文档库 最新最全的文档下载
当前位置:文档库 › 电路的暂态分析

电路的暂态分析

电路的暂态分析
电路的暂态分析

第3章电路的暂态分析

本章教学要求:

1.理解电路的暂态和稳态、零输入响应、零状态响应、全响应的概念,以及时间常数的物理意义。

2.掌握换路定则及初始值的求法。

3.掌握一阶线性电路分析的三要素法。

4.了解微分电路和积分电路。

重点:

1.换路定则;

2.一阶线性电路暂态分析的三要素法。

难点:

1.用换路定则求初始值;

2.用一阶线性电路暂态分析的三要素法求解暂态电路;

3.微分电路与积分电路的分析。

稳定状态:在指定条件下电路中电压、电流已达到稳定值。

暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。

换路: 电路状态的改变。如:电路接通、切断、短路、电压改变或参数改变。

电路暂态分析的内容:

(1) 暂态过程中电压、电流随时间变化的规律。

(2) 影响暂态过程快慢的电路的时间常数。

研究暂态过程的实际意义:

1. 利用电路暂态过程产生特定波形的电信号,如锯齿波、三角波、尖脉冲等,应用于电子电路。

2. 控制、预防可能产生的危害,暂态过程开始的瞬间可能产生过电压、过电流使电气设备或元件损坏。

3.1 电阻元件、电感元件与电容元件

3.1.1 电阻元件

描述消耗电能的性质。

根据欧姆定律:u = R i ,即电阻元件上的电压与通过的电流成线性关系。 电阻的能量: 表明电能全部消耗在电阻上,转换为热能散发。电阻元件为耗能元件。

3.1.2 电感元件

描述线圈通有电流时产生磁场、储存磁场能量的性质。

电流通过一匝线圈产生 (磁通),电流通过N 匝线圈产生 (磁链),

电感: ,L 为常数的是线性电感。

自感电动势: 其中:自感电动势的参考方向与电流参考方向相同,或与磁通的参考方向符合右手螺旋定则。

根据基尔霍夫定律可得: 将上式两边同乘上 i ,并积分,则得:磁场能W = 即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。电感元件不消耗能量,是储能元件。

3.1.3 电容元件

描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。

电容: 当电压u 变化时,在电路中产生电流: 将上式两边同乘上 u ,并积分,则得:电场能W = 即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。电容元件不消耗能量,也是储能元件。

3.2 储能元件和换路定则

1. 电路中产生暂态过程的原因

产生暂态过程的必要条件:

d d 0

≥==

??

t Ri t ui W t

2t

ΦN Φψ=i

N Φi ψL ==t

i

L t ψe d d d )d(d )d(d d -=-=-=-

=t Li t N ΦL t

i

L

e u d d =-=L 200

2

1d d Li i Li t ui t

i

=

=

?

?

u

q C =

t

u C i d d d d ==

t q 2

00

2

1d d Cu u Cu t ui t u ==??

(1) 电路中含有储能元件 (内因); (2) 电路发生换路 (外因)。

产生暂态过程的原因:由于物体所具有的能量不能跃变而造成。 在换路瞬间储能元件的能量也不能跃变:

因为 C 储能: ,所以u C 不能突变;

因为 L 储能: ,所以i L 不能突变。

2. 换路定则

设:t = 0 — 表示换路瞬间 (定为计时起点); t = 0-— 表示换路前的终了瞬间;

t = 0+—表示换路后的初始瞬间(初始值)。

电感电路: 电容电路: 3. 初始值的确定

初始值:电路中各 u 、i 在 t =0+ 时的数值。 求解要点:

(1) 先求 u C ( 0+)、i L ( 0+) 。

1) 由t = 0-的电路(换路前稳态)求u C ( 0– ) 、i L ( 0– ); 2) 根据换路定律求 u C ( 0+)、i L ( 0+) 。 (2) 再求其它电量初始值。

1) 由t =0+的电路求其它电量的初始值;

2) 在 t =0+时的电压方程中 u C = u C ( 0+)、 t =0+时的电流方程中 i L = i L ( 0+)。 注意:

1. 换路瞬间,u C 、 i L 不能跃变, 但其它电量均可以跃变。

2. 换路前, 若储能元件没有储能, 换路瞬间(t = 0+的等效电路中),可视电容元件短路,电感元件开路。

3. 换路前, 若u C (0-) ≠ 0, 换路瞬间(t = 0+)等效电路中, 电容元件可用一理想电压源替代, 其电压为u C (0+);换路前, 若i L (0-) ≠ 0 , 在t = 0+等效电路中, 电感元件可用一理想电流源替代,其电流为i L (0+)。

22

1

C C Cu W =2

2

1

L L Li W =)()(-+=00L L ιι

)

()(-+=00C C u u

3.3 RC 电路的响应

激励 (输入):电路从电源 (包括信号源) 输入的信号。

响应 (输出):电路在外部激励的作用下,或者在内部储能的作用下产生的电压和电流。 响应分类:

产生原因——零输入响应:内部储能作用 零状态响应:外部激励作用

全响应: 全响应 = 零输入响应 + 零状态响应 激励波形——阶跃响应、正弦响应、脉冲响应

3 .3 .1 RC 电路的零输入响应

无电源激励, 输入信号为零,

的放电过程。

换路前电路已处稳态, t =0时开关扳至1,, 电容C 经电阻R 放电。 列 KVL 方程, 代入上式得

解此微分方程,得电容电压

电容电压 u C 从初始值按指数规律衰减,衰减的快慢由RC 决定。 放电电流

电阻电压: 变化曲线如图所示:

时间常数 (单位:S ),决定电路暂态过程变化的快慢,τ越大,变化越慢。 当 时,

。所以时间常数等于电容电压衰减到初始值U U )(u C =-00

=+C R u u Ri u R =t

u C C

C d d =

ι +C C

u t

u RC

d d RC t e

U u C -

=0

0≥=-+

t e u C )( τt

t

e R

U t u C i C C

--==d d RC

t

e U Ri u C R --==RC =ττ=t U .U u C 0

08361==

-e

的36.8%所需的时间。理论上认为 、 电路达稳态;工程上认为 ~ 、 电容放电基本结束。

3.3.2 RC 电路的零状态响应

储能元件的初始能量为零, 仅由电源激励所产生的电路的响应。实质是RC 电路的充电过程。

在t = 0时,合上开关S ,此时, 电路实为输入个阶跃电压u 。 列 KVL 方程 得 解此微分方程,得电容电压

充电电流

当 t = τ 时 , ,τ 表示电容电压 u C 从初始值上升到

稳态值的63.2% 时所需的时间。τ 越大,曲线变化越慢,u C 达到稳态时间越长。当 t = 5τ 时, 暂态基本结束,u C 达到稳态值。

3.3.3 RC 电路的全响应

电源激励、储能元件的初始能量均不为零时,电路中的响应。 根据叠加定理,全响应 = 零输入响应 + 零状态响应

∞→t 0→C u τ)(53=t 0→C u

U u u C R =+U u t

u RC

C C

=+d d )

