文档库 最新最全的文档下载
当前位置:文档库 › 年产三万吨谷氨酸的发酵罐设计与选型

年产三万吨谷氨酸的发酵罐设计与选型

年产三万吨谷氨酸的发酵罐设计与选型
年产三万吨谷氨酸的发酵罐设计与选型

年产3万吨谷氨酸发酵罐设计

目录

第一章前言

第二章谷氨酸发酵罐的主要技术指标

第三章谷氨酸生产工艺流程及计算

3.1谷氨酸生产原料及处理

3.2谷氨酸生产工艺流程图

第四章谷氨酸发酵罐的总物料衡算

4.1谷氨酸生产的工艺技术指标

4.2谷氨酸发酵车间的物料衡算

4.3三万吨谷氨酸发酵车间的物料衡算结果表

第五章谷氨酸发酵罐的设计与选型

5.1谷氨酸发酵罐空管灭菌蒸汽用量

5.2发酵罐的选型

5.3生产能力、数量和容积的确定

5.4主要尺寸的计算

5.5冷却面积的计算

5.6搅拌器计算

5.7搅拌轴功率的计算

5.8设备结构的工艺计算

5.9设备材料的选择

5.10发酵罐壁厚的计算

5.11接管设计

5.12支座选择选用裙式支座

第六章发酵罐的设计图

第一章前言

谷氨酸是一种氨基酸, 其用途非常广泛,可用于食品、医学、化妆品等,它是非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,在人体内,谷氨酸能与血氨结合生成谷氨酰胺,解除组织代谢过程中所产生的氨毒害作用,可作为治疗肝病的辅助药物,谷氨酸还参与脑蛋白代谢和糖代谢,对改进和维持脑功能有益。另外,众所周知的谷氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。

第二章谷氨酸发酵罐的主要技术指标

根据常识,一个良好的发酵罐应满足下列要求:①结构严密,经得起蒸汽的反复灭菌,内壁光滑,耐腐性好,以利于灭菌彻底和减小金属离子对生物反应的影响;②有良好的气-液-固接触和混合性能以及高效的热量、质量、动量传递性能;③在保持生物反应要求的前提下,降低能耗;④有良好的热量交换性能,以维持生物反应最是温度;⑤有可行的管道比例和仪表控制,适用于灭菌操作和自动化控制。

本论文设计原理是基于强化传质、传热等操作,将生物体活性控制在最佳状态,降低总的操作费用。另外,发酵罐内部状态也是不可忽视的影响因素。

初步确定主要技术指标如表1所示。

表1主要技术指标

第三章谷氨酸的生产工艺流程

3.1谷氨酸原料的处理

3.1.1谷氨酸生产糖蜜预处理的目的是为了降低生物素的含量。因为糖蜜中特别是甘蔗糖蜜中含有过量的生物素,会影响谷氨酸积累。故在以糖蜜为原料进行谷氨酸发酵时,常常采用一定的措施来降低生物素的含量,常用的方法有以下几种。

(1)活性炭处理法用活性炭可以吸附掉生物素。但此法活性炭用量大,多达糖蜜的30%~40%,成本高。在活性炭吸附前先加次氯酸钠或通氯气处理糖蜜,可减少活性炭的用量。

(2)水解活性炭处理法国内曾有人进行过用盐酸水解甘蔗糖蜜,再用活性炭处理的方法去除生物素的实验,并应用于生产。

(3)树脂处理法甜菜糖蜜可用非离子化脱色树脂除去生物素,这样可以大大提高谷氨酸对糖的转化率。处理时先用水和盐酸稀释糖蜜,使其浓度达到10%,pH达2.5,然后在120℃下加压灭菌20min,再用氢氧化钠调pH至4.0,通过脱色树脂交换柱后,将所得溶液调pH 至7.0,用以配制培养基。

3.1.2淀粉的糖化淀粉水解的方法有三种:①酸解法;②酶解法;③酸酶(或酶酸)结合法。淀粉的酸水解工艺

1、调浆:干淀粉用水调成10-11?Bx的淀粉乳,加盐酸0.5-0.8%至pH1.5。

2、糖化:蒸汽加热、加压糖化25min。

3、中和:冷却至80℃,烧碱中和至pH4.0-5.0(避免产生焦糖又保证过滤,中和为沉淀胶体)。

4、脱色:活性炭脱色和脱色树脂。活性炭用量为0.6-0.8%,在70℃及酸性条件下搅拌后过滤。

淀粉的酶法糖化工艺

以大米或碎米为原料时采用大米浸泡磨浆,再调成15?Bx,pH6.0,加细菌α-淀粉酶在85 ℃下液化30min,加糖化酶60 ℃糖化24h,过滤后可供配制培养基。

