文档库 最新最全的文档下载
当前位置:文档库 › 应用自适应神经模糊推理系统_ANFIS_进行建模与仿真

应用自适应神经模糊推理系统_ANFIS_进行建模与仿真

应用自适应神经模糊推理系统_ANFIS_进行建模与仿真
应用自适应神经模糊推理系统_ANFIS_进行建模与仿真

实验3模糊工具箱模糊推理

. . . . . 实验三模糊工具箱的模糊洗衣机推理系统设计 一、实验目的 1、掌握Matlab模糊工具箱的应用。 2、掌握模糊集合的基本运算。 3、能够使用Simulink工具箱设计模糊控制系统。 二、实验设备 1、PC机 2、Matlab软件 三、实验内容 使用MATLAB模糊工具箱设计一个洗衣机模糊控制: 1)模糊控制器的结构 选用单变量二维模糊控制器。控制器的输入为衣物的污泥和油脂,输出为洗涤时间。 2)定义输入输出模糊集 将污泥(WN)分为三个模糊集:SD(污泥少),MD(污泥中),LD(污泥多),取值范围为[0,100]。 选用如下隶属函数:

?? ?? ? ??≤<-=?? ?≤<-≤≤=≤≤-==100 5050/)50()(1005050/)100(50 050/)(50050/)50()(污泥 x x x x x x x x x x x LD MD SD μμμμ 将油脂(YZ)分为三个模糊集:NG (无油脂),MG (油脂中),LG (油脂多),取值范围为[0,100]。选用如下隶属函数: ?? ?? ? ??≤≤-=?? ?≤<-≤≤=≤≤-==100 5050/)50()(1005050/)100(50 050/)(50050 /)50()(油脂 y y y y y y y y y y y LG MG NG μμμμ 将洗涤时间(XDSJ)分为三个模糊集:VS (很短),S (短),M (中等),L (长),VL (很长),取值范围为[0,60]。选用如下隶属函数: ? ???? ??? ??? ??≤≤-=???≤<-≤≤-=?? ?≤<-≤≤-=???≤<-≤≤=≤≤-==60 4020 /)40()(604020/)60(402515/)25()(402515/)40(251015/)10()(251015/)25(10010 /)(10010 /)10()(洗涤时间 z z z z z z z z z z z z z x z z z z z z z VL L M S VS μμμμμμ 4)建立模糊控制规则 根据人的操作经验设计模糊规则,模糊规则设计的标准为:“污泥越多,油脂越多,洗涤时间越长”;“污泥适中,油脂适中,洗涤时间适中”;“污泥越少,油脂越少,洗涤时间越短”。 5)建立模糊控制表

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

神经网络与模糊控制考试题及答案

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1); (2)。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、 和。知识库的设计推理机的设计人机接口的设计 13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、 和。判断性规则控制性规则数据

模糊推理神经网络诊断模型案例

模糊推理神经网络诊断模型案例 [摘要]本文基于通用神经网络的自适应性和诊断的建模方法,建立了一种新的故障诊断模型一模糊神经网络诊断模型,并对它的智能诊断机理和突出特点进行了深入分析。最后,将该诊断模型应用于某大型汽轮发电机组故障诊断中,分析得出它具有明显的提高诊断精确度的优越性。 [关键词]神经网络故障诊断智能诊断 1模糊推理神经网络诊断模型建立 1.1通用网络模型自适应动态特性 比较两类典型的神经网络一前向BP网络与反馈Hopfied网络,可以发现其核心是单层神经网络,则两类网络可以用一个通用神经网络模型来描述。根据点集拓扑理论和人工神经网络空间概念,对这个通用神经网络模型的特征进行分析得出以下两个结论,证明从略。 定理1神经网络空间在紧集上的连续函数空间C上以及按L2范数在平方可积函数空间I上都是稠密的。 推论1由通用神经网络模型所生成的任何开集可以一致逼近紧集上的连续映射函数f∈C(Rn。Rm)。 由推论1表明,通用网络模型所概括的任何开集(如BP网络、Hopfied网络、BAM网络)通过自学习都能一致逼近紧集上的连续映射函数f∈(Rn,Rm),因而具有良好的自学习、自适应动态特性。 1.2诊断建模方法 设xjn(j=1,2,...,k)对应反映设备运行状态第n个观测样本的k个特征参数,yin,(i=1,2,...l)对应第n个样本的1种故障模式,共有N个样本xjn∈RN,yin∈RN,[n=1,2,...,N),则故障模式向量Y={yin,i=1,2,...,l}与特征参数向量x={xin,i=1,2,...,k}间的内在关系用函数P表示,有:X=P(Y)。当N→∞时,函数P的逆函数存在,以函数S表示,有:Y=S(X) 诊断问题建模的实质就是根据有限的样本集,确定函数S(X)的一等价映射关系SS(X),使得对于任意的ε>0,满足:

在线推理法模糊控制器实验报告

在线推理式模糊逻辑控制器设计实验报告 学院:电力学院 专业:自动化 学号: 姓名: 时间:2013年11月16日

一、实验目的 利用Matlab软件实现模糊控制系统仿真实验,了解模糊控制的在线推理方法的基本原理及实现过程。 二、实验要求 以matlab模糊工具箱中提供的一个水位模糊控制系统仿真的实例,定义语言变量的语言值,设置隶属度函数,根据提供的规则建立模糊逻辑控制器。最后启动仿真,观察水位变化曲线。 三、实验步骤 叙述在线推理模糊控制的仿真的主要步骤。 1)在matlab命令窗口输入:sltank,打开水位控制系统的simulink仿真模型图,如图; 2)在matlab的命令窗口中,输入指令:fuzzy,便打开了模糊推理系统编辑器(FIS Editor),如图;

3)利用FIS Editor编辑器的Edit/Add variable/input菜单,添加一条输入语言变量,并将两个输入语言和一个输出语言变量的名称分别定义为:level;rate;valve。其中,level代表水位(三个语言值:低,高,正好),rate代表变化率(三个语言值:正,不变,负),valve代表阀门(五个语言变量:不变,迅速打开,迅速关闭,缓慢打开,缓慢关闭); 4)①利用FIS Editor编辑器的Edit/membership function菜单,打开隶属度函数编辑器,如下图,将输入语言变量level的取值范围(range)和显示范围(display range)设置为[-1,1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分别设置为:high,[0.3 -1];okay [0.3 0];low [0.3 1]。其中high 、okay、low分别代表水位高、正好、低; ②将输入语言变量rate的取值范围(range)和显示范围(display range) 设置为[-0.1,0.1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而 所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分

自适应神经模糊推理系统及其仿真应用

自适应神经模糊推理系统及其仿真应用 刘雨刚,耿立明,杨威 辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛(125105) 摘 要:本文介绍了自适应神经模糊推理系统的结构,以及如何用MATLAB 模糊工具箱提供的ANFIS 应用工具仿真,完成训练模糊神经网络。 关键词:自适应神经模糊推理系统,MATLAB ,模糊神经网络 0 引言 由Jyh-Shing R.Jang 提出的自适应神经模糊推理系统[1],是一种基于Takagi -Sugeno 模型的模糊推理系统(简称ANFIS )。研究表明,当输入模糊集采用非梯形/非三角形的隶属函数时,Sugeno 型模糊系统需要的模糊规则及输入的模糊集的个数较少。 1 基于Takagi -Sugeno 模型的自适应神经模糊推理系统 所考虑的模糊推理系统有两输入和,单输出f 。 1x 2x 对于零阶T-S 模糊模型,模糊规则的第i 条规则有如下形式: ⑴ 后件为恒值:Ri : ),...,2,1( , 221121n i f y Then A x A x If i i i ==是和是 ⑵ 后件为一阶线性方程:Ri : 0,1,2)(j ),( ,...,2,1 ),( , 221102*********是常数是和是=++===ij i i i i i i i a x a x a a x x f n i x x f y Then A x A x If 式中,Ri 表示第i 条规则,Ai 表示模糊子集,即{NL ,NM ,NS ,ZO ,PS ,PM ,PL}={“负 大”,“负中”,“负小”,“零”,“正小”,“正中”,“正大”}。 在T-S 模型中,每条规则的结论部分是个线性方程,表示系统局部的线性输入/输出关系,而系统的总输入是所有线性子系统输出的加权平均,可以表示全局的非线性输入输出关系,所以,T-S 模型是一种对非线性系统局部线性化的描述方法,它具有非常重要的研究意义和广泛的应用范围[2]。 典型的单交叉路口东、南、西、北四个方向,每个方向均有右行、直行和左行三股车流。依据各个车道的车流信息,以路口流通能力最大或排队候车的时间最短为目标,通过设计自适应神经模糊推理系统,对交叉路口交通信号进行控制,实时确定各个相位的配时,具体地 说每一相交通信号的配时e i (i=1,2,3,4) 由该相位的主队列w1、后继相的主队列w2两者确定,当前相的主队列起决定作用,后继相的主队列起调节作用。所谓主队列是一个相位两个方向中车辆等待数较大的等待队列。 2 ANFIS 的结构 根据给出的模糊系统模型,输入为w1和w2,模糊标记取{负大,负中,负小,零,正小,正中,正大},由此可构造出一个具有模糊功能的神经网络,如图1所示的ANFIS 结构