()

() e e (011≥=---=-t t RC t U U

u C τ0≥==-t R

U

t u C

i t

C C e d d τU %.e U u C 26311

=-=-)()(τ

电容电压

所以有:全响应 = 稳态分量 +暂态分量

3.4 一阶线性电路暂态分析的三要素法

仅含一个储能元件或可等效为一个储能元件的线性电路,且由一阶微分方程描述,称为一阶线性电路。

据经典法推导结果,在直流电源激励的情况下,一阶线性电路微分方程解的通用表达式为: 式中,f (t) 代表一阶电路中任一电压、电流函数,初始值f (0+)、稳态值f (∞)、时间常数τ称为三要素。

利用求三要素的方法求解暂态过程,称为三要素法。一阶电路的响应(电压或电流)都可用三要素法求解。

“三要素”的确定:

(1) 稳态值的计算:求换路后电路中的电压和电流,其中电容 C 视为开路,电感L 视为短路,即求解直流电阻性电路中的电压和电流。

(2) 初始值的计算:参见3.1节。

(3) 时间常数τ 的计算:对于一阶RC 电路, ; 对于一阶RL 电路,

。 注:1) 对于简单的一阶电路 ,R 0 = R ;

2) 对于较复杂的一阶电路, R 0为换路后的电路除去电源和储能元件后,在储能元件两端所求得的无源二端网络的等效电阻。

)

()e (e 010≥-+=--t U

U u RC

t RC

t C )

( )e ( 00≥-+=-t U U U t

τ

t

f f f t f -+∞-+∞=e

)]()([)()(0C R 0=

τ0

R L

第三章 电路的暂态分析1

第三章 电路的暂态分析 一、填空题: 1. 一阶RC 动态电路的时间常数τ=___RC____,一阶RL 动态电路的时间常数τ=__L/R______。 2. 一阶RL 电路的时间常数越__大/小 _ (选择大或小),则电路的暂态过程进行的越快 慢/快 (选择快或慢)。。 3. 在电路的暂态过程中,电路的时间常数τ愈大,则电压和电流的增长或衰减就 慢 。 4. 根据换路定律,(0)(0)c c u u +-=,()+0L i =()0L i — 5. 产生暂态过程的的两个条件为 电路要有储能元件 和 电路要换路 。 6. 换路前若储能元件未储能,则换路瞬间电感元件可看为 开路 ,电容元件可看为 短路 ;若储能元件已储能,则换路瞬间电感元件可用 恒流源 代替,电容元件可用 恒压源 代替。 7. 电容元件的电压与电流在关联参考方向下,其二者的关系式为1 u idt C = ?;电感元件的电压与电流在关联参考方向下,其二者的关系式为di u L dt =。 8. 微分电路把矩形脉冲变换为 尖脉冲 ,积分电路把矩形脉冲变换为 锯齿波 。 9.下图所示电路中,设电容的初始电压(0)10C u V -=-,试求开关由位置1打到位置2后电容电压上升到90 V 所需要的时间为 4.8*10-3 秒。 F μ100 10. 下图所示电路中,V U u C 40)0(0_==,开关S 闭合后需 0.693**10-3

秒时间C u 才能增长到80V ? + U C - 11. 下图所示电路在换路前处于稳定状态,在0t =时将开关断开,此时电路的时间常数τ为 (R 1 +R 2 )C 。 U 12. 下图所示电路开关S 闭合前电路已处于稳态,试问闭合开关的瞬间, )0(+L U 为 100V 。 1A i L 13. 下图所示电路开关S 闭合已久,t=0时将开关断开,则i L (0-)= 4A ,u C (0+)= 16V ,i C (0+)= 0 。 u c 14.下图所示电路,当t=0时将开关闭合,则该电路的时间常数为 0.05S 。

电工技术(第三版席时达)教学指导、习题解答第五章.docx

第五章电路的瞬态分析【引言】①直流电路:电压、电流为某一稳定值 稳定状态(简称稳态)交流电路:电压、电流为某一稳定的时间函数 ○2当电路发生接通、断开、联接方式改变及电路参数突然变化时,电路将从一种稳态变换到另一种稳态,这一变换过程时间一般很短,称为瞬态过程或简称瞬态(也称暂态过程或过渡过程)。 防止出现过电压或过电流现象,确保电气设备安全运行。 ○3 瞬态分析的目的 掌握瞬态过程规律,获得各种波形的电压和电流。 学习目的和要求 1、了解产生瞬态过程的原因和研究瞬态过程的意义。 2、掌握分析一阶电路的三要素法。理解初始值、稳态值、时间常数的概念。 3、理解RC电路和RL电路瞬态过程的特点。 4、了解微分电路和积分电路 本章重点:分析一阶电路的三要素法,RC电路的充放电过程。 本章难点:初始值的确定。 5-1瞬态过程的基本知识 一、电路中的瞬态过程 【演示】用根据图5-1-1 制作的示教板。观察开关S 合上瞬间各灯泡点亮的情况。 S I C I L I R +C L R U S - HL 1HL2HL3 图 5-1-1 【讲授】开关 S HL 1突然闪亮了一HL 2由暗逐HL 3立刻变合上瞬间下,然后逐渐暗下渐变亮,最亮,亮度稳 去,直到完全熄灭后稳定发光定不变 有瞬态过程无瞬态过程

