文档库 最新最全的文档下载
当前位置:文档库 › 第二讲:文献、核酸序列、蛋白质序列的搜索

第二讲:文献、核酸序列、蛋白质序列的搜索

第二讲 文献、核酸序列、蛋白质序列的 搜索
2013/2/28

NIH
? 美国Department?of?Health?&?Human?Services 下属机构 ? NIH=National Institute?of?Health
NIH?Mark?O.?Hatfield?Clinical?Research?Center,?Bethesda,?Maryland,?US

NIH
? 美国生物医学界科研经费的主要来源之一
– 2013年预算为308.6亿美元 – 2013年NSF(National Science?Foundation)预算为 73.73亿美元 – 2012年国家自然基金委预算为124.8亿元 – 2012年科技部预算为286.78亿元(包括行政支 出) – (124.8+286.78)/6.2=66.38亿美元


NIH
? 27个下属机构,1200个PI,4000多个博士后
Career?level Postdoctoral Years?of?experience 0 1 2 3 4 5 6 7?or?more Stipend $39,264 $41,364 $44,340 $46,092 $47,820 $49,884 $51,582 $54,180

NCBI
https://www.wendangku.net/doc/674797666.html,
? 世界上最大,最全,最常用,也是最完备 的生物信息数据库 ? 世界上生物医学的文献集中营 ? 生物研究者最常用的网站

利用NCBI进行文献查询
? Non‐redundant ? 大致按照时间排序 ? 条件宽松 ? 举例:查询有关Methanosarcina acetivorans 的论文

常用使用技巧
? ? ? ? 多添加关键词可以减少搜出的文献数量 作者+关键词是一种好办法 作者的名字: Ferry?JG 使用好limit
? 邮件通知可以将某一个领域的新论文每天 都发给你

Web?of?knowledge
? Thomson?Reuters拥有的网站 ? 提供了精确的,无冗余的文献搜索服务 ? 更重要的,Web?of?knowledge提供了引用分 析 ? Web?of?knowledge具有无可辩驳的权威性

SCI
? SCI=Science?Citation?Index ? JCR=Journal?Citation?Report
– 每年六月份发布上一年的影响因子结果
? 什么叫做引用
– 自引 – 他引
? 影响因子:近两年的总引用数除以近两年的 总论文数



影响因子的问题
? 领域之间不一致 ? Open?access可以提高影响因子 ? 杂志的种类(review,综合性等)影响很大 ? 编辑政策有很大影响 ? 以影响因子为纲很容易使得科研工作者急 功近利

中科院分区
? 一区:第一流杂志 ? 二区:主流杂志 ? 三区:灌水杂志 ? 四区:垃圾杂志

h‐index
? 一个科研工作者的h‐index意味着他发表过 被引用h次以上的论文共h篇。 ? 在物理学界
– h=12:副教授 – h=18:正教授 – h=15‐20:美国物理学会的fellowship – h=45:美国院士

ESI
? 按照工作的重要性对人/单位/论文排名 ? 重要性的主要评价标准是总引用次数和平 均引用率

Google?scholar
? ? ? ? ? 不但可以搜索论文,而且可以搜索专利。 绝无漏网之鱼 可以搜索全文 按照相关性排序 查找“最相关”论文的时候有用
? 搜索很宽松 ? 不适合用来做“literature?survey”

山大图书馆资源
? ? ? ? ? ? ? ? 读秀搜索引擎 Cnki 万方 Proquest Science?Direct Wiley Springer 各杂志自己的网站

EMBL‐EBI
? EBI=European?Bioinformatics?Institute ? EBI是EMBL的一个成员 ? EMBL=European?Molecular?Biology Laboratory ? EMBL是由二十个欧洲国家和澳大利亚共同 组成的一个实验室 ? 总部在Heidelburg,?Genmany ? EBI总部在Hinxton,?UK ? EMBL是世界上第一个核酸数据库

DDBJ
? DDBJ=DNA?database?of?Japan ? 属于National?Institute?of?Genetics ? 位于日本静冈县 ? 收集DNA序列并提供查询服务

蛋白质序列分析

蛋白质序列、性质、功能和结构分析 基于网络的蛋白质序列检索与核酸类似,从NCBI或利用SRS系统从EMBL 检索。 1、疏水性分析 ExPASy的ProtScale程序(https://www.wendangku.net/doc/674797666.html,/cgi-bin/protscale.pl)可用来计算蛋白质的疏水性图谱。输入的数据可为蛋白质序列或SWISS-PROT数据库的序列接受号。也可用BioEdit、DNAMAN等软件进行分析。 2、跨膜区分析 蛋白质跨膜区域分析的网络资源有: TMPRED:https://www.wendangku.net/doc/674797666.html,/software/TMPRED_form.html PHDhtm: http:www.embl-heidelberg.de/Services/sander/predictprotein/predictpro tein.html MEMSAT: ftp://https://www.wendangku.net/doc/674797666.html, 3、前导肽和蛋白质定位 一般认为,蛋白质定位的信息存在于该蛋白自身结构中,并且通过与膜上特殊受体的相互作用得以表达。这就是信号肽假说的基础。这一假说认为,穿膜蛋白质是由mRNA编码的。在起始密码子后,有一段疏水性氨基酸序列的RNA片段,这个氨基酸序列就称为信号序列(signal sequence)。 蛋白质序列的信号肽分析可联网到http://genome.cbs.dtu.dk /services/SignalP/或其二版网址 http://genome.cbs.dtu.dk/services/SignalP-2.0/。该服务器也提供利用 e-mail进行批量蛋白质序列信号肽分析的方案 (http://genome.cbs.dtu.dk/services /SignalP/mailserver.html),e-mail 地址为signalp@ genome.cbs.dtu.dk。 蛋白质序列中含有的信号肽序列将有助于它们向细胞内特定区域的移动,如前导肽和面向特定细胞器的靶向肽。在线粒体蛋白质的跨膜运输过程中,通过线粒体膜的蛋白质在转运之前大多数以前体形式存在,它由成熟蛋白质和N端延伸出的一段前导肽或引肽(leader peptide)共同组成。迄今有40多种线粒体蛋白质前导肽的一级结构被阐明,它们约含有20~80个氨基酸残基,当前体蛋白跨膜时,前导肽被一种或两种多肽酶所水解转变成成熟蛋白质,同时失去继续跨膜能力。前导肽一般具有如下性质:①带正电荷的碱性氨基酸(特别是精氨酸)含量较丰富,它们分散于不带电荷的氨基酸序列中间;②缺失带负电荷的酸性