自适应神经网络模糊推理系统最优参数的研究

第22卷 第8期计 算 机 仿 真2005年8月 文章编号:1006-9348(2005)08-0140-04 自适应神经网络模糊推理系统最优参数的研究 翁玉麟,邓长虹 (武汉大学电气工程学院,湖北武汉,430072) 摘要:模糊规则的提取和隶属度函数的学习是模糊系统设计中重要而困难的问题。自适应神经网络模糊推理系统(ANF IS) 能基于数据建模,无须专家经验,自动产生模糊规则和调整隶属度函数。在建立一个初始系统进行训练时,其隶属度函数的 类型、隶属度函数的数目以及训练次数都是待定的,这三个参数的选择直接影响系统训练后的效果,它们的确定方法有待研 究。该文应用自适应神经网络模糊推理系统的方法对一个典型系统进行建模仿真,并阐述这三个参数的寻优方法。 关键词:自适应神经网络;模糊系统;隶属度函数 中图分类号:TP3 文献标识码:A Research on Best Param eters i n Adaptive Neura l-Fuzzy I nference System W EN G Yu-lin,D EN G Chang-hong (Electrical Engineering School,W uhan University,W uhan Hubei430072,China) ABSTRACT:Extraction of fuzzy rules and learning of parameters of membership functions are vital but difficult when designing a fuzzy system.App lying Adap tive Neural-Fuzzy Inference System(ANF IS)can p roduce fuzzy rules and adjust membership functions automatically based on data w ithout experience of experts.W hen setting up an initialized system to train,the type of membership functions,the number of membership functions and the ti m e of training are all variables,and the choice of these parameters w ill directly affect the result of modeling, but the method for ensuring these parameters still needs research.This paper gives the si mulation examp le for modeling a typ ical system w ith Adap tive Neural-Fuzzy Inference System and expatiates the method for choosing these three parameters. KEYWO RD S:Adap tive neural net work;Fuzzy system;M embership functions 1 引言 自从M amdani和A ssilian利用模糊控制理论为一简单动力过程构造模糊控制器以来,模糊控制在实际问题中的应用日益广泛。但是,模糊理论在实际应用中也存在一些问题,如隶属度函数的确立目前还没有一套成熟有效的方法,在很难或无法获得专家经验的情况下,隶属度函数的确定是十分困难的[1]。自适应神经网络模糊推理系统(ANF IS)能基于数据建模,自动产生模糊规则和隶属度函数,而不是基于经验或直觉给定。这对于那些特性还不被人们所完全了解或者特性非常复杂的系统是十分有效的。许多学者在应用自适应神经网络模糊推理系统建模方面已经进行了探索并获得很多有益的成果,但在建立一个初始系统进行训练时,其隶属度函数的类型、隶属度函数的数目以及训练次数都是待定的,这三个参数的选择直接影响系统训练后的效果,可是选择怎样的参数可以使建立的模型最佳,至今没有学者进行深入的研究。本文应用ANF IS的方法对一个典型系统进行建模仿真,并阐述这三个参数的选择方法。 2 自适应神经网络模糊系统 学者Roger Jang提出了与一阶Sugeno模型模糊推理系统功能相同的自适应神经模糊推理系统(Adap tive Net work-based Fuzzy Inference System,ANF IS)[2][3],它是模糊逻辑和神经网络的结合产物。ANF IS结构的构造见图1,其同一层的每个节点具有相似的功能(这里用O 1,i 表示第一层的第i个节点的输出)。 第一层:该层每个节点i是以节点函数表示的方形节点(该层参数是可变的): 收稿日期:2004-03-17