外因——电路的状态发生变化(换路) 电路发生瞬态过程的原因 内因 —— 电路中含有储能元件(电容或电感) 二、换路定律 【讲授】①换路定律是表述换路时电容电压和电感电流的变化规律的,即换路瞬间电容上的电压和电 感中的电流不能突变。 ②设以换路瞬间作为计时起点,令此时 t =0,换路前终了瞬间以 t =0 —表示,换路后初始瞬间以 t =0 +表示。则换路定律可表示为: u C (0 +) = u C (0 — ) 换路瞬间电容上的电压不能突变 i L (0 +) = i L (0 — ) 换路瞬间电感中的电流不能突变 换路后 换路前 初始瞬间 终了瞬间 【说明】①换路定律实质上反映了储能元件所储存的能量不能突变。因为 W C = 1 Cu C 2、W L = 1 Li L 2, p= dw 趋于无穷大,这是不可能的。 2 2 u C 和 i L 的突变意味着能量发生突变,功率 dt ②当电路从一种稳定状态换路到另一种稳定状态的过程中, u C 和 i L 必然是连续变化的,不能突变。 这种电流和电压的连续变化过程就是电路的瞬态过程。 ③电阻是耗能元件,并不储存能量,它的电流、电压发生突变并不伴随着能量的突变。因此由纯电 阻构成的电路是没有瞬态过程的 。 ④虽然 u C 和 i L 不能突变,但电容电流和电感电压是可以突变的,电阻的电压和电流也是可以突变 的。这些变量是否突变,需视具体电路而定。 三、分析一阶电路瞬态过程的三要素法 【讲授】①一阶电路是指只包含一个储能元件,或用串、并联方法化简后只包含一个储能元件的电 路 经典法 (通过微分方程求解) ②分析一阶电路瞬态过程的方法 三要素法 (简便方法,本书只介绍此法的应用) ③在直流电源作用下的任何一阶电路中的电压和电流,只要求得初始值、稳态值和时间常数这三个 要素,就可完全确定其在瞬态过程中随时间变化的规律。——三要素法:

第5章:电路的暂态分析练习题

第5章:电路的暂态分析练习题 一、填空题) 1、暂态是指从一种稳态态过渡到另一种稳态态所经历的过程。 2、换路定律指出:在电路发生换路后的一瞬间,电感元件上通过的电流和电容元件上的端电压,都应保持换路前一瞬间的原有值不变。 3、一阶RC电路的时间常数τ=RC;一阶RL电路的时间常数τ= L\R。时间常数τ的取值决定于电路的和。 4、一阶电路全响应的三要素是指待求响应的值、值和。 二、判断下列说法的正确与错误 1、换路定律指出:电感两端的电压是不能发生跃变的,只能连续变化。(错) 2、换路定律指出:电容两端的电压是不能发生跃变的,只能连续变化。(错) 三、单项选择题 1、在换路瞬间,下列说法中正确的是(B ) A、电感电流不能跃变 B、电感电压必然跃变 C、电容电流必然跃变 四、简答题 1、何谓电路的过渡过程?包含有哪些元件的电路存在过渡过程? 换路后电路中的电压电流在过渡过程期间,从旧稳态进入新稳态此时电压电流都处于暂时不稳定状态。电感,电容 五、计算分析题 1、如图所示电路中的开关S原来合在“1”上很久,在t=0时S合向“2”端, R1=4KΩ,R2=4KΩ,C=5μF求t>0时 (1)时间常数; (2)uc(0); (3)uc(∞); (4)uc(t)、ic(t) (10分) =5Ω,C=2F;t=0开关k闭合,换路前电路已处稳态。求: 2、电路如图所示,Us=10V,R 1 (1)初始值u c(0) (2)时间常数τ (3)u c(t)(t≥0) (4)ic(t)(t>0) (5)画出u c(t)、ic(t)波形图 3、电路如图所示,R1=R2=4KΩ, R3=2KΩ,C=2.5μF,电路在开关闭合前已稳定,开关S在t=0时闭合,求

暂态电路分析(1)

第2章 暂态电路分析 本章要求 理解动态元件的物理性质及其在电路中的作用,理解电路的暂态和稳态、激励和响应,以及时间常数的物理意义,掌握一阶电路的零输入响应、零状态响应和全响应。了解一阶RC 电路对矩形波的响应。 本章内容 本章主要分析RC 和RL 一阶线性电路的过渡过程,重点是分析电子技术中广泛应用的RC 一阶电路在阶跃电压作用下的过渡过程。了解一阶电路在过渡过程中电压和电流随时间变化的规律,并能确定电路的时间常数、初时值和稳态值三个要素,会用三要素法计算RC 、RL 一阶电路。 本章学时 5学时 2.1 动态元件 本节学时 1学时 本节重点 动态元件电容及电感的外部特性,即电容及电感的伏安关系和能量关系。 教学方法 通过理论推导,导出电容、电感的电压与电流的基本关系和能量关系,着重分析元件的物理性质和在电路中的作用。 教学手段 以传统教学手段与电子课件及EDA 软件相结合的手段,让学生在有限的时间内掌握更多的相关知识。 教学内容 2.1.1 电感元件 电感元件简称电感是用来反映具有存储磁场能量的电路元件。 1.电感 2.自感电动势 3.电压与电流的关系 线性电感两端电压在任意瞬间与di /dt 成正比。对于直流电流,电感元件的端电压为零,故电感元件对直流电路而言相当于短路。 4. 磁场能量 2.1.2 电容元件 电容元件简称电容是用来反映具有存储电场能量的电路元件。 1.电容 2.电压与电流的关系 线性电容的电流i 在任意瞬间与du /dt 故电容元件对直流电路而言相当于开路。 L C

3.电场能量 2.2 换路定则与初始值的确定 本节学时 1学时 本节重点 换路定则与初时值的确定。 教学方法 由换路瞬间能量不能突变,导出换路定则,由-=0t 时的电路确定电容电压和电感电流的初始值,由+=0t 时的电路确定其它电压和电流的初始值。 教学手段 以传统教学手段与电子课件及EDA 软件相结合的手段,让学生在有限的时间内掌握更多的相关知识。 教学内容 2.2.1换路定则 1.过渡过程的产生原因及条件 换路:电路的接通、断开、短路、电源或电路中的参数突然改变等 能量不能突变:22 1Li W L = 、221 Cu W C =不能突变。 2. 换路定则 -=0t 表示换路前的终了瞬间,+=0t 表示换路后的初始瞬间。 1.首先由换路前-=0t 时的电路求出)0()0(--L C i u 、的值。 2.其次作出换路后初始瞬间+=0t 时的电路。 在+=0t 时的电路中,电容元件视为恒压源,其电压为)0(+C u 。如果0)0(=+C u ,电容元件视为短路。在+=0t 电路中,电感元件视为恒流源,其电流为)0(+L i 。如果 0)0(=+L i ,电感元件视为开路。 3.应用电路的基本定律和基本分析方法,在+=0t 时的电路中计算其它各电压和电流的初始值 例2-1 确定图(a )所示电路在换路后(S 闭合)各电流和电压的初始值。 由换路定则 (2)作+=0t 时电路,如图(c )所示。用基本定律计算其它初始值 注意:计算+=0t 时电压和电流的初始值,需计算-=0t 时的L i 和C u ,因为它们不能突变,是连续的。而-=0t 时其它电压和电流与初始值无关,不必去求,只能在+=0t 的电路中计算。 2.2.3 电路稳态值的确定 当电路的过渡过程结束后,电路进入新的稳定状态,这时各元件电压和电流的值称为稳态值(或终值)。