蛋白质翻译总结

氨基酸的活化a.起始信号(AUG-甲硫氨酸密码子)和缬氨酸(GUG)极少出现i.真核生物起始氨基酸—甲硫氨酸,原核生物-甲酰甲硫氨酸 ii.SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保 守片段,与16srRNA3’端反向互补。功能将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。 1)原核生物的SD序列:原核mRNA起始密码子上一段可与核糖体结合的序列。30s小亚基首先与 翻译因子IF-1(与30s结合)和IF-3(稳定小亚基,帮助其与mRNA结合位点的识别)结合,通过SD序列与mRNA模板相结合。 iii.真核生物依赖于结合5'帽,核糖体小亚基沿mRNA5'端帽子结构扫描到RBS iv.在IF2起始因子和GTP的帮助下,fMet-tRNA进入小亚基的P位,tRNA上的反密码子与mRNA密码子配对。 v.小亚基复合物与50s大亚基结合,GTP水解,释放翻译起始因子vi.翻译的起始 b.后续氨基酸与核糖体的集合:第二个氨酰-tRNA与EF-Tu.GTP形成复合物,进入核糖体的A位,水解产生GDP并在EF-Ts的作用下释放GDP并使EF-Tu结合另一分子GTP形成新的循环。i.肽键的生成:AA-tRNA占据A位,fMet-tRNA占据P位,在肽基转移酶的催化下,A位上的AA-tRNA转移到P位,P位上的起始tRNA转移至E位,与fMet-tRNA上的氨基酸生产肽键。起始RNA随后离开。 ii.移位:核糖体通过EF-G介导的GTP水解所提供的能量向mRNA模板3'末端移动一个密码子,二 肽基-tRNA完全进入P位点 iii.肽链的延申 c.当终止密码子UAA,UAG,UGA出现在核糖体的A位时,没有相应的AA-tRNA能与其结合,而释放因子能识别密码子并与之结合,水解P位上的多肽链与tRNA之间的二酯键,然后新生的肽链释放,核糖体大小亚基解体 i.肽链的终止 d.N端fMet或Met的切除i.二硫键的形成ii.特定氨基酸的修饰iii.新生肽段非功能片段的切除iv.蛋白质前体的加工 e.无义突变:DNA序列中任何导致编码氨基酸的三联密码子突变转变为终止密码子 UAA,UGA,UAG中的突变,使得蛋白质合成提前终止,合成无功能或无意义的多肽。1)错义突变:由于结构基因中某种核苷酸的变化使一种氨基酸的密码变成另一种密码。2)同工tRNA:识别携带相同氨基酸的tRNA i.校正tRNA: ii.tRNA种类 f.蛋白质的生物合成 1.翻译 2019年6月19日 19:50

蛋白质的翻译

Proteins Lu Linrong (鲁林荣)PhD Laboratory of Immune Regulation Institute of Immunology Zhejiang University ,School of Medicine Medical Research Building B815-819Email: Lu.Linrong@https://www.wendangku.net/doc/674797666.html, Website: https://www.wendangku.net/doc/674797666.html,/llr Molecular Biology

Why study proteins? ?Part of the central dogma ?Proteins are coded by genes ?They play crucial functional roles in almost every biological process

The life cycle of a protein ?Where does a protein come from? ?How is a protein processed, modified, translocated to the proper place and degraded? ?How to describe the are the functions? ??Protein synthesis (Translation) 蛋白质翻译 ?Protein maturation (folding, modification) and degradation 蛋白质成熟,降解 Structure and function of protein 蛋白质的结构与功能?Methods: protein-protein interaction et al 蛋白-蛋白相 互作用