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

实验3模糊工具箱模糊推理

实用文档 实验三 模糊工具箱的模糊洗衣机推理系统设计 一、 实验目的 1、掌握Matlab 模糊工具箱的应用。 2、掌握模糊集合的基本运算。 3、能够使用Simulink 工具箱设计模糊控制系统。 二、 实验设备 1、PC 机 2、Matlab 软件 三、 实验容 使用MATLAB 模糊工具箱设计一个洗衣机模糊控制: 1)模糊控制器的结构 选用单变量二维模糊控制器。控制器的输入为衣物的污泥和油脂,输出为洗涤时间。 2)定义输入输出模糊集 将污泥(WN)分为三个模糊集:SD (污泥少),MD (污泥中),LD (污泥多),取值围为[0,100]。 选用如下隶属函数: ?? ?? ? ??≤<-=?? ?≤<-≤≤=≤≤-==100 5050/)50()(1005050/)100(50050/)(50050 /)50()(污泥 x x x x x x x x x x x LD MD SD μμμμ 将油脂(YZ)分为三个模糊集:NG (无油脂),MG (油脂中),LG (油脂多),取值围为[0,100]。选用如下隶属函数:

?? ?? ? ??≤≤-=?? ?≤<-≤≤=≤≤-==100 5050/)50()(1005050/)100(50050/)(50050/)50()(油脂 y y y y y y y y y y y LG MG NG μμμμ 将洗涤时间(XDSJ)分为三个模糊集:VS (很短),S (短),M (中等),L (长),VL (很长),取值围为[0,60]。选用如下隶属函数: ? ???? ??? ??? ??≤≤-=???≤<-≤≤-=?? ?≤<-≤≤-=???≤<-≤≤=≤≤-==60 4020 /)40()(604020/)60(402515/)25()(402515/)40(251015/)10()(251015/)25(10010 /)(10010 /)10()(洗涤时间 z z z z z z z z z z z z z x z z z z z z z VL L M S VS μμμμμμ 4)建立模糊控制规则 根据人的操作经验设计模糊规则,模糊规则设计的标准为:“污泥越多,油脂越多,洗涤时间越长”;“污泥适中,油脂适中,洗涤时间适中”;“污泥越少,油脂越少,洗涤时间越短”。 5)建立模糊控制表 根据模糊规则的设计标准,建立模糊规则表 四、 实验步骤 第一步:打开模糊推理系统编辑器

前馈神经网络(FFNN)和自适应神经网络模糊推理系统(ANFIS)模型评价地下水位的对比研究

FFNN)和自适应神经网络模糊推理系统(ANFIS)模型评价地下水位的对比研究 [印度]P. D. Sreekanth,P. D. Sreedevi,Shakeel Ahmed,N. Geethanjali 田芳译;冯翠娥、段琦校译 当水均衡呈持续负值时,水位预测成为地下水规划和管理的一项重要任务。在位于安德拉邦Ranga Reddy区的Maheshwaram流域,地 下水过量开采,管理地下水资源需要完全了解地下水流动态特征。然 而,地下水流动态特征由于人类和气候影响不断发生变化,且地下水 系统十分复杂,包括多种非线性和不确定因素。人工神经网络模型作 为一个有力的、灵活的统计建模技术被引入到地下水科学中以处理复 杂的模式认识问题。本次研究给出了两种模型的对比,即基于 Levenberg-Marquardt(LM)算法的前馈神经网络(FFNN)与模糊逻 辑自适应模糊推理系统(ANFIS)模型在评价Maheshwaram流域的地 下水位中的准确性的对比。用于分析的统计指标包括均方根误差 (RMSE),回归系数(R2)和误差变异(EV)。结果显示,FFNN-LM 和ANFIS模型对于评价上述地区的地下水位均具有较好的准确性 (RMSE分别为4.45和4.94,R2都为93%)。 1 引言 地下水是半干旱地区尤其是基岩地区一切生物不可缺少的资源。在很多地区,地表水资源匮乏,部分地区甚至没有地表水。近三十年来,为了满足农业和工业部门的需求,地下水过量开采。大范围的开凿深井导致印度部分地区尤其是基岩地区地下水位显著下降。本次研究的目的是应用两种适当的模拟方法评价现有含水层系统的地下水动态,并进行对比。 近期,软计算工具,例如人工神经网络(ANNs)和模糊逻辑被广泛应用于各种科技领域进行预测研究(Gail等,2002)。ANN是具有有限变量的通用模型,作为通用的函数近似解(Hornik等,1989)。与传统方法相比,它能够预测一些非线性时间序列事件(Guan等,2004;Hill等,1996;Tang和Fishwick,1993;Zhang,2003;French等,1992)。软计算技术是基于生物系统的信息处理原理。复杂的生物信息处理系统使得人类能够完成诸如认识周围环境,做出预测,并相应地计划和行动等而得以生存。人类信息处理的类型包括逻辑和直觉两种。 传统的计算机系统的逻辑性很好,但是它们的直觉却远不及人类。对于一个具有类似人类信息处理能力的计算系统,它应该足够灵活地支持以下三个特点:

(完整版)模糊推理方法

几种典型的模糊推理方法 根据模糊推理的定义可知,模糊推理的结论主要取决于模糊蕴含关系),(~ Y X R 及模糊关系与模糊集合之间的合成运算法则。对于确定的模糊推理系统,模糊蕴含关系),(~ Y X R 一般是确定的,而合成运算法则并不唯一。根据合成运算法则的不同,模糊推理方法又可分为Mamdani 推理法、Larsen 推理法、Zadeh 推理法等等。 一、Mamdani 模糊推理法 Mamdani 模糊推理法是最常用的一种推理方法,其模糊蕴涵关系),(~ Y X R M 定义简单,可以通过模糊集合A ~和B ~ 的笛卡尔积(取小)求得,即 )()(),(~~~y x y x B A R M μμμΛ= (3.2.1) 例 3.2.1 已知模糊集合3211.04.01~ x x x A ++=,3 3211.03.05.08.0~y y y y B + ++=。求模糊集合A ~和B ~ 之间的模糊蕴含关系),(~ Y X R M 。 解:根据Mamdani 模糊蕴含关系的定义可知: ?? ?? ? ?????=???? ? ?????=?=1.01.01.01.01.03.04.04.01.03.05.08.0] 1.03.05.08.0[1.04.01~~),(~ οB A Y X R M Mamdani 将经典的极大—极小合成运算方法作为模糊关系与模糊集合的合成运算法则。在此定义下,Mamdani 模糊推理过程易于进行图形解释。下面通过几种具体情况来分析Mamdani 模糊推理过程。 (i) 具有单个前件的单一规则 设*~A 和A ~论域X 上的模糊集合,B ~是论域Y 上的模糊集合,A ~和B ~间的模糊关系是),(~ Y X R M ,有 大前提(规则): if x is A ~ then y is B ~ 小前提(事实): x is *~ A 结论: y is ),(~ ~~**Y X R A B M ο= 当)()(),(~~~y x y x B A R M μμμΛ=时,有 )()}()]()({[V )]}()([)({V )(~~~~X x ~~~X x ~***y y x x y x x y B B A A B A A B μωμμμμμμμΛ=ΛΛ=ΛΛ=∈∈ (3.2.2)

实验4 Mamdani型模糊推理系统的设计与仿真

实验四 Mamdani 型模糊推理系统的设计与仿真 一、 目的和要求 1. 目的 (1) 通过本次综合设计,进一步了解模糊控制的基本原理、模糊模型的建立和模 糊控制器的设计过程。 (2) 提高控制系统的仿真能力 (3) 熟悉MATLAB 在模糊控制系统仿真中的应用。 2. 要求 (1) 充分理解实验内容,并独立完成实验报告。 (2) 实验报告要求:实验题目、实验具体内容及实验功能、结果分析、收获或不 足、程序清单。 二、 实验内容 完成对给定的对象的模糊控制仿真: (1)自选控制对象,比如传递函数()s s Ke s G ts +=-2 067.0。 (2)确定模糊控制论域和参数。 (3)在MATLAB 中输入fuzzy( ),设计模糊控制隶属度函数和控制规则。 (4)运行SIMULINK 仿真程序,绘制仿真图。 (5)运行仿真,记录实验数据和控制曲线。 (6)并分析结果。 三、 实验步骤 1)确定模糊规则 误差E 、误差变化EC 及控制量U 的模糊集定义如下: EC 和U 的模糊集均为:{NB,NM,NS,ZO,PS,PM,PB } E 的模糊集为:{NB,NM,NS,NO,PO,PS,PM,PB } 确定模糊控制规则:一般如表2所示:

表2 模糊控制规则表 2)设计模糊逻辑控制器 模糊逻辑控制系统的参数对控制性能影响很大,因此参数设置是实验的重点内容,具体步骤如下: a.打开Matlab的FIS编辑器(双击Fuzzy logic toolbox下的FIS Editor Viewer),确定模糊推理输入变量和输出变量的个数、名字。 b.打开隶属函数编辑器,选定变量的论域和显示范围,选择隶属函数的形 状和参数。 c. 打开模糊规则编辑器,编辑模糊规则。 d. 重新回到FIS编辑器界面,选择模糊算子,推理方法,聚类方法,解模糊的方法等(centroid,bisector,middle of maximum,largest of maximum,smallest of maximum)。 e. 用模糊规则观察器或输出曲面观察器,观看模糊推理情况。 f. 将建立的FIS保存到磁盘,文件名后缀为.fis。 g. 进行模糊控制仿真时,首先要将FIS发送到Matlab工作空间(workspace)中,用FIS窗口下File/Export/to workspace实现,用户建立一个工作空间变量名(例如fuzzycontrol),这个变量将FIS系统作为Matlab的一个结构进行工作。仿真时,打开fuzzy logic controller ,输入FIS变量名,就可以进行

模糊推理系统编辑器实验

实验二 一、实验目的 1、熟悉MATLAB中模糊系统工具箱的使用方法 2、掌握模糊推理系统编辑器的使用 3、掌握模糊规则以及模糊隶属度函数的意义和编辑器的使用 方法 二、实验内容 1、模糊推理系统编辑器 1)命令窗口中键入命令:fuzzy,激活基本模糊推理系统编辑器,选择菜单“File→Export→to workspace…”,以 “wuyunhe233080108”为文件名保存到工作空间,如图 1所示:

图1 基本模糊推理系统编辑器 2)选择菜单“Edit→add Variable…→Input”添加输入变量,使系统成为双输入,然后为变量命名:input1→service (服务),input2→food(食物),output1→tip,如图2 所示:

图2 双输入模糊控制系统 2、隶属度函数编辑器 在命令窗口输入mfedit或者用菜单选项“Edit→Membership Function”都可以打开隶属度函数编辑器。 对于变量service,加入三个模糊隶属度函数分别如下:Name=’service’ Range=[0 10] MumMfs=3 MF1=’poor’:’gaussmf’,[1.5 0] MF2=’good’:’gaussmf’,[1.5 0]

MF3=’excellent’:’gaussmf’,[1.5 0] 对于变量service,加入三条隶属度函数分别如下: Name=‘service’ Range=[0 10] MumMfs=3 MF1=‘poor’’: ‘gaussmf’,[1.5 0] MF2=‘good’: ‘gaussmf’,[1.5 5] MF3=‘excellent’: ‘gaussmf’,[1.5 10] 对于变量food,加入两条隶属函数: Name=‘food’ Range=[0 10] MumMfs=2 MF1=‘rancid’: ‘trapmf’,[0 0 1 3] MF2=‘delicious’: ‘trapmf’,[7 9 10 10] 对于变量tip,加入三条隶属函数: Name=‘tip’ Range=[0 30] MumMfs=3 MF1=‘cheap’: ‘trimf’,[0 5 10] MF2=‘average’: ‘trimf’,[10 15 20] MF3=‘generous’: ‘trimf’,[20 25 30]