电力系统暂态分析(第五章习题答案)

B 、 C 相分别经阻抗接地的等值图: 图1 图1表示'f 点发生两相短路接地,其边界条件为 '0f a I ? =,''0f b f c U U ?? == 转换为对称分量的表示形式为: '''(1)(2)(0)0f f f I I I ??? ++= '''(1)(2)(0)f f f U U U ??? == 复合序网:

将f x 看做负载,则可以得到等值图: 其中由于线路中无其他中性点接地,则 (0)X ∑为无穷大 '(2)(2)//0.5f x x x ∑∑== '(0)1f x x ∑== (1)(2)(0) '' (1)(2)(0)0.625//() f f f f f U I I I x x x x ? ? ? ? ∑∑∑====++ (1)(2)(0)a f b f c f I I I T I I I ??????????????????=???????????????? 5-1-3 121110.250.2G T l x x x x x λ==++=+ 0000.050.6T l x x x λ=+=+ 所以 12012001 20011101 11 [()][(]a a a a ka l l l l l a a a ka l a l l l a ka l a l U U I x I x I x x x U I I I I x x x x U I I x x λλλλλ? ? ? ? ? ? ? ? ? ? ? ? ? =+++-=++++-=++

同理,01 11 []l l b b kb b l l x x U U I I x x λ? ??? -=++ 01 11 []l l c c kc c l l x x U U I I x x λ???? -=++ (1)单相(A )接地故障 03a I I ?? =,0ka U = 01101 1 []33 l l a ka a a l a x x U U I I x x I λ λ ? ? ? ? ? -=++=? 则3 a z λ = 由于B 、C 正常工作,关系曲线: (2)两相(B 、C )接地短路 0kb kc U U == 111b c f f I I k I === 2 011220 f f x I I k I x x =- =+ 所以01 2111 [1]l l b b l x x k U I x k x λ-=+ 01 2111 [1]l l c c l x x k U I x k x λ-=+

暂态电路分析

暂态电路分析 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第2章 暂态电路分析 本章要求 理解动态元件的物理性质及其在电路中的作用,理解电路的暂态和稳态、激励和响应,以及时间常数的物理意义,掌握一阶电路的零输入响应、零状态响应和全响应。了解一阶RC 电路对矩形波的响应。 本章内容 本章主要分析RC 和RL 一阶线性电路的过渡过程,重点是分析电子技术中广泛应用的RC 一阶电路在阶跃电压作用下的过渡过程。了解一阶电路在过渡过程中电压和电流随时间变化的规律,并能确定电路的时间常数、初时值和稳态值三个要素,会用三要素法计算RC 、RL 一阶电路。 本章学时 5学时 动态元件 本节学时 1学时 本节重点 动态元件电容及电感的外部特性,即电容及电感的伏安关系和能量关系。 教学方法 通过理论推导,导出电容、电感的电压与电流的基本关系和能量关系,着重分析元件的物理性质和在电路中的作用。 教学手段 以传统教学手段与电子课件及EDA 软件相结合的手段,让学生在有限的时间内掌握更多的相关知识。 教学内容 电感元件 电感元件简称电感是用来反映具有存储磁场能量的电路元件。 1.电感 2.自感电动势 3.电压与电流的关系 线性电感两端电压在任意瞬间与di /dt 4. 磁场能量 电容元件 电容元件简称电容是用来反映具有存储电场能量的电路元件。 1.电容 2.电压与电流的关系 线性电容的电流i 在任意瞬间与du /dt 故电容元件对直流电路而言相当于开路。 3.电场能量 换路定则与初始值的确定 本节学时 1学时 本节重点 换路定则与初时值的确定。 教学方法 由换路瞬间能量不能突变,导出换路定则,由-=0t 时的电路确定电容电压和电感电流的初始值,由+=0t 时的电路确定其它电压和电流的初始值。 教学手段 以传统教学手段与电子课件及EDA 软件相结合的手段,让学生在有限的时间内掌握更多的相关知识。 L C

电路的暂态分析习题解答

电路的暂态分析习题解 答 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

第五章 电路的暂态分析 题图所示各电路在换路前都处于稳态,求换路后电流i 的初始值和稳态值。 解:(a )A i i L L 32 6)0()0(===-+, 换路后瞬间 A i i L 5.1)0(2 1)0(==++ 稳态时,电感电压为0, A i 32 6== (b )V u u C C 6)0()0(==-+, 换路后瞬间 02 ) 0(6)0(=-= ++C u i 稳态时,电容电流为0, A i 5.12 26=+= (c )A i i L L 6)0()0(11==-+,0)0()0(22==-+L L i i 换路后瞬间 A i i i L L 606)0()0()0(21=-=-=+++ 稳态时电感相当于短路,故 0=i (a)(b) (d) (c) C C 2Ω 2 +6V - 题5.1图 i

(d )2 (0)(0)6322 C C u u V +-==?=+ 换路后瞬间 6(0)63 (0)0.75224 C u i A ++--= ==+ 稳态时电容相当于开路,故 A i 12 226 =++= 题图所示电路中,S 闭合前电路处于稳态,求u L 、i C 和i R 的初始值。 解:换路后瞬间 (0)6L i A +=, (0)3618C u V +=?= (0)6(0)0R L i i ++=-= (0)18 (0)(0)6033 C C L u i i +++=-=-= (0)(0)(0)0L C R u u Ri ++++==, (0)(0)18L C u u V ++=-=- 求题图所示电路换路后u L 和i C 的初始值。设换路前电路已处于稳态。 解:换路后,(0)(0)4L L i i mA +-==, 所以换路后4mA 电流全部流过R 2,即 (0)4C i mA += 由于(0)(0)8C C u u V +-==,故 2(0)(1)(0)(0)20812L L c u R R i u V +++=-++=-+=- Ω +u L -题5.2图 题5.3图 C