糖蜜原料

不宜直接用来作为谷氨酸发酵的碳源,因含丰富的生物素。

预处理方法:活性炭或树脂吸附和亚硝酸法破坏以减少糖蜜中的生物素。

也可以在发酵液中加入表面活性剂吐温60或添加青霉素。

3.2谷氨酸的生产工艺流程图

淀粉

消泡剂——消泡剂

水——水

无机盐—→配料罐→定容罐定容罐←配料罐←←—无机盐糖蜜—↓↓—糖蜜

玉米浆—二级种子罐连消器—玉米浆纯生物素—↓↓—纯生物素

实消维持罐

↓↓

斜面→一级种子降温换热器

↓↓—消泡剂

液氮→二级种培养—高浓度糖液

↑—液氨

第四章年产3万吨谷氨酸的总物料衡算

4.1

4.1.1谷氨酸生产的工艺技术指标

表1 味精发酵工艺技术指标

指标名称单位指标数

生产规模t/a 30000(味精)

生产方法 中糖发酵,一次等电点提取 年生产天数 d/a 300 产品日产量 t/a 100 产品质量 纯度% 99 倒灌率 % 1.0 发酵周期 h 48 发酵初糖 Kg/m 3

150 淀粉糖转化率 % 95 糖酸转化率 % 48 麸酸谷氨酸含量 % 90 谷氨酸提取率 % 80 味精对谷氨酸产率

%

112

4.1.2主要原材料质量指标 淀粉原料的淀粉含量为80%,含水14%。

4.1.3二级种子培养基(g/L ) 水解糖25,糖蜜20,尿素3.5,磷酸氢二钾1.0,硫酸镁0.6,玉米浆5~10,泡敌0.6,硫酸镁0.002,硫酸亚铁0.002。

4.1.4发酵培养基(g/L ) 水解糖150,糖蜜4,硫酸镁0.6,氯化钾0.8,磷酸氢二钠0.2,硫酸亚铁0.002,硫酸锰0.002,尿素(总尿)40,泡敌0.6,植物油1.0。 4.1.5接种量为2%

4.2谷氨酸发酵车间的物料衡算

首先计算生产1000kg 纯度为100%的味精需耗用的原辅材料及其他物料量。 4.2.1发酵液量V 1

()()

3

122.8%110%7.99%90%562201000m

V =????÷=

式中 220——发酵培养基初糖浓度(kg/m 3

) 56%——糖酸转化率 90%——谷氨酸提取率

97%——除去倒灌率0.3%后的发酵成功率 110%——味精对谷氨酸的精制产率

4.2.2发酵液配制需水解糖量G 1

以纯糖算,

)(180922011kg V G =?=

4.2.3二级种液量 V 2

()3

12822.0%10m

V V == 4.2.4二级种子培养液所需水解糖量 G 2

()3

2255.2025m

V G ==

式中 25——二级种液含糖量(kg/m 3

) 4.2.5生产1000kg 味精需水解糖总量G 为:

()kg G G G 55.182921=+=

4.2.6耗用淀粉原料量

理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故理论上耗用的淀粉量G 淀粉为:

()()

kg 7.1978%111%89%5855.1829=??÷=淀粉G

式中 85%——淀粉原料含纯淀粉量 98%——淀粉糖转化率 4.2.7尿素耗用量

二级种液耗尿素量为V 3

()kg V V 20885.323==

发酵培养基耗尿素为V 4

()kg V V 8.3284014==

故共耗尿素量为331.68kg 4.2.8甘蔗糖蜜耗用量

二级种液耗用糖蜜量V 5

()kg V V 44.162025==

发酵培养基耗糖蜜量V 6

()kg V V 66.24316==

合计耗糖蜜41.1kg 4.2.9氯化钾耗量G KCl

()kg V G KCl 864.92.11==

4.2.10磷酸氢二钾(K 2HPO 4)耗量G 3

()kg V G 822.0113==

4.2.11硫酸镁(MgSO 4·7H 2O )用量G 4

()()kg V V G 62.34.0214=+=

4.2.12消泡剂(泡敌)耗用量G 5

()kg V V G 54.33.04.0215=+=

4.2.13磷酸氢二钠耗用量G 6

()kg V G 15.136.116==

4.1.14谷氨酸(麸酸)量

发酵液谷氨酸含量为:

()()kg G 1010%3.01%561=-?

