一种地震仪的原理图,其壳体1固定在地基2上,重锤3的质量为m,由装在壳体上的弹簧和阻尼器支承。图中x为壳体相对于惯性空间的位移,z为质量m相对于惯性空间的位移,y=x-z为质量m相对于壳体的位移,可由指针4指示出来。当地震时壳体随地基上下震动,但由于惯性的作用使得重锤的运动幅度很小,故它与壳体之间的相对运动幅度y就近似等于地震的幅度。设重锤的质量为m(kg),弹簧的刚性系数为k(N/m),阻尼器的粘性摩擦系数为f(N·s/m),试列写以指针位移y为输出量时系统的微分方程。(注:z为静平衡时质量m的位移,重力使弹簧产生的变形已经加以考虑了。)

图B2.5 地震仪原理图 图B2.6 机械系统原理图 B2.6 设机械系统如图B2.6所示,图中z i为输入位移,z o为输出位移。试分别列写各系统的微分方程。 B2.7 例A1.2所讨论的液位控制系统(如图1.29所示),设液箱的横截面积为S,希望的液位高度为h 0,若液位高度的变化率与液体流量差(Q1-Q2)成正比,试列写以液位高度为输出量时系统的微分方程。 B2.8 设系统的微分方程为 试用拉氏变换法进行求解。 B2.9 已知控制系统的微分方程(或微分方程组)为

式中r(t)为输入量,y(t)为输出量,z1(t)、z2(t)和z3(t)为中间变量,τ、β、K1和K2均为常数。  试求:(a)各系统的传递函数Y(s)/R(s);(b)各系统含有哪些典型环节? B2.10 求题B2.4~B2.7各系统的传递函数。 B2.11 设控制系统的结构图如图B2.11所示,图中G1(s)和G2(s)所对应环节的微分方程分别为0.125u?+u=e?+3e和0.5y¨+y?=2u,试求该系统的传递函数Y(s)/R(s)和E(s)/R(s)。   图B2.11 控制系统方块图 B2.12 已知控制系统在零初始条件下,由单位阶跃输入信号所产生的输出响应为 y(t)=1+e-t-2e-2t试求该系统的传递函数,和零极点的分布并画出在S平面上的分布图。 B2.13 求图B2.13所示无源网络的传递函数U o(s)/U i(s)。 图B2.13 无源网络原理图 B2.14 求图B2.14所示运算放大器的传递函数U o(s)/U i(s)。 图B2.14 有源网络原理图 B2.15 已知控制系统的结构图如图B2.15所示,试应用结构图等效变换法求各系统的传递函数。

拉氏变换和z变换表(精选.)

word. 附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个

2.常用函数的拉氏变换和z变换表 word.

word. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

拉氏变换

控制原理补充讲义——拉氏变换 拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作: 称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。2)当时, ,M,a为实常数。 2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。 —拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 注意:六大性质一定要记住 1.单位阶跃函数

2.单位脉冲函数 3.单位斜坡函数 4.指数函数 5.正弦函数sinwt 由欧拉公式: 所以,

6.余弦函数coswt 其它的可见下表:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k 1,k 2 ,函数f 1 (t),f 2 (t),且f 1 (t),f 2 (t)的拉氏变换为F 1 (s),F 2 (s), 则有:,此式可由定义证明。 2、位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a有 , 其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a. 证明:, 令t-a=τ,则有上式= 例:求其拉氏变换

常用函数的拉氏变换[1]

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换 习题集

1. 求下列函数的拉式变换。 (1) t t cos 2sin + (2) ()t e t 2sin - (3) ()[]t e t βα--cos 1 (4) ()t e t 732--δ (5) ()t Ω2cos (6) ()()t e t ωαcos +- (7) ()t t αsin 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 (1) ()()()t u e t f t 2--= (2) ()()()12sin -?=t u t t f (3) ()()()()[]211----=t u u u t t f 3. 求下列函数的拉普拉斯逆变换。 (1) () 512+s s (2) ()() 243+++s s s (3) 11 12++s (4) ()RCs s RCs +-11 (5) ()()() 2133+++s s s (6) 22K s A + (7) ()( )[]22βα+++s a s s (8) () 142+-s s e s