电路的暂态分析习题解答

第五章 电路的暂态分析 5.1 题5.1图所示各电路在换路前都处于稳态,求换路后电流i 的初始值和稳态值。 解:(a )A i i L L 326)0()0(===-+, 换路后瞬间 A i i L 5.1)0(2 1 )0(== ++ 稳态时,电感电压为0, A i 32 6== (b )V u u C C 6)0()0(==-+, 换路后瞬间 02 ) 0(6)0(=-= ++C u i 稳态时,电容电流为0, A i 5.12 26 =+= (c )A i i L L 6)0()0(11==-+,0)0()0(22==-+L L i i 换路后瞬间 A i i i L L 606)0()0()0(21=-=-=+++ 稳态时电感相当于短路,故 0=i (d )2 (0)(0)6322 C C u u V +-==?=+ 换路后瞬间 6(0)63 (0)0.75224 C u i A ++--= ==+ (a)(b) (d) (c) C C 2Ω 2 +6V - 题5.1图 i

稳态时电容相当于开路,故 A i 12 226 =++= 5.2 题5.2图所示电路中,S 闭合前电路处于稳态,求u L 、i C 和i R 的初始值。 解:换路后瞬间 (0)6L i A +=,(0)3618C u V +=?= (0) 6(0)0 R L i i ++=-= (0)18 (0)(0)6033 C C L u i i +++=-=-= (0)(0)(0)L C R u u R i +++ +==, (0)(0)18L C u u V ++=-=- 5.3 求题5.3图所示电路换路后u L 和i C 的初始值。设换路前电路已处于稳态。 解:换路后,(0)(0)4L L i i mA +-==, 所以换路后4mA 电流全部流过R 2,即 (0 )4C i mA += 由于(0)(0)8C C u u V +-==,故 2(0)(1)(0)(0)20812L L c u R R i u V +++=-++=-+ =- 5.4 题5.4图所示电路中,换路前电路已处于稳态,求换路后的i 、i L 和 u L 。 解:对RL 电路,先求i L (t),再求其它物理量。 10 (0)(0)0.520 L L i i A +-== = 电路换路后的响应为零输入响应 2 0.140||(2020) L S R τ===+,故 A e e i t i t t L L 10/5.0)0()(--+==τ 换路后两支路电阻相等,故 3Ω +u L -题5.2图 题5.3图 C +u L - i L 题5.4图

电工技术--第三章 电路的暂态分析

电工技术--第三章电路的暂态分析

第三章电路的暂态分析 一、内容提要 本章首先阐述了电路瞬变过程的概念及其产生的原因,指出了研究电路瞬变过程的目的和意义。其次介绍换路定律及电路中电压和电流初始值的计算方法。第三着重推荐用“三要素法”分析一阶RC、RL电路瞬变过程的方法。 二、基本要求 1、了解性电路的瞬变过程的概念及其产生的原因; 2、掌握换路定律,学会确定电压和电流的初始值; 3、掌握影响瞬变过程快慢的时间常数的物理意义; 4、掌握影响巡边过程快慢的时间常数的物理意义; 5、学会对RC和RL电路的瞬变过程进行分析。

三、学习指导 电路的暂态分析,实际上就是对电路的换路 进行分析。所谓换路是电路由一个稳态变化到另一个稳态,分析的重点是对含有储能元件的电路而言,若换路引起了储能元件储存的能量所谓变化,则由于能量不能突变,这一点非常重要,次之电路的两个稳态间需要暂态过程进行过渡。 在直流激励下,换路前,如果储能元件储能 有能量,并设电路已处于稳态,则在- =0t 的电路中,电容C 元件可视为开路,电感L 元件可视作短路,只有这样,2L L 2C C 2 121Li W Cu W ==及才能保证;换路前,如果储能元件没有储能(00L C ==W W 或)只能00L C ==i u 或,因此,在-=0t 和+ =0t 的电路中,可将电容元件短路,电感元件开路。 特别注意:“直流激励”,“换路前电路已处于稳态”及储能元件有无可能储能。 对一阶线性电路,求解暂态过程的方法及步骤 1、经典法

其步骤为: (1)按换路后的电路列出微分方程; (2)求微分方程式的特解,即稳态分量; (3)求微分方程式的补函数,即暂态分量 (4)按照换路定律确定暂态过程的初始值,定出积分常数。 对于比较复杂的电路,有时还需要应用戴维南定律或诺顿定理将换路后的电路简化为一个简单的电路,而后再利用上述经典法得出的式子求解,其步骤如下: (1)将储能元件(C或L)划出,而将其余部分看做一个等效电源,组成一个简单电路; (2)求等效电源的电动势(或短路电流)和内阻; (3)计算电路的时间常数;C 电路,eq C R =τL 电路eq R L =τ。 (4)将所得数据代入由经典法得出的式子。 ①RC电路的零状态响应: ;,,0R 00C τττt t t e U u e R U i e U u ----=-== ②RC电路的零状态响应: ;,),1(R C τττt t t Ue u e R U i e U u ----==-=

电路的暂态分析

第8章电路的暂态分析 含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。 本章的学习重点: ●暂态、稳态、换路等基本概念; ●换路定律及其一阶电路响应初始值的求解; ●零输入响应、零状态响应及全响应的分析过程; ●一阶电路的三要素法; ●阶跃响应。 8.1 换路定律 1、学习指导 (1)基本概念 从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。 (2)基本定律 换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。此规律揭示了能量不能跃变的事实。 (3)换路定律及其响应初始值的求解 一阶电路响应初始值的求解步骤一般如下。 ①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。 ②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当 u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于u C(0+)的恒压源。 105