实际生产的谷氨酸(提取率90%)为:

()kg 909%901010=?

4.2.15玉米浆用量

66.24102217=+=V V G

4.3 30000t/a 味精厂发酵车间的物料衡算结果

年产30000吨味精物料横算表

物料名称 生产1t 味精(100%)的物料量 15000t/a 味精生

产的物料量

每日物料量

发酵液(m3) 8.22 246.63

10?

822 二级种液(m3) 0.822 31066.24? 82.2

发酵水解用糖(kg ) 1809 61027.54? 3

109.180?

二级种培养用糖

(kg ) 20.55 3105.616? 2055

水解糖总量(kg )

1829.55 61089.54? 3

100.183? 淀粉(kg) 1978.7 61036.59? 3109.197? 尿素(或液氨) 331.68 61095.9? 3102.33? 糖蜜(kg ) 41.1 3101233? 31011.4?

氯化钾(kg ) 9.87 3101.296? 987 磷酸氢二钾(kg )

0.822

31066.24?

82.2

第五章 谷氨酸发酵罐的设计与选型

5.1谷氨酸发酵罐空管灭菌蒸汽用量

5.1.1发酵罐体加热:200m3,1Cr18Ni9的发酵罐体重34.3t ,冷却排管重6t ,1Cr18Ni9的比热容0.5kJ/(kg·K),用0.2Mpa (表压)蒸汽灭菌,使发酵罐在0.15 Mpa (表压)下,由20℃升至127℃。其蒸汽量为986(kg )

5.1.2填充发酵罐空间所需的蒸汽量:因200m3发酵罐的全容积大于200m3,考虑到罐内之排管、搅拌器等所占之空间,罐之自由空间仍按200m3计算。填充空间需蒸汽量: D 空=V ρ=200×1.622=324.4(kg ) 式中 V--发酵罐自由空间即全容积(m3)

ρ--加热蒸汽的密度(kg/m3),0.2Mpa 表压时为1.622

5.1.3灭菌过程的热损失:辐射与对流联合给热系数α,罐外壁温度70℃。 α=33.9+0.19(70-20)=43.4(kJ/(m2·h·K)) 200m3发酵罐的表面积为201 m2,耗用蒸汽量: D 损= =199(kg )

5.1.4罐壁附着洗涤水升温的蒸汽消耗41(kg )

5.1.5灭菌过程蒸汽渗漏,取总汽消耗量的5%,空罐灭菌蒸汽消耗量为:1632(kg/h ) 每空罐灭菌1.5h ,用蒸汽量: 1632×1.5=2448(kg/罐) 每日用蒸汽量:

2448×3=7344(kg/d ),平均量7344/24=306(kg/h ) 5.2发酵罐的选型

选用机械涡轮搅拌通风发酵罐 5.3生产能力、数量和容积的确定 5.3.1发酵罐容积的确定:选用200m 3

5.3.2生产能力的计算:现每天生产97%纯度的谷氨酸100t ,谷氨酸的发酵周期为48h(包括

硫酸镁(kg ) 3.62 3

106.108? 362 泡敌(kg )

3.54

3

102.106?

354

发酵罐清洗、灭菌、进出物料等辅助操作时间)。

每天产纯度为97%的味精100t ,每吨100%的谷氨酸需糖液8.22m 3

则每天需糖液体积为V :

()3

m

797.34%9700122.8=??=糖V

设发酵罐的填充系数υ=75%;则每天需要发酵需要发酵罐的总体积为V 0(发酵周期为48h )。

()3

0m

106375

.07.3497/==

=υ糖V V

5.3.3发酵罐个数的确定:公称体积为200m 3

的发酵罐,总体积为230 m 3

()个τ总52.924

75.023034.79724

V 01=??=

?=

V N

取公称体积200 m 3

发酵罐11个,其中一个留作备用。 实际产量验算:

()a t /7.32451300%

9722.8575.0230=????