模糊神经网络讲义

模糊神经网络(备课笔记) 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌等,现在简化改成一个综合评价:好、坏、一般等,都是根据个人爱好或者个人经验等模糊概念进行判断的。 在科学发展的今天,尤其在工程研究和设计领域中,这些模糊性问题就无法回避了,要求对数据进行定量分析,那如何对其进行定量分析呢? 1965年,Zadeh教授发表一篇论文“模糊集合”(Fuzzy sets),所谓模糊集合就是指边界不清的集合。提出用“隶属函数”(menbership function)这一概念来描述现象差异中的中间过渡,突破了德国人Cantor创立的古典集合论中属于或不属于的绝对关系,标志着模糊数学的诞生。Zadeh认为应该重新把模糊性和精确性统一在一起,因为在现实生活中复杂事物要绝对精确是不可能的,实际上只是把所谓的不准确程度降低到了无关重要的程度。他这篇论文第一次引人注目地提出了模糊性问题,给出了模糊概念的定量表示法,标志着模糊数学的诞生。模糊数学是使模糊现象定量化的应用数学分支学科。由于它突破了传统数学绝不允许模棱两可的约束,使那些与数学毫不相关的学科都可能用定量化和数学化加以描述和处理,从而显示其强大的生命力。 在模糊评价中,最基本和使用最多的是隶属度和隶属函数。隶属度表示元素u属于模糊集合U的程度;也就是对模糊集合的判断是用元素对此集合的从属程度大小来表达的。 模糊系统 模糊逻辑控制系统,简称模糊控制系统或模糊系统,是一种基于模糊数学理论的新型控制方法。 模糊控制由于模仿人对复杂事物的抽象思维方式,利用模糊信息处理对被控对象执行控制。所以,它不需要知道系统的精确数学模型。对不确定的非线性的系统来说是一种有效的控制途径。但是,模糊控制对信息的简单模糊化导致系统的控制精度下降。为了提高精度,往往要在模糊化时增加模糊量的个数,或者,增大控制规则集。这样会使控制规则搜索范围的扩大、搜索时间增加、降低了决策的速度,则影响了动态过程的品质。因此,隶属函数和控制规则的优化是提高品质的关键,在本质上,是对模糊控制中的知识进行正确性校正。

模糊推理法 傻瓜式 教程

7.4.2模糊推理 模糊推理有多种模式,其中最重要的且广泛应用的是基于模糊规则的推理。模糊规则的前提是模糊命题的逻辑组合(经由合取、析取和取反操作),作为推理的条件;结论是表示推理结果的模糊命题。所有模糊命题成立的精确程度(或模糊程度)均以相应语言变量定性值的隶属函数来表示。 模糊规则由应用领域专家凭经验知识来制定,并可在应用系统的调试和运行过程中,逐步修正和完善。模糊规则连同各语言变量的隶属函数一起构成了应用系统的知识库。基于规则的模糊推理实际上是按模糊规则指示的模糊关系 作模糊合成运算的过程。 建立在论域U 1,U 2,…,U n 上的一个模糊关系是笛卡尔积 U 1×U 2×…×U n 上的模糊集合。若这些论域的元素变量分别为 ,则R 的隶属函数记为 。模糊关系可形式地定义为 在模糊推理中,尚未建立一致的理论去指导模糊关系的构造。这意味着存在着多种构造模糊关系的方法,相关的模糊合成运算方法也不同,从而形成了多种风格的模糊推理方法。不过,基于max-min 原则的算法占居了目前模糊推理方法的主流。尽管这些算法不能说是最优的,但易于实现并能有效地解决实际问题,因此它们已广泛地应用于模糊推理。 1.直接基于模糊规则的推理 当模糊推理的输人信息是量化的数值时,可以直接基于模糊规则作推理,然后把推理结论综合起来,典型的推理过程可以分为两个阶段,其中第一阶段又分为三个步骤,表述如下: (1)计算每条模糊规则的结论:①输入量模糊化,即求出输入量相对于语言变量各定性值的隶属度;②计算规则前提部分模糊命题的逻辑组合(合取、析取和取反的组合);③将规则前提逻辑组合的隶属程度与结论命题的隶属函数作min 运算,求得结论的模糊程度。

实验3模糊工具箱模糊推理

. .. . 实验三模糊工具箱的模糊洗衣机推理系统设计 一、实验目的 1、掌握Matlab模糊工具箱的应用。 2、掌握模糊集合的基本运算。 3、能够使用Simulink工具箱设计模糊控制系统。 二、实验设备 1、PC机 2、Matlab软件 三、实验容 使用MATLAB模糊工具箱设计一个洗衣机模糊控制: 1)模糊控制器的结构 选用单变量二维模糊控制器。控制器的输入为衣物的污泥和油脂,输出为洗涤时间。 2)定义输入输出模糊集 将污泥(WN)分为三个模糊集:SD(污泥少),MD(污泥中),LD(污泥多),取值围为[0,100]。 选用如下隶属函数:

?? ?? ? ??≤<-=?? ?≤<-≤≤=≤≤-==100 5050/)50()(1005050/)100(50 050/)(50050/)50()(污泥 x x x x x x x x x x x LD MD SD μμμμ 将油脂(YZ)分为三个模糊集:NG (无油脂),MG (油脂中),LG (油脂多),取值围为[0,100]。选用如下隶属函数: ?? ?? ? ??≤≤-=?? ?≤<-≤≤=≤≤-==100 5050/)50()(1005050/)100(50 050/)(50050 /)50()(油脂 y y y y y y y y y y y LG MG NG μμμμ 将洗涤时间(XDSJ)分为三个模糊集:VS (很短),S (短),M (中等),L (长),VL (很长),取值围为[0,60]。选用如下隶属函数: ? ???? ??? ??? ??≤≤-=???≤<-≤≤-=?? ?≤<-≤≤-=???≤<-≤≤=≤≤-==60 4020 /)40()(604020/)60(402515/)25()(402515/)40(251015/)10()(251015/)25(10010 /)(10010 /)10()(洗涤时间 z z z z z z z z z z z z z x z z z z z z z VL L M S VS μμμμμμ 4)建立模糊控制规则 根据人的操作经验设计模糊规则,模糊规则设计的标准为:“污泥越多,油脂越多,洗涤时间越长”;“污泥适中,油脂适中,洗涤时间适中”;“污泥越少,油脂越少,洗涤时间越短”。 5)建立模糊控制表

多变量模糊系统建模及控制理论分析

多变量模糊系统建模及控制理论分析 摘要:本文对多变量模糊系统建模及控制理论进行了分析,对其中存在的问题作了探讨和阐述。同时也对其研究的新进展做了简要的介绍,其中包含有目前最新颖的多变量模糊系统的建模和分辨,以及两种多变量模糊系统建模与控制的新型控制器。最后对其发展的前景和趋势作了简要的分析和阐述。 关键词:多变量;模糊系统建模;控制理论;分析 中图分类号:TP1 文献标识码: A 文章编号: 1673-1069(2016)14-171-2 0 引言 在现实世界中有庞大的多变量模糊系统存在,这个系统其参数以及结构都具有多变性。尽管目前的多变量模糊系统的建模以及控制理论已经有了很大的提升和完善,但还是存在一些问题和缺陷,因为目前的多变量模糊系统建模与控制的方法缺乏有效性和简便性,且在计算的过程中缺乏高效简捷的方法,因而使得大部分的多变量模糊系统模型缺乏实际效用,且只能应用于变量单一的系统中。尽管后来有人也研究出了一些比较简易的模型和快捷的计算方法,但是这也使得其准确性大大降低,另外现有的模型还不能直接分析其动

态的特性。因此研究和分析多变量模糊系统的建模与控制理论,为建立适用的模型提供更好的理论基础和依据就变得尤为重要。 1 多变量模糊系统中存在的问题 目前的多变量模糊系统的建模与控制仍然处于初级的发展阶段,这时已经形成了较为标准的模糊控制结构,也有一定的控制规则,但还存在一些难以克服的问题和缺陷。首先是目前系统控制的规则主要还是以理论以及操作经验为主,但是在其完善和拓展上还存在较大的困难。其次就是这时所依赖的控制器尽管是在多变量模糊系统建模以及控制理论的基础上研发出来的,但是其对于模糊系统中的各个维数的关系以及指数的增长趋势都不能进行实际意义上的控制,因此也缺乏实际意义。然后就是控制器的组成结构以及运算方式都非常复杂,很难满足实际应用的智能体系。最后就是系统的分析存在较大的难度。而目前所使用的模糊系统的建模与控制的理论大都只适合于单一的系统,因此为了更好满足工程实践以及多变量模糊系统发展的要求,就必须对其建模与控制理论进行研究和分析,从而促进多变量模糊系统的功能完善以及进一步的发展。常规模糊控制器结构如图1所示。 2 多变量模糊系统中的新颖模型 2.1 穴映射模型

相关文档