核酸和蛋白质序列分析

核酸和蛋白质序列分析 在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信息,从而指导进一步的实验研究。通过染色体定位分析、内含子/外显子分析、ORF分析、表达谱分析等,能够阐明基因的基本信息。通过启动子预测、CpG 岛分析和转录因子分析等,识别调控区的顺式作用元件,可以为基因的调控研究提供基础。通过蛋白质基本性质分析,疏水性分析,跨膜区预测,信号肽预测,亚细胞定位预测,抗原性位点预测,可以对基因编码蛋白的性质作出初步判断和预测。尤其通过疏水性分析和跨膜区预测可以预测基因是否为膜蛋白,这对确定实验研究方向有重要的参考意义。此外,通过相似性搜索、功能位点分析、结构分析、查询基因表达谱聚簇数据库、基因敲除数据库、基因组上下游邻居等,尽量挖掘网络数据库中的信息,可以对基因功能作出推论。上述技术路线可为其它类似分子的生物信息学分析提供借鉴。本路线图及推荐网址已建立超级链接,放在北京大学人类疾病基因研究中心网站 (https://www.wendangku.net/doc/674797666.html,/science/bioinfomatics.htm),可以直接点击进入检索网站。 下面介绍其中一些基本分析。值得注意的是,在对序列进行分析时,首先应当明确序列的性质,是mRNA序列还是基因组序列?是计算机拼接得到还是经过PCR扩增测序得到?是原核生物还是真核生物?这些决定了分析方法的选择和分析结果的解释。 (一)核酸序列分析 1、双序列比对(pairwise alignment) 双序列比对是指比较两条序列的相似性和寻找相似碱基及氨基酸的对应位置,它是用计算机进行序列分析的强大工具,分为全局比对和局部比对两类,各以Needleman-Wunsch算法和Smith-Waterman算法为代表。由于这些算法都是启发式(heuristic)的算法,因此并没有最优值。根据比对的需要,选用适当的比对工具,在比对时适当调整空格罚分(gap penalty)和空格延伸罚分(gap extension penalty),以获得更优的比对。 除了利用BLAST、FASTA等局部比对工具进行序列对数据库的搜索外,我们还推荐使用EMBOSS软件包中的Needle软件 (http://bioinfo.pbi.nrc.ca:8090/EMBOSS/),和Pairwise BLAST

核酸序列的一般分析流程

核酸序列的一般分析流程 1.1 核酸序列的检索 https://www.wendangku.net/doc/674797666.html,:80/entrez/query.fcgi?db=Nucleotide 1.2 核酸序列的同源性分析 1.2.1 基于NCBI/Blast软件的核酸序列同源性分析 https://www.wendangku.net/doc/674797666.html,/blast/blast.cgi 1.2.2 核酸序列的两两比较 https://www.wendangku.net/doc/674797666.html,/gorf/bl2.html 1.2.3 核酸序列的批量联网同源性分析(方案) 1.3 核酸序列的电子延伸 1.3.1 利用UniGene数据库进行电子延伸(方案) 1.3.2 利用Tigem的EST Machine进行电子延伸 EST Extractor: http://gcg.tigem.it/blastextract/estextract.html EST Assembly: http://www.tigem/ESTmachine.html 1.3.3 利用THC数据库对核酸序列进行电子延伸 http://gcg.tigem.it/UNIBLAST/uniblast.html 1.4 核酸序列的开放阅读框架分析 1.4.1基于NCBI/ORF finder的ORF分析 https://www.wendangku.net/doc/674797666.html,/gorf/gorf.html 1.5 基因的电子表达谱分析 1.5.1 利用UniGene数据库进行电子表达谱分析(方案) 1.5.2利用Tigem的电子原位杂交服务器进行电子表达谱分析 http://gcg.tigem.it/INSITU/insitublast.html 1.6 核酸序列的电子基因定位分析 1.6.1 利用STS数据库进行电子基因定位 https://www.wendangku.net/doc/674797666.html,/genome/sts/epcr.cgi 1.6.2 利用UniGene数据库进行电子基因定位(方案) 1.7 cDNA的基因组序列分析 1.7.1 通过从NCBI查询部分基因组数据库进行基因组序列的分析(方案) 1.7.2 通过从NCBI查询全部基因组数据库进行基因组序列的分析 https://www.wendangku.net/doc/674797666.html,/genome/seq/page.cgi?F=HsBlast.html&&ORG=Hs 1.7.3 通过从Sanger Centre查询基因组数据库进行基因组序列的分析 https://www.wendangku.net/doc/674797666.html,/HGP/blast_server.shtml 1.8 基因组序列的初步分析 1.8.1 基因组序列的内含子/外显子分析 https://www.wendangku.net/doc/674797666.html,/urllists/genefind.htm 1.8.2 基因组序列的启动子分析 https://www.wendangku.net/doc/674797666.html,/projects/promoter.html 1.9核酸序列的注册 1.9.1 EST序列的注册(方案) 1.9.2 较长或全长cDNA序列的注册(方案)

整理(蛋白质序列数据库)

蛋白质序列数据库 我们可以根据基因组序列预测新基因,预测编码区域,并推测其产物(即蛋白质)的序列。因此,随着基因组序列的不断增长,蛋白质序列也在不断增加。 PIR 历史上,蛋白质数据库的出现先于核酸数据库。在1960年左右,Dayhoff和其同事们搜集了当时所有已知的氨基酸序列,编著了《蛋白质序列与结构图册》。从这本图册中的数据,演化为后来的蛋白质信息资源数据库PIR(Protein Information Resource)。 PIR是由美国生物医学基金会NBRF(National Biomedical Research Foundation)于1984年建立的,其目的是帮助研究者鉴别和解释蛋白质序列信息,研究分子进化、功能基因组,进行生物信息学分析。它是一个全面的、经过注释的、非冗余的蛋白质序列数据库。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PIR提供一个蛋白质序列数据库、相关数据库和辅助工具的集成系统,用户可以迅速查找、比较蛋白质序列,得到与蛋白质相关的众多信息。目前,PIR已经成为一个集成的生物信息数据源,支持基因组研究和蛋白质组研究。至2004年,PIR 有近30万个蛋白质的登录数据项,包括来自不同生物体的蛋白质序列。 除了蛋白质序列数据之外,PIR还包含以下信息: (1)蛋白质名称、蛋白质的分类、蛋白质的来源; (2)关于原始数据的参考文献; (3)蛋白质功能和蛋白质的一般特征,包括基因表达、翻译后处理、活化等; (4)序列中相关的位点、功能区域。 对于数据库中的每一个登录项,有与其它数据库的交叉索引,包括到GenBank、EMBL、DDBJ、GDB、MELINE等数据库的索引。PIR中一个具体的登录项如图4.4所示。