(9) ?? ? ??+9ln s s 4. 分别求下列函数的逆变换的初值和终值。 (1) ()()() 526+++s s s (2) ()()()2132+++s s s 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求 ()t v r 并讨论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向” “2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示 式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得 表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()()() s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到 ()()()()()∑∞ =-==0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()()() s E s V s H 2=; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。

(推荐)拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 00)(≥

? ? ∞ -∞ -∞ ----==0 d d ][t s e s e t t te t L st st st 2 01d 1s t e s st == ?∞- 6、正弦函数 0sin 0 )(≥

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

控制工程基础习题解答

控制工程基础习题解答 第二章 2-1.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。 (1).()()t t f 3cos 15-= 解:()[]()[]9 553cos 152 +-=-=s s s t L t f L (2). ()t e t f t 10cos 5.0-= 解:()[][ ] ()100 5.05 .010cos 2 5.0+++= =-s s t e L t f L t (3). ()?? ? ? ?+ =35sin πt t f 解:()[]() 252355cos 235sin 2135sin 2 ++=?? ????+=????????? ??+=s s t t L t L t f L π 2-2.试求下列函数的拉氏反变换。 (1).()() 11+= s s s F 解:()[]()??????++=???? ?? +=---11121 111s k s k L s s L s F L ()10111==? ?? ???+=s s s s k ()()111112-=-=+?? ????+=s s s s k ()[]t e s s L s F L ----=?? ????+-=111111 (2).()()() 321 +++= s s s s F 解:()[]()()? ?????+++=???? ?? +++=---3232121 111s k s k L s s s L s F L

()()()122321 1-=-=+??????+++=s s s s s k ()()()233321 2=-=+?? ????+++=s s s s s k ()[]t t e e s s L s F L 231123221-----=?? ????+++-= (3).()()() 2 222 52 2+++++=s s s s s s F 解:()[]()()??????+++++=?? ????+++++=---222222252321 1221 1 s s k s k s k L s s s s s L s F L ()() ()2222222 52 21-=-=+?? ????+++++=s s s s s s s k ()( ) () 3 3 313312 22222 513223222232==-=---=-+---=++?? ????+++++=--=+k k j j j jk k k j s s s s s s s s j s k s k ()[]()()t e e s s s L s s s s L s F L t t cos 32111322223322221211 -----+-=?? ????+++++-=??????+++++- = 2-3.用拉氏变换法解下列微分方程 (1)()()()()t t x dt t dx dt t x d 1862 2=++,其中 ()()00,10===t dt t dx x 解:对方程两边求拉氏变换,得:

机械控制工程基础习题答案

第二章习题答案 2-1试求下列函数的拉氏变换,假设0<≤≤=π π t t t t t f ,00 0sin )( 答案:提示)sin(sin )(π-+=t t t f ,s e s s s F π-+++= 1 111)(2 2 2-3已知) 1(10 )(+= s s s F (1)利用终值定理,求∞→t 时)(t f 值 答案:10) 1(10 lim )(lim )(lim 0 =+==→→∞ →s s s s sF t f s s t (2)通过取)(s F 的拉氏反变换,求∞→t 时)(t f 值

拉普拉斯变换习题集

1.求下列函数的拉式变换。 (1) si nt 2 cost (2) e t sin 2t (3) 1 cos t e (4) 2 t 3e 7t (5) 2 cos t (6) t e cos t (7) sin t t 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 (1) ft e 七 2 u t (2) f t sin 2t u t 1 (3) f t t 1 u u 1 u t 2 3. 求下列函数的拉普拉斯逆变换。 (5) (7) s e 4s s 2 1(6) A s 2 K 2 (1) 1 SS 2 5 (2) 3s s 4 s 2 (3) 1 s 2 1 (4) 1 RCs s 1 RCs