电力系统暂态分析要点总结

第一章 1.短路的概念和类型 概念:指一切不正常的相与相与地(对于中性点接地的系统)之间发生通路或同一绕组之间的匝间非 正常连通的情况。类型:三相短路、两相短路、两相接地短路、单相接地短路。 2.电力系统发生短路故障会对系统本身造成什么危害? 1)短路故障是短路点附近的支路中出现比正常值大许多倍的电流,由于短路电流的电动力效应,导体间将产生巨大的机械应力,可能破坏导体和它们的支架。 2)比设备额定电流大许多倍的短路电流通过设备,会使设备发热增加,可能烧毁设备。 3)短路电流在短路点可能产生电弧,引发火灾。 4)短路时系统电压大幅度下降,对用户造成很大影响。严重时会导致系统电压崩溃,造成电网大面积停电。 5)短路故障可能造成并列运行的发电机失去同步,破坏系统稳定,造成大面积停电。这是短路故障的最严重后果。 6)发生不对称短路时,不平衡电流可能产生较大的磁通在邻近的电路内感应出很大的电动势,干扰附近的通信线路和信号系统,危及设备和人身安全。 7)不对称短路产生的负序电流和电压会对发电机造成损坏,破坏发电机的安全,缩短发电机的使用寿命。3.同步发电机三相短路时为什么进行派克变换? 目的是将同步发电机的变系数微分方程式转化为常系数微分方程式,从而为研究同步发电机的运行问 题提供了一种简捷、准确的方法。 4.同步发电机磁链方程的电感系数矩阵中为什么会有变数、常数或零? 变数:因为定子绕组的自感系数、互感系数以及定子绕组和转子绕组间的互感系数与定子绕组和转子绕 组的相对位置θ角有关,变化周期前两者为π,后者为2π。根本原因是在静止的定子空间有旋转的转子。 常数:转子绕组随转子旋转,对于其电流产生的磁通,其此路的磁阻总不便,因此转子各绕组自感系数 为常数,同理转子各绕组间的互感系数也为常数,两个直轴绕组互感系数也为常数。 零:因为无论转子的位置如何,转子的直轴绕组和交轴绕组永远互相垂直,因此它们之间的互感系数 为零。 5.同步发电机三相短路后,短路电流包含哪些分量?各按什么时间常数衰减? 1)定子短路电流包含二倍频分量、直流分量和交流分量;励磁绕组的包含交流分量和直流分量;D轴 阻尼绕组的包含交流分量和直流分量;Q轴阻尼包含交流分量。 2)定子绕组基频交流分量、励磁绕组直流分量和阻尼绕组直流分量在次暂态时按Td’’和Tq’’衰减,在暂 态情况下按Td’衰减;定子绕组的直流分量、二倍频分量和励磁绕组交流分量按Ta衰减。 6.用物理过程分析同步发电机三相短路后各绕组短路电流包含哪些分量? 短路前,定子电流为iwo,转子电流为ifo;三相短路时,定子由于外接阻抗减小,引起一个强制交流 分量△iw,定子绕组电流增大,相应电枢反应磁链增大。励磁绕组为保持磁链守恒,将增加一个直流分 量△ifɑ,其切割定子使定子产生交流分量△iw’。 定子绕组中iwo,iw,iw’不能守恒,所以必产生一个脉动直流,可将其分解为恒定直流分量和二倍频 交流分量。由于励磁绕组切割定子绕组磁场,因此励磁绕组与定子中脉动直流感应出一个交变电流△ifw。 又因为D轴阻尼与励磁回路平行,所以同样含有交流分量和直流分量。 由于假设定子回路电阻为零,定子基频交流只有直轴方向电枢反应因此Q轴绕组中只有基频交流分量 而没有直流分量。 第四章 1.额定转速同为3000转/分的汽轮发电机和水轮发电机,哪一个启动比较快? 水轮发电机启动较快。 2.水轮机的转动惯量比汽轮机大好几倍,为什么惯性时间常数Tj比汽轮机小? 水轮机极对数多于汽轮机的极对数,由n=60f/p得水轮机的额定转速小于汽轮机的转速,又因为惯性时 间常数为Tj=2.74GD2n2/(1000S B),所以T正比于n2,所以水轮机的Tj比汽轮机小。 3.什么是电力系统稳定性?什么是电力系统静态稳定、暂态稳定?区别? (1)电力系统稳定性:指当电力系统在某一运行状态下突然受到某种干扰后,能否经过一定时间后又

第3章--电路暂态分析-答案

第3章 电路的暂态分析 练习与思考 3.1.1 什么是稳态?什么是暂态? 答:稳态是指电路长时间工作于某一状态,电流、电压为一稳定值。暂态是指电路从一种稳态向另一种稳态转变的过渡过程。 3.1.2 在图3-3所示电路中,当开关S 闭合后,是否会产生暂态过程?为什么? 图3-3 练习与思考3.1.2图 答:不会产生暂态过程。因为电阻是一个暂态元件,其瞬间响应仅与瞬间激励有关,与以前的状态无关,所以开关S 闭合后,电路不会产生暂态过程。 3.1.3 为什么白炽灯接入电源后会立即发光,而日光灯接入电源后要经过一段时间才发光? 答:白炽灯是电阻性负载,电阻是一个暂态元件,其暂态响应仅与暂态的激励有关,与以前的状态无关;而日光灯是一个电感性负载,电感是一个记忆元件,暂态响应不仅与暂态激励有关,还与电感元件以前的工作状态有关,能量不能发生突变,所以日光灯要经过一段时间才发光。 3.2.1任何电路在换路时是否都会产生暂态过程?电路产生暂态的条件是什么? 答:不是。只有含有储能元件即电容或电感的电路,在换路时才会产生暂态过程。电路产生暂态的条件是电路中含有储能元件,并且电路发生换路。 3.2.2若一个电感元件两端电压为零,其储能是否一定为零?若一个电容元件中的电流为零,其储能是否一定为零?为什么? 答:若一个电感元件两端电压为零,其储能不一定为零,因为电感元件电压为零,由 dt di L u =只能说明电流的变化率为零,实际电流可能不为零,由2 2 1Li W L =知电感储能不为零。 若一个电容元件中的电流为零,其储能不一定为零,因为电容元件电流为零,由 dt du C i =只能说明电压变化率为零,实际电压可能不为零,由2 2 1)(Cu t W C =知电容储能不为零。 3.2.3在含有储能元件的电路中,电容和电感什么时候可视为开路?什么时候可视为短路? 答:电路达到稳定状态时,电容电压和电感电流为恒定不变的值时,电容可视为开路,电感可视为短路。 3.2.4 在图3-13所示电路中,白炽灯分别和R 、L 、C 串联。当开关S 闭合后,白炽灯1立即正常发光,白炽灯2瞬间闪光后熄灭不再亮,白炽灯3逐渐从暗到亮,最后达到最亮。请分析产生这种现象的原因。