序列分析软件DNAMan

序列分析软件DNAMAN 的使用方法简介 DNAMAN 是一种常用的核酸序列分析软件。由于它功能强大,使用方便,已成为一种普遍使用的DNA 序列分析工具。本文以DNAMAN 5.2.9 Demo version 为例,简单介绍其使用方法。 打开DNAMAN,可以看到如下界面: : 第一栏为主菜单栏。除了帮助菜单外,有十个常用主菜单,如下所示 第二栏为工具栏:如下所示:

第三栏为浏览器栏:如下所示: 在浏览器栏下方的工作区左侧,可见Channel 工具条,DNAMAN 提供20 个Channel,如左所示: 点击Channel 工具条上相应的数字,即可击活相应的Channel。每个Channel 可以装入一个序列。将要分析的序列(DNA 序列或氨基酸序列)放入Channel 中可以节约存取序列时间,加快分析速度。此版本DNAMAN 提供自动载入功能,用户只需激活某个Channel ,然后打开一个序列文件,则打开的序列自动载入被激活的Channel 中。 本文以具体使用DNAMAN 的过程为例来说明如何使用DNAMAN 分析序列。 1.将待分析序列装入Channel (1)通过File|Open 命令打开待分析序列文件,则打开的序列自动装入默认Channel。(初始为channel1)可以通过激活不同的channel(例如:channel5)来改变序列装入的Channel。 (2)通过Sequence|Load Sequence 菜单的子菜单打开文件或将选定的部分序列装入Channel。 可以通过Sequence|Current Sequence|Analysis Defination 命令打开一个对话框,通过此对话框可以设定序列的性质(DNA 或蛋白质),名称,要分析的片段等参数。

核酸蛋白序列比对分析

核酸\蛋白序列比对分析 生物技术 02级 021402198 曾彪 摘要生物信息学——是一门新兴的交叉学科,是采用计算机技术和信息论方法研究蛋白质及核酸序列等各种生物信息的采集、存储、传递、检索、分析和解读的科学,是现代生命科学与计算机科学、数学、统计学、物理学和化学等学科相互渗透而形成的交叉学科。核酸与蛋白质序列分析是生物信息学的基本研究方法。核酸与蛋白质序列分析是生物信息学的基本研究方法。 关键词核酸/蛋白质序列分析生物信息数据与查询序列比较 DNA芯片质谱隐马尔可夫模型 正文人类基因组计划完成了人类基因组的测序与分析工作,也积累了大量的核酸和蛋白质序列数据,从而导致了分子数据库的建立。分子生物学家在此基础上依靠计算机进行核酸和蛋白质序列分析。 大量生物学实验的数据积累,形成了当前数以百计的生物信息数据库。它们各自按一定的目标收集和整理生物学实验数据,并提供相关的数据查询、数据处理。这些生物信息数据库可以分为一级数据库和二级数据库。一级数据库的数据都直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步整理。国际上著名的一级核酸数据库有

Genbank数据库、EMBL核酸库和DDBJ库等;蛋白质序列数据库有SWISS-PROT、PIR等;蛋白质结构库有PDB等。国际上二级生物学数据库非常多,它们因针对不同的研究内容和需要而各具特色,如人类基因组图谱库GDB、转录因子和结合位点库TRANSFAC、蛋白质结构家族分类库SCOP等等。 要在如此庞大的数据库中找到所需要的目标序列,必须建立数据库查询系统。数据库查询(也称为数据库检索)是指对序列、结构以及各种二次数据库中的注释信息进行关键词匹配查找。常用的数据库查询系统有Entrez, SRS等。数据库搜索是指通过特定的序列相似性比对算法,找出核酸或蛋白质序列数据库中与检测序列具有一定程度相似性的序列。常用的数据库搜索系统有BLAST 、FASTA 和BLITZ 。 面对大批由测序仪产生的序列数据,通过序列分析,人们能够了解这些序列的生物学信息和意义。线性核酸序列的分析主要包括同源比较,读框分析,酶切位点查找,GC比例分析,序列翻译,引物设计等;蛋白质序列分析包括同源比较,疏水性分析,序列模体识别,结构域识别,高级结构预测等。 核酸序列分析 核酸序列的基本分析 1.测定分子质量、碱基组成、碱基分布等基本数值; 2.序列变换:反向序列、互补序列、互补反向序列;

实验2 序列查询(Entrez)、BLAST序列相似性搜索

实验二:序列查询(Entrez)、BLAST序列相似性搜索 实验目的: 1.学会用Entrez系统查找目标序列 2.学会使用BLAST在数据库中搜索相似序列 3.学会分析数据库搜索结果 实验内容: 一、Entrez Entrez是一个由NCBI创建并维护的基于Web界面的综合生物信息数据库检索系统。用户不仅可以方便地检索Genbank的核酸数据,还可以检索来自Genbank和其它数据库的蛋白质序列数据、基因组图谱数据、来自分子模型数据库(MMDB)的蛋白质三维结构数据、种群序列数据集、以及由PubMed获得Medline的文献数据。 网址:https://www.wendangku.net/doc/674797666.html,/Entrez/(或在NCBI主页默认All Databases时点击搜索框右边的Search进入)。如Figure 2.1所示: Figure 2.1 entrez 检索系统子数据库 点击搜索框右边的help按钮,即可进入Entrez帮助页面。 在搜索栏输入你要查找的关键词,点击“GO”即可开始搜索。如果输入多个关键词,它们之间默认的是“与”(AND)的关系。 Tips:搜索的关键词可以是一个单词,短语,句子,数据库的识别号,基因名字等等,但必须明确,不能是“gene”, “protein”等没有明确指向的词语。但“transcription factor”这样有一定范围的词是可以接受的。可以用你感兴趣的领域的专业术语,也可以是非专业术语,比如:h1n1,lung cancer,albinism; subtilism, peroxidase, myoglobin。  输入关键词,点击“GO”之后,每个数据库图标前方出现了数字,代表的是在相对应的数据库里搜索到的条目数。点击进入对应的数据库,可以查看搜索到的条目。如果在数据库图标前面为灰色,显示“none”,说明在对应的数据库里没有搜索到任何结果。