(9) ln - s 9 4. 分别求下列函数的逆变换的初值和终值。 s 6 s 2 s 5 s 3 s 1 2 s 2 5. 如图1所示电路,t 0以前,开关S 闭合,已进入稳定状态;t 0时,开关打开,求 v r t 并讨论R 对波形的影响。 6. 电路如图2所示,t 0以前开关位于“1”,电路以进入稳定状态,t 0时开关从“T 倒向“ 2 ,求电流i t 的表示式。 7. 电路如图3所示,t 0以前电路原件无储能,t 0时开关闭合,求电压 V 2 t 的表示 式和波形。 8. 激励信号et 波形如图|4 a 所示电路如图|4 b 所示,起始时刻L 中无储能,求V 2 t 得 表示式和波形。 9. 电路如图5所示,注意图中 KV 2 t 是受控源,试求 (1) 系统函数H S — V 1 s (2) 若K 2,求冲激响应。 10. 将连续信号 ft 以时间间隔T 进行冲激抽样得到 f s t ft T t , T t t nT ,求: n 0 (1) 抽样信号的拉氏变换 L f s t ; (2) 若 ft e t u t ,求 L f s t 。 11. 在图6所示网络中,L 2H,C 0.1F, R 10 。 (1) 写出电压转移函数 H s V2 s ; E s (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。 (1) (2)

拉氏变换表(包含计算公式)

1 拉氏变换及反变换公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑ 1 1 ) 1() 1(1 2 2 2 ) ()() 0()() (0)0()(]) ([) 0()(])([k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L ) ( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑ ???????????==+-===+=+ + = + = n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 1 1 2 2 2 2 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L )(]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

控工课后习题

★1.试求下列函数的拉氏变换: (1)f(t)=(4t+5) δ(t)+(t+2)·1(t); 解:F(s)=L[(4t) δ(t)]+L[5δ(t)]+L[t ·1(t)]+L[2·1(t)] =0+5+1/S 2 +2/S=5+2/S+1/S 2 (2)f(t )=sin(5t + 3 π)·1(t); 解:F(s)=L{[sin5t cos 3 π+cos5t sin 3 π]·1(t)} =L[2 1sin5t ·1(t)+ 2 3 cos5t ·1(t)] = ) 25(2532 ++S S (4)f(t)=[4cos(2t-3π)]·1(t-6π)+t e 5-·1(t); 解:F(s)=L{[4cos2(t-6 π)]·1(t-6 π)+ t e 5-·1(t)} = 2 2 6 2 4+- s se s π+ 5 1+s = 4 42 6 +- s se s π+ 5 1+s (7)f(t)= t e 6- (cos8t+0.25sin8t) ·1(t); 解:F(s)=L[t e 6-cos8t ·1(t)+0.25t e 6-sin8t ·1(t)] = 2 2 8 )6(6+++s s + 228 )6(2 ++s =1001282+++s s s (2-(2))F(s)= 4 12 +s ; 解:f(t)=L -1 {21×2 2 2 2+s }=2 1sin2t ·1(t) ★2-3.用拉氏变换法解下列微分方程: (1)22 )(dt t x d + 6 dt t dx ) (+8x (t)=1,其中x(0)=1, 0)(|=t dt t dx =0;解:对原方程取拉氏变换,得 S 2 X (s)-s x (0)-)0(x +6[s X (s)-x (0)]+8X (s)= s 1 将初始条件代入,得 S 2 X (s)-s+6s X (s)-6+8X (s)= s 1 (S 2 +6s+8)X(s)= s 1+s+6 X(s)= ) 86(162 2 ++++s s s s s =s 8 1 +24 7+s +48 7+s 取拉氏变换,得x(t)= 81+47 t e 2--8 7 t e 4- (2) dt t dx ) (+10x(t)=2,其中x(0)=0; 解:对原方程去拉氏变换,得 s X(s)-x(0)+10X(s)= s 2 将初始条件x(0)=0代入,得s X(s)+10X(s)= s 2 由此得 X(s)= ) 10(2+s s =s 0.2- 10 0.2+s 取拉氏变换,得x(t)=0.2(1-t e 10-) (3) dt t dx ) (+100x(t)=300,其中0)(|=t dt t dx =50. 解:当t=0时,将初始条件)0(x =50代入方程,得 50+100x(0)=300 则x(0)=2.5 对原方程去拉氏变换,得sX(s)-x(0)+100X(s)= s 300 将x(0)=2.5代入,得sX(s)-2.5+100X(s)= s 300 由此得X(s)= ) 100(3002.5s ++s s =s 3-100 0.5+s 取拉氏变换,得x(t)=3-0.5t e 100- ★2-6化简图所示的方块图,并确定其传递函数。 (b) 解: 根据化简后的方块图,得 i X X 0= 1 212432432112124324321)(1) (1)(1) (H G G H G G G G G G G H G G H G G G G G G G +++++ ++++ = 1 21214324321))((1) (H G G H G G G G G G G G +++++ (c) 解: 根据化简后的方块图,得 i X X 0= 4 1113 1 232123 21 2 32123 21 G G H H G G H G G G G H G G H G G G G -++-++ = 4 ) 1(11122323 21G G H G H G G G G G --++ ★2-9试求题图2-9所示机械系统的传递函数。 解:(b)阻尼器的等效弹性刚度为D S ,根据力平衡,有 )] ()([0 11s X s X D k D k i s s -+= )(02s X k 整理得2 12110 )() () (k k D k k D k s X s X s s i ++= (c)阻尼器D 的等效弹性刚度为Ds ,根据力平衡,有 ) ()()]()()[(02201s X k s D s X s X D k i s +=-+ 整理得2 11 0) ()(k k D k D s X s X s s i +++= (e)根据牛顿第二定律,有