动态电路的分析

动态电路的分析 摘要:动态电路的分析主要讨论含有电容和电感等储能元件的动态电路。描述着类电路的方程式是微分方程。对于只含有一个储能元件或简化后只含有一个独立储能元件的电路,它的微分方程是一阶,故称为一阶电路。其中着重讨论一阶的零输入响应、零状态响应和全响应以及一阶的阶跃响应的概念及求解概念及求解。 关键字:稳态、暂态、换路、三要素。 引言: 由于储能元件的伏安关系不是代数,而是微分关系,所以储能元件又称为动态元件,含有动态元件的电路又称为动态电路。在直流激励的稳态电路中,电容相当于开路,电感相当于短路。 正文: 电容元件和电感元件 电容:如果一个二端元件在任一时刻,其电荷与电压之间的关系由q-u平面上一条曲线所确定,则称此二端元件为电容元件。特性:动态元件,储能元件。 电感:如果一个二端原件在任意时刻,其磁链与电流之间的关系由平面上一条曲线所确定,则称此二端元件为电感元件。特性:动态元件,储能元件。 动态电路的基本概念 含有动态元件电容和电感的电路称动态电路。 特点:当动态电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。 稳态与暂态的概念 稳态:所有的响应均是恒稳不变,或是按元素周期表变动电路的这种状态称为稳定状态,简称稳态。 稳态值的计算: 稳态值是指过渡过程结束(即t=∞),电路达到新稳态时各电流、电压达到的终值。 当t=∞得到的电容电压和电感电流的终值记为Uc(∞)和iL(∞),在直流激励下,电感电压uL和电容电流iC最终都变为0,在t= ∞时,电感相当于短路,电容相当于开路,此时电路中其他各电流、电压按直流电路计算。 暂态:电路原来的稳定状态在达到另一种稳定状态之前,一个需要经历的过渡的过程,称为暂态 结论:含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称一阶电路。含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称二阶电路。电路中有多个动态元件,描述电路的方程是高阶微分方程。一阶电路的零输入响应 零输入响应:仅有初始状态所引起的响应。 特点:换路后外加激励为零,仅由动态元件初始储能产生的电压和电流。其中分为RC电路的零输入响应,rl电路的零输入响应 小结:一阶电路的零输入响应是由储能元件的初值引起的响应, 都是由初始值衰减为零的指数衰减函数。 uC (0+) = uC (0-) RC电路 iL(0+)= iL(0-) RL电路

第3章 电路的暂态分析

第3章电路的暂态分析 本章教学要求: 1.理解电路的暂态和稳态、零输入响应、零状态响应、全响应的概念,以及时间常数的物理意义。 2.掌握换路定则及初始值的求法。 3.掌握一阶线性电路分析的三要素法。 4.了解微分电路和积分电路。 重点: 1.换路定则; 2.一阶线性电路暂态分析的三要素法。 难点: 1.用换路定则求初始值; 2.用一阶线性电路暂态分析的三要素法求解暂态电路; 3.微分电路与积分电路的分析。 稳定状态:在指定条件下电路中电压、电流已达到稳定值。 暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。 换路: 电路状态的改变。如:电路接通、切断、短路、电压改变或参数改变。 电路暂态分析的内容: (1) 暂态过程中电压、电流随时间变化的规律。 (2) 影响暂态过程快慢的电路的时间常数。 研究暂态过程的实际意义: 1. 利用电路暂态过程产生特定波形的电信号,如锯齿波、三角波、尖脉冲等,应用于电子电路。 2. 控制、预防可能产生的危害,暂态过程开始的瞬间可能产生过电压、过电流使电气设备或元件损坏。 3.1 电阻元件、电感元件与电容元件 3.1.1 电阻元件

描述消耗电能的性质。 根据欧姆定律:u = R i ,即电阻元件上的电压与通过的电流成线性关系。 电阻的能量: 表明电能全部消耗在电阻上,转换为热能散发。电阻元件为耗能元件。 3.1.2 电感元件 描述线圈通有电流时产生磁场、储存磁场能量的性质。 电流通过一匝线圈产生 (磁通),电流通过N 匝线圈产生 (磁链), 电感: ,L 为常数的是线性电感。 自感电动势: 其中:自感电动势的参考方向与电流参考方向相同,或与磁通的参考方向符合右手螺旋定则。 根据基尔霍夫定律可得: 将上式两边同乘上 i ,并积分,则得:磁场能W = 即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。电感元件不消耗能量,是储能元件。 3.1.3 电容元件 描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。 电容: 当电压u 变化时,在电路中产生电流: 将上式两边同乘上 u ,并积分,则得:电场能W = 即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。电容元件不消耗能量,也是储能元件。 3.2 储能元件和换路定则 1. 电路中产生暂态过程的原因 产生暂态过程的必要条件: d d 0 ≥== ?? t Ri t ui W t 2t ΦN Φψ=i N Φi ψL ==t i L t ψe d d d )d(d )d(d d -=-=-=- =t Li t N ΦL t i L e u d d =-=L 200 2 1d d Li i Li t ui t i = = ? ? u q C = t u C i d d d d == t q 2 00 2 1 d d Cu u Cu t ui t u ==??

电力系统暂态分析第五章作业参考答案

第五章作业参考答案 1、利用对称分量法分析不对称短路故障时,基本相如何选择? 答: 选择特殊相作为分析计算的基本相,例如A 相单相接地短路时,选择A 相作为基本相;AB 两相短路时选择C 相作为分析计算的基本相。 2、电力系统同一点发生不同类型短路故障时,是否总有三相短路电流最大?举例说明。 答: 不是总有三相短路电流最大,譬如单相金属性接地短路时,故障相流过的电流为) 3(0 )1(23f f I K I += ,其 中1 00∑∑=X X K ,当10∑∑。 3、在正序等效阻抗和负序等效阻抗相等的电力系统中(通常都认为系统的正序阻抗等于负序阻抗),如果零序等效阻抗为) 0(∑Z ,请按故障处正序电流从大到小的顺序对各种短路故障进行排序,并说明理由。 答: (1)按故障处正序电流从大到小的顺序排列的故障类型如下:三相短路、两相短路接地、两相短路、单相接地短路。 (2)理由如下:根据正序等效网络有 ) (1) ()1(n n Z Z E I ? ∑∑ += ,三相短路时0) 3(=? Z ;两相短路接地时 ∑∑? =02) 1.1(//Z Z Z ;两相短路时∑? =2) 2(Z Z ;单相接地短路时∑∑?+=02) 1(Z Z Z 。 因为 ) 1() 2() 1.1() 3(??? ? <<) 3()1(I 两相短路接地 > ) 1.1() 1(I 两相短路 > ) 2()1(I 单相接地短路 ) 1() 1(I 4、在正序等效阻抗和负序等效阻抗相等的电力系统中(通常都认为系统的正序阻抗等于负序阻抗),如果零序等效阻抗也等于正序阻抗,请按故障处负序电流从大到小的顺序对各种短路故障进行排序,并说明理由。 答: (1)按故障处负序电流从大到小的顺序排列的故障类型如下:两相短路、两相短路接地和单相接地