核酸蛋白序列比对分析

核酸\蛋白序列比对分析 生物技术02级021402198 曾彪 摘要生物信息学——是一门新兴的交叉学科,是采用计算机技术和信息论方法研究蛋白质及核酸序列等各种生物信息的采集、存储、传递、检索、分析和解读的科学,是现代生命科学与计算机科学、数学、统计学、物理学和化学等学科相互渗透而形成的交叉学科。核酸与蛋白质序列分析是生物信息学的基本研究方法。核酸与蛋白质序列分析是生物信息学的基本研究方法。 关键词核酸/蛋白质序列分析生物信息数据与查询序列比较DNA芯片质谱隐马尔可夫模型 正文人类基因组计划完成了人类基因组的测序与分析工作,也积累了大量的核酸和蛋白质序列数据,从而导致了分子数据库的建立。分子生物学家在此基础上依靠计算机进行核酸和蛋白质序列分析。大量生物学实验的数据积累,形成了当前数以百计的生物信息数据库。它们各自按一定的目标收集和整理生物学实验数据,并提供相关的数据查询、数据处理。这些生物信息数据库可以分为一级数据库和二级数据库。一级数据库的数据都直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步整理。国际上著名的一级核酸数据库有Genbank数据库、EMBL核酸库和DDBJ库等;蛋白质序列数据库有

SWISS-PROT、PIR等;蛋白质结构库有PDB等。国际上二级生物学数据库非常多,它们因针对不同的研究内容和需要而各具特色,如人类基因组图谱库GDB、转录因子和结合位点库TRANSFAC、蛋白质结构家族分类库SCOP等等。 要在如此庞大的数据库中找到所需要的目标序列,必须建立数据库查询系统。数据库查询(也称为数据库检索)是指对序列、结构以及各种二次数据库中的注释信息进行关键词匹配查找。常用的数据库查询系统有Entrez, SRS等。数据库搜索是指通过特定的序列相似性比对算法,找出核酸或蛋白质序列数据库中与检测序列具有一定程度相似性的序列。常用的数据库搜索系统有BLAST 、FASTA 和BLITZ 。 面对大批由测序仪产生的序列数据,通过序列分析,人们能够了解这些序列的生物学信息和意义。线性核酸序列的分析主要包括同源比较,读框分析,酶切位点查找,GC比例分析,序列翻译,引物设计等;蛋白质序列分析包括同源比较,疏水性分析,序列模体识别,结构域识别,高级结构预测等。 核酸序列分析 核酸序列的基本分析 1.测定分子质量、碱基组成、碱基分布等基本数值; 2.序列变换:反向序列、互补序列、互补反向序列; 3.限制性酶切分析:限制酶的所有信息,包括甲基化酶、相应的

实验二 核酸及蛋白质序列的比对

实验二核酸及蛋白质序列的比对 姓名:班级:序号:指导老师: 一、实验内容 利用检索出的蛋白质和核酸序列进行序列比对并进行分子进化树分析。 二、实验步骤 键入上次实验获得的phyA的核酸序列编号(NM_100828),获得核酸及蛋白质序列。利用blastx程序寻找与phyA蛋白质序列相似性的序列→选择下列序列:sorghum propinquum(高粱);zea mays(玉米);水稻;大豆;arabidopsis thaliana(拟南芥);cyrtosia septentrionalis(血红肉果兰)→点击get select sequence按钮显示序列为纯文本格式文件→分别命名为各自的文件名保存在本地电脑上备用。 在数字基因网找到dnaman及clustalx软件安装并进行多序列比对及分子进化树分析。 利用ebi上提供多序列比对工具再作一次比对.uk/clustalw/。 选作核酸序列的比对 5、打开ncbi主页点击BLAST→学习网页左侧的BLAST FAQS及program guide 三、作业 1、绘制分子进化树,并标明各个物种phyA蛋白之间的序列相似性。 2、根据你所学生物分类的知识,试解释该分子进化树的合理性 ①拟南芥:植物界种子植物门被子植物门双子叶植物纲十字花目十字花科鼠耳芥属(拟南芥属) ②大豆:植物界种子植物门被子植物亚门双子叶植物纲豆目蝶形花科大豆属 ③血红肉果兰:植物界种子植物门被子植物亚门百合纲百合目兰科树兰亚科肉果兰属 ④水稻:植物界种子植物门被子植物亚门单子叶植物纲禾本目禾本科稻属 ⑤玉米:植物界种子植物门被子植物亚门单子叶植物纲禾本目禾本科玉米属 ⑥高粱:植物界种子植物门被子植物亚门单子叶植物纲禾本目禾本科高粱属 经过对比可得下列同源性关系 高粱 玉米 水稻 拟南芥 大豆 血红肉果兰 与前面的同源树对比基本相似,说明软件分析结果与实际相符 3、找出一条可能的保守序列(多条蛋白共同的氨基酸序列)。 最长的保守序列:kliqpfgcllaldek