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

Laplace拉氏变换公式表

拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 2.表A-2 常用函数的拉氏变换和z变换表 1

2

3 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将 )(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:

7.利用拉氏变换的性质求下列函数的拉氏变换.

7.利用拉氏变换的性质求下列函数的拉氏变换. (1)() t e e t f at bt- = . (2) ()t t t f2 sin 2 = . (3)()t t t t fω ω ωcos sin- = (4) ()t t t fω sh = . 解(1)& () []= t f & ?∞=? ? ? ? ? ?- s at bt t e e & []du e e at bt- ?∞∞ - - = - - = ? ? ? ? ? - - - = s s b s a s a u b u du a u b u ln ln 1 1| (2)& () []= t f & [] 2 2 2 2)1 ( 2 sin ds d t t- = & []t2 sin ()3 2 2 2 2 2 4 16 12 4 2 + - = ? ? ? ? ? + = s s s ds d (3)& () []= t f & []= -t t tω ω ωcos sin&[]ω ω- t sin&[]t tω cos ds d s ω ω ω + + = 2 2 & []? ? ? ? ? + + + = 2 2 2 2 cos ω ω ω ω ω ω s s t ()22 2 3 2 ω ω + = s (4)& () []= t f & [] ds d t tsh- = ω & []t shω ()22 2 '2 1 1 2 1 ω ω ω ω- = ? ? ? ? ? + - - - = s s s s 8.求下列函数的拉氏逆变换. (1) (). 4 1 2+ = s s F (2) ().1 4 s s F= (3) () (). 1 1 4 + = s s F (4) (). 3 1 + = s s F (5) (). 9 3 2 2+ + = s s s F (6) () ()().3 1 3 - + + = s s s s F (7) (). 6 1 2- + + = s s s s F (8) (). 13 4 5 2 2+ + + = s s s s F 解(1)()=t f & () [] 2 1 1= -s F & t s 2 sin 2 1 4 2 2 1= ? ? ? ? ? ? + - (2)()=t f & !3 1 1 4 1= ? ? ? ? ? ? - s& 3 1 3 1 6 1 !3 t s = ? ? ? ? ? ? + - (3)由& 3 4 1 6 1 1 t s = ? ? ? ? ? ? - 及位移性质& () []()t f e a s F at = - -1 得

相关文档
相关文档 最新文档