电力系统暂态分析汇总

第一套 1、无限大功率电源的特点是什么?无限大功率电源供电情况下,发生三相短路时,短路电流中包含有哪些电流分量,这些电流分量的变化规律是什么? 答:无限大功率电源的特点是频率恒定、端电压恒定;短路电流中包含有基频交流分量(周期分量)和非周期分量; 周期分量不衰减,而非周期分量从短路开始的起始值逐渐衰减到零。 2、中性点直接接地电力系统,发生概率最高的是那种短路?对电力系统并列运行暂态稳定性影响最大是那种短路中性点直接接地电力系统发生概率最高的是单相接地短路;对电力系统并列运行暂态稳定性影响最大是三相短路。 3、输电线路装设重合闸装置为什么可以提高电力系统并列运行的暂态稳 纵向故障 纵向故障指电力系统断线故障(非全相运行),它包括一相断线和两相断线两种形式。 2、负序分量 是三相同频不对称正弦量的分量之一其特点是三相辐值相等频率相同、相位依次相差1200、相序为C -B -A -C 。 3、转移阻抗 转移阻抗是在经网络等效变换消去除短路点和电源节点后,所得网形网络中电源节点与短路点之间的连接阻抗。 4、同步发电机并列运行的暂态稳定性 答:同步发电机并列运行的暂态稳定性指受到大干扰作用后,发电机保 持同步运行的能力,能则称为暂态稳定,不能则称为暂态不稳定。 5、等面积定则 答:在暂态稳定的前提下,必有加速面积等于减速面积,这一定则称为等面积定则。输电线路装设重合闸装置可以提高电力系统并列运行的暂态稳定性的原因是它增大了受扰运动过程中的最大减速面积。 4、提高和改善电力系统并列运行静态稳定性的根本措施是什么?具体措施有那些(列出三种以上)? 答:提高和改善电力系统并列运行静态稳定性的根本措施是缩短电气距离;具体措施有输电线路采用分裂导线、输电线路串联电容器、改善电网结构、发电机装设先进的励磁调节装置、提高电力网的运行电压或电压等级等。 5、写出电力系统发生两相金属性短路时的边界条件方程,并画出其复合序网。 答:电力系统发生两相金属性短路(以BC 两相短路为例)时的边界条件方程为: )2()1(fa fa I I -=、0)0(=fa I 、)2()1(fa fa U U = 其复合序网如下图

电工技术(第四版高教版)思考题及习题解答:第三章 动态电路的暂态分析 席时达 编.doc

第三章 动态电路的暂态分析 3-1-1 电路如图3-1所示,在t = 0时合上开关,已知u C (0-) =0,i L (0-)=0,则u C (0+)、i L (0+)、u L (0+)、u R (0+)各为多少? [答] 根据换路定律:u C (0+) = u C (0-) =0,;i L (0+)=i L (0-)=0。在开关合上的一瞬间,电容相当于短路,电感相当于开路,故u L (0+)=U S ;u R (0+)=0。 3-1-2 在图3-2中,如果U =10V ,R =5Ω,设二极管的正向电阻为零,反向电阻为无穷大。则在开关S打开瞬间电感两端的电压是多少? [答] 由于开关S打开瞬i L (0+)=i L (0-)= R U =510A=2A ,根据基尔霍夫电压定律可得电感两端的电压是 u L (0+)= u D (0+)+ u R (0+)= i L (0+)×R D + i L (0+)×R =0+2A ×5Ω=10V 3-3-1 电容的初始电压越高,是否放电的时间越长? [答] 不对,电容放电时间的长短只与时间常数τ=RC 有关,而与电容初始电压的高低无关。 3-3-2 已测得某电路在换路后的输出电流随时间变化曲线如图3-3所示。试指出该电路的时间常数τ大约是多少。 [答] 这是一条电流从初始值按指数规律衰减而趋于零的曲线,其时间常数τ等于初始值 思考题解答 图3-3 0 2 4 6 8 2 4 6 8 10 i /mA t /s (a) 0 2 4 6 8 2 4 6 8 10 i /mA t /s τ 3.68 (b) ii ii i L 图3-1 图3-2

一阶动态电路暂态过程的研究报告

实验3 一阶动态电路暂态过程的研究报告 实验目的: (1)研究一阶RC电路的零输入响应、零状态响应和全响应的变化规律和特点。 (2)研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。测定一阶电路的时间常数t,了解电 路参数对时间常数的影响。 (3)掌握积分电路和微分电路的基本概念。 (4)学习用示波器观察和分析电路的响应。 实验原理: (1)在电路中,开关S置于1使电路处于零状态,当开关在t = 0时刻由1扳向2,电路对激励 US的响应为零状态响应,有 t u c(t)二U s—U se 右 若开始开关S首先置于2使电路处于稳定状态,在t=0时刻由2扳向1,电路为零输入响应,有 t u c(t)= U se 时 动态电路的零状态响应与零输入响应之和为全响应。全响应与激励不存在简单的线性关系。 (2)动态电路在换路以后,一般经过一段时间的暂态过程后便达到稳定。故要由方波激励实现一阶 RC电路重复出现的充电过程,其中方波激励的半周期T/2与时间常数T(= RC)之比保持在 5: 1左右的关系,可使电容每次充、放电的暂态过程基本结束,再开始新一次的充、放电暂态 过程。 (3)RC电路充、放电的时间常数T可从示波器观察的响应波形中计算出来。设时间坐标单位确定,对于充电曲线,幅值由零上升到终值的63.2 %所需的时间为时间常数T。对于放电曲线,幅值 由零下降到初值的36.8%所需的时间同为时间常数T。 (4)一阶RC动态电路再一定的条件下,可以近似构成微分电路或积分电路。当时间常数T (= RC) 远远小于方波周期,输出电压Uo(t)与方波激励Us(t)的微分近似成比例。当时间常数T (= RC) 远远大于 方波的周期,输出电压Uo(t)与方波激励Us(t)的积分近似成比例。 实验内容与步骤: (1) 连接如图电路,应用示波器观察RC电路充、放的动态波形,确定时间常数,并与理论值 进行比较

相关文档