blast核酸氨基酸序列相似性比较

BLAST 核酸/氨基酸序列相似性比较 Blast(Basic Local Alignment Search Tool)是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。BLAST程序能迅速与公开数据库进行相似性序列比较。BLAST结果中的得分是对一种对相似性的统计说明。 BLAST 采用一种局部的算法获得两个序列中具有相似性的序列。如果您想进一步了解BLAST算法,您可以参考NCBI的BLAST Course ,该页有BLAST算法的介绍。 BLAST的功能 BLAST对一条或多条序列(可以是任何形式的序列)在一个或多个核酸或蛋白序列库中进行比对。BLAST还能发现具有缺口的能比对上的序列。 BLAST是基于Altschul等人在上发表的方法在序列数据库中对查询序列进行同源性比对工作。从最初的BLAST发展到现在NCBI提供的,已将有缺口的比对序列也考虑在内了。BLAST可处理任何数量的序列,包括蛋白序列和核算序列;也可选择多个数据库但数据库必须是同一类型的,即要么都是蛋白数据库要么都是核酸数据库。 所查询的序列和调用的数据库则可以是任何形式的组合,既可以是核酸序列到蛋白库中作查询,也可以是蛋白序列到蛋白库中作查询,反之亦然。 BLAST包含的程序: 1、BLASTP是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同每条所查序列作一对一的序列比对。 2、BLASTX是核酸序列到蛋白库中的一种查询。先将核酸序列翻译成蛋白序列(一条核酸序列会被翻译成可能的六条蛋白),再对每一条作一对一的蛋白序列比对。 3、BLASTN是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查序列作一对一地核酸序列比对。 4、TBLASTN是蛋白序列到核酸库中的一种查询。与BLASTX相反,它是将库中的核酸序列翻译成蛋白序列,再同所查序列作蛋白与蛋白的比对。 5、TBLASTX是核酸序列到核酸库中的一种查询。此种查询将库中的核酸序列和所查的核酸序列都翻译成蛋白(每条核酸序列会产生6条可能的蛋白序列),这样每次比对会产生36种比对阵列。 通常根据查询序列的类型(蛋白或核酸)来决定选用何种BLAST。假如是作核酸-核酸查询,有两种BLAST供选择,通常默认为BLASTN。如要用TBLASTX也可,但记住此时不考虑缺口。 BLAST适用于本地查询。可以下载公共数据库,对于该数据库的更新和维护是必不可少的。如果要直接到网上查询也可以(即NetBlast),但记住如果你认为自己的序列很有价值的话,还是谨慎为宜。 如何访问在线的BLAST功能服务 您只要通过浏览器访问Blast主页( 。所有的查询和分析都通过浏览器来完成,就象您在您的本地机上一样方便和快捷。

核酸序列分析软件介绍

核酸序列分析 1、核酸序列检索 可通过NCBI使用Entrez系统进行检索,也可用EBI的SRS服务器进行检索。在同时检索多条序列时,可通过罗逻辑关系式按照GenBank接受号进行批量检索。如用“AF113671 [ac] OR AF113672 [ac]”可同时检索这两条序列。其中“[ac]”是序列接受号的描述字段。 2、核酸序列的基本分析 (1)分子质量、碱基组成、碱基分布 分子质量、碱基组成、碱基分布可通过一些常用软件等直接获得。如: BioEdit(https://www.wendangku.net/doc/674797666.html,/BioEdit/bioedit.html), DNAMAN(https://www.wendangku.net/doc/674797666.html,)。 (2)序列变换 进行序列分析时,经常需要对DNA序列进行各种变换,例如反向序列、互补序列、互补反向序列、显示DNA双链、转换为RNA序列等。这些用DNAMAN软件可很容易实现,这些功能集中在Sequence→Display,从中可选择不同的序列变换方式对当前通道的序列进行转换。 (3)限制性酶切分析 该方面最好的资源是限制酶数据库(Restriction Enzyme Database,REBASE)。REBASE数据库(https://www.wendangku.net/doc/674797666.html,,https://www.wendangku.net/doc/674797666.html,/rebase)中含有限制酶的所有信息,包括甲基化酶、相应的微生物来源、识别序列位点、裂解位点、甲基化特异性、酶的商业来源及公开发表的和未发表的参考文献。其它资源还有:WebGene:https://www.wendangku.net/doc/674797666.html,/~tjyin/WebGene/RE.html, https://www.wendangku.net/doc/674797666.html,/personal/tyin.html WebCutter2: http://www/https://www.wendangku.net/doc/674797666.html,/firstmarkert/firstmarket/cutter/cut2.html 同时,很多软件也能够识别REBASE限制酶数据库。强烈推荐使用集成化的软件如BioEdit和DNAMAN等。所得出的结果给出指定DNA序列的酶切位点信息,为克隆鉴定和亚克隆提供了重要信息。 在实际进行分子生物学实验中,有时需要对多条相关序列(如发生突变的一批序列)同时进行酶切分析,以便为后续的克隆鉴定提供参考。此时DNAMAN软件是一个良好的选择。在对所有序列进行多重对齐后,其输出项“Output”中即有“Restriction Analysis”选项,执行后即可完成对所有参与对齐序列的酶切分析,能够得到所有序列的差异酶切图谱和一致酶切图谱。 (4)克隆测序分析 得到测序结果后,需要对所测序列进行后续分析,其中主要包括对测序峰图的查看和载体序列的去除等过程。 a. 测序峰图的查看 最简单的程序是澳大利亚的Conor McCarthy (https://www.wendangku.net/doc/674797666.html,.au./~conor/)开发的Chromas.exe程序,但该程 N 序不支持Windows 95以上的长文件名。其实,集成化的软件如BioEdit和DNAMA 也具有此功能。 b. 载体序列的去除 许多数据库中收集了常用的测序载体序列,如:

实用生物信息技术课程第4次作业BLAST数据库相似性搜索姓名

实用生物信息技术课程第4次作业 BLAST数据库相似性搜索 姓名________ 学号______________ 组号_____ 日期________年___月___日 1.以人血红蛋白beta亚基(HBB_HUMAN)为检测序列,搜索Swiss-Prot数据库,找出 灵长目动物(Primates)中与HBB_HUMAN序列相似性高于90%(Identity>90%)的beta珠蛋白(beta globin)。 2.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用BlastP搜索Swiss-Prot数据 库,改变种子序列字长(Word size)和计分矩阵(Scoring matrix),找出人珠蛋白家族12个成员。 3.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用PSI-Blast搜索Swiss-Prot 数据库,找出人珠蛋白家族成员脑红蛋白(Neuroglobin)。 4.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用DELTA-Blast搜索Swiss-Prot 数据库,找出人珠蛋白家族成员脑红蛋白(Neuroglobin)。 5.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用tBlastN搜索RefSeq数据 库中人珠蛋白家族mRNA序列,提取其编码区序列,进行多序列比对,分析结果。6.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,搜索RefSeq数据库中人、小 鼠和大鼠三个物种珠蛋白家族mRNA序列,提取其编码区序列,进行多序列比对,分析结果。 7.查阅Blast网站帮助文档和相关文献,结合Blast算法,归纳总结Blast数据库相似性搜 索的用法 8.结合本人课题研究中的实例,说明Blast具体应用。 9.本地BLAST(选做题) 1)下载玉米转录因子蛋白质序列和编码区核苷酸序列数据,构建本地BLAST数据库。 2)以拟南芥转录因子SPL3蛋白质序列为检索序列,用BlastP搜索玉米转录因子蛋白 质序列中相似序列,用tBlastN搜索玉米转录因子编码区序列中相似序列,分析结 果。 3)以拟南芥转录因子SPL3编码区序列为检索序列,用BlastN搜索玉米转录因子编码 区序列中相似序列,用BlastX搜索玉米转录因子蛋白质序列中相似序列,分析结 果。 1

蛋白质翻译

蛋白质的生物合成??翻译 一切生命现象不能离开蛋白质,由于代谢更新,即使成人亦需不断合成蛋白质(约400g/日)。蛋白质具有高度特异性。不同生物,它们的蛋白质互不相同。所以食物蛋白质不能为人体直接利用,需经消化、分解成氨基酸,吸收后方可用来合成人体蛋白质。 mRNA含有来自DNA的遗传信息,是合成蛋白质的“模板”,各种蛋白质就是以其相应的mRNA为“模板”,用各种氨基酸为原料合成的。mRNA不同,所合成的蛋白质也就各异。所以蛋白质生物合成的过程,贯穿了从DNA分子到蛋白质分子之间遗传信息的传递和体现的过程。 mRNA生成后,遗传信息由mRNA传递给新合成的蛋白质,即由核苷酸序列转换为蛋白质的氨基酸序列。这一过程称为翻译(translation)。翻译的基本原理见图14-1。 由图14-1可见,mRNA穿过核膜进入胞质后,多个核糖体(亦称核蛋白体,图中为四个)附着其上,形成多核糖体。作为原料的各种氨基酸在其特异的搬运工具(tRNA)携带下,在多核糖体上以肽键互相结合,生成具有一定氨基酸序列的特定多肽链。 合成后从核糖体释下的多肽链,不一定具有生物学活性。有的需经一定处理,有的需与其他成分(别的多肽链或糖、脂等)结合才能形成活性蛋白质。 第一节参与蛋白质生物合成的物质 参与蛋白质合成的物质,除氨基酸外,还有mRNA(“模板”)、tRNA(“特异的搬运工具”)、核糖体(“装配机”)、有关的酶(氨基酰tRNA合成酶与某些蛋白质因子),以及ATP、GTP等供能物质与必要的无机离子等。 一、mRNA与遗传密码 天然蛋白质有1010~1011种,组成蛋白质的氨基酸却只有20种。这20种氨基 1

生物序列比对算法研究现状与展望

生物序列比对算法研究现状与展望 张  敏1,2 (1.大连理工大学计算机科学与工程系,辽宁大连116024;2.大连大学信息工程学院,辽宁大连 116622)Ξ 摘 要:序列比对是生物信息学研究的一个基本方法,寻求更快更灵敏的序列比对算法一直是生物信息学 研究的热点.本文给出了生物序列比对问题的定义,综述了目前常用的各类比对算法,并对每一类算法的 优缺点以及应用范围进行了分析,最后指出序列比对算法目前存在的问题以及未来的发展方向. 关 键 词:生物信息学;两序列比对;多序列比对;算法 中图分类号:TP301 文献标识码:A 文章编号:100822395(2004)0420075205 Current and prospect of bio 2sequence alignment algorithm ZH ANG Min 1,2 (1.Department of C om puter Science and Engineering ,Dalian University of T echnology ,Dalian 116024,China ;2.C ollege of In formation Engineering ,Dalian University ,Dalian 116622,China ) Abstract :Sequence alignment is a basic and important tool in bioin formatics.The research of fast and sensitive biology sequence alignment alg orithm is a current hot topic of bioin formatics.This paper introduces a definition of sequence align 2 ment ;as wellas the research advance of alignment alg orithms at present ,and describes the advantage and limit of the al 2 g orithms and applicable https://www.wendangku.net/doc/674797666.html,stly ,the problems and development directions are pointed out. K ey w ords :bioin formatics ;pair 2wise alignment ;multiple alignment ;alg orithm 随着人类基因组计划的实施,DNA 和蛋白质序列数据库的规模已呈指数增长,单纯依靠实验手段研究、理解这些生物大分子的生物意义已远远不能满足目前分子生物学发展的要求.生物信息学(Bioin for 2matics )作为一门综合运用分子生物学、数学和计算机等学科的理论和方法的交叉学科为阐明和理解这些海量数据所包含的生物意义提供了可能.序列比对是生物信息学研究的重要方法之一,它通过对DNA 和蛋白质序列进行相似性比较,指明序列间的保守区域和不同之处,为进一步研究它们在结构、功能以及进化上的联系提供了重要的参考依据. 本文给出了生物序列比对问题的定义,综述了目前常用的各类比对算法,分析了每一类算法的应用范围,最后指出了序列比对目前存在的问题以及未来发展方向. 1 序列比对问题的定义与分类 定义:序列比对问题可以表示为一个五元组MSA =( ∑’,S ,A ,F ),其中: (1)∑’=∑∪{-}为序列比对的符号集;“-”表示空位(gap );∑表示基本字符集,对于DNA 序列,∑={a ,c ,g ,t}代表4个碱基;对于蛋白质序列,∑由20个字符组成,每个字符代表一种氨基酸残 Ξ收稿日期:2003207215基金项目:大连市科技计划项目(2002年) 作者简介:张 敏(1966-),女,副教授,博士生. 第25卷 第4期2004年8月大连大学学报J OURNA L OF DA LI AN UNI VERSITY Vol.25 No.4Aug. 2004

蛋白质翻译

蛋白质合成——翻译 1、核糖体(ribosome)组成: 2、核糖体RNA(rRNA): 3、合成机制: *在蛋白质生物合成时,tRNA活化成携带有相应氨基酸的氨基酰 -tRNA是翻译过程启动的先决条件。 *细胞内共有20余种氨酰-tRNA合成酶分别参与合成不同的氨酰 -tRNA的合成。氨酰-tRNA合成酶具有底物的绝对专一性,对氨 基酸,tRNA两种底物都能高度特异性的识别。 *tRNA分为起始tRNA(特性的识别起始密码子)和延伸tRNA,真 核生物的起始tRNA携带甲硫氨酸(Met),书写为Met-tRNAi Met; 原核生物起始tRNA携带甲酰甲硫氨酸(fMet),由于甲硫氨酸 -NH2被甲酰化,书写为fMet-tRNAi fMet。(i表示起始initiation) *同工tRNA,一种氨基酸有多种密码子,所以就有多种tRNA, 这几种代表相同氨基酸的rRNA称为同工tRNA。 *活化过程需要ATP消耗: 第一步形成氨酰腺苷酸-酶复合体。 AA+ATP+酶(E)——>AA-AMP-E+PPi (E指氨酰-tRNA合成酶) 第二步是氨酰基转移到3’端 AA-AMP-E+tRNA——>AA-tRNA+E+AMP

4、具体过程: (1)氨基酸活化(同上) (2)翻译的起始:真核生物中,任何一个多肽的合成都是从生成甲硫氨酸-tRNAi Met开始的,因为甲硫氨酸的特殊性,体内存在两种tRNA Met,只有甲硫氨酸-tRNAi Met才能与核糖体小亚基40S结合,起始肽链合成,普通的tRNA Met中携带的甲硫氨酸只能在延伸过程中插入到A位点参与肽链合成。 真核生物中,40S小亚基首先与Met-tRNAi Met结合,再与模版mRNA结合,最后与60S大亚基结合生成80S*mRNA*Met-tRNAi Met复合物。起始复合物的生成需要GTP供能,还需要Mg2+,NH4+和3个起始因子(IF1,IF2,IF3)。 原核生物翻过起始过程: 第一步:30S小亚基首先与起始因子IF1,IF3结合,通过SD序列与mRNA模版结合。 第二步:在IF2和GTP帮助下,fMet-tRNAi fMet进入小亚基的P位置,tRNA上的反密码子与mRNA上的起始密码子配对。 第三步:带有tRNA,mRNA,三个起始因子的小亚基复合物与50S大亚基结合,GTP水解,释放起始因子。 *30S亚基具有专一性的识别和选择mRNA起始位点的特性。30S小亚基通过其16SrRNA的3'端与mRNA的5'端起始密码子上游的碱基序列(SD序列5'-AGGAGGU-3')配对结合。 *细菌核糖体上一般存在三个与氨酰-tRNA结合的位点,A位点(aminoacyl site,第二个密码子对应位点),P位点(peptidyl site)和E位点(exit site),只有fMet-tRNAi fMet能与第一个P位点相结合,其他所有的tRNA都必须通过A位点到达P位点,再由E位点离开核糖体。 真核生物的起始阶段基本相同,只是核糖体较大,有较多的起始因子(eIF)参与,其mRNA具有m7GpppNp 帽子结构(帽子与核糖体小亚基的18SrRNA的3'端序列之间存在不同于SD序列的碱基配对型相互作用。且有一种蛋白因子(eIF-4E)——帽子结合蛋白,能专一的识别mRNA的帽子结构,与mRNA的5'端结合生成蛋白质-mRNA复合物,并利用该复合物对eIF-3的亲和力与含有eIF-3的40S亚基结合。),Met-tRNAi Met

相关文档
相关文档 最新文档