富裕量

%2.830000

30000

7.32451=-

能满足产量要求

5.4主要尺寸的计算:取高径比 H :D=2:1

封筒全3

230m 2=+=V V V

则有:

230

224

2785.03

2

=?+

?=D D D V π全

H=2D ;

解方程得:

23026.057.13

3

=+D

D

()

m D 004.583

.12303

==

取D=5m H=2D=10m ;

封头高:

()

mm h h H b a 1300=+=封

封头容积 :

V 封=16.4(m3)

圆柱部分容积:

V 筒=197m 3

验算全容积V 全:

()3

m

8.2294.1621972=?+=+=封筒‘

全V V V

V 全=V ’全

符合设计要求,可行。 5.5冷却面积的计算

对谷氨酸发酵,每1m 3

发酵液、每1h 传给冷却器的最大热量约为4.18×6000kJ/(m 3

·h)。 采用竖式蛇管换热器,取经验值K=4.18×500 kJ/(m 3

·h ·℃)。 平均温差Δt m :

2

12

1m t t ln t t t ΔΔΔΔΔ-=

32℃ 32℃

20℃ 27℃ 12 5

代入

Δ85

12ln

512t m =-=

对公称容量200 m 3

的发酵罐,每天装5罐,每罐实际装液量为

()

3

1555

17.775m

=

换热面积

()

3

5.2328

50018.4155600018.4m

t K Q F m

=????=

=

Δ

5.6搅拌器计算 选用六弯叶涡轮搅拌器。 该搅拌器的各部分尺寸与罐径D 有一定比例关系

搅拌器叶径

()

m D D i 67.13

53===

取d=1.7(m )

叶宽 :

()m d B 34.07.12.02.0=?==

弧长:

()m d l 64.07.1375.0375.0=?==

底距:

()

m D C 7.13

53===

盘踞 :

()

m D d i i 28.17.175.075.0=?==

叶弦长:

()

m D L i 43.07.125.025.0=?==

叶距 :

()m D Y 5==

弯叶板厚:

δ=12(mm )

取两挡搅拌,搅拌转速N 2可根据50m 3

罐,搅拌直径1.05m ,转速N 1=110r/min 。以等P 0/V 为基准[6]

放大求得:

()

min /807.105.11103

/23

/22112

r D D N N =?

?

?

???=???

?

??=

5.7搅拌轴功率的计算

淀粉水解糖液低浓度细菌醪,可视为牛顿流体。 5.7.1计算Re m [8]

μ

ρN D m

2

Re

=

式中 D ——搅拌器直径,D=1.7m

N ——搅拌器转速,()

s r N /33.160

80==

ρ——醪液密度,ρ=1050 kg/m 3

μ——醪液粘度, μ=1.3×10-3N ·s/m 2

将数代入上式:

4

63

2

10

101.310

3.11050

33.17.1Re

>?=???=

-m

视为湍流,则搅拌功率准数Np=4.7

5.7.2计算不通气时的搅拌轴功率P 0:

ρ

5

3

0D N N P P =

式中 N p ——在湍流搅拌状态时其值为常数4.7 N ——搅拌转速,N=80r/min=1.33r/s D ——搅拌器直径,D=1.7m

ρ——醪液密度,ρ=1050kg/m 3

代入上式:

kW

W P 2.88102.8810507.133.17.43

5

3

'

0=?=???=

两挡搅拌:

kW

P P 4.1762'

00==

5.7.3计算通风时的轴功率Pg

()kW Q ND P P g 39

.008.03

203

10

25.2???

?

?

???=-

式中 P 0——不通风时搅拌轴功率(kW ),

4

2

2

010

1.34

.176?==P

N ——轴转速,N=80r/min

D ——搅拌器直径(cm ),D 3=1.73×106=4.9×106

Q ——通风量(ml/min ),设通风比VVm=0.11~0.18,取低限,如通风量变大,Pg 会小,为安全。现取0.11;

则Q=155×0.11×106=1.7×107(ml/min )

()

79.310

7.108

.07

08

.0=?=Q

代入上式:

()

kW

P g 1.6979.3109.480101.31025.239

.0643

=???

?

?

???????=-

5.7.4求电机功率P 电:

01

.1P 3

21g

?=

ηηη电P

采用三角带传动η1=0.92;滚动轴承η2=0.99,滑动轴承η3=0.98;端面密封增加功率为1%;代入公式数值得:

()

kW

P 78.201.198

.099.092.069.1

=???=

5.8设备结构的工艺计算

5.8.1空气分布器:本罐采用单管进风,风管直径υ133×4mm 。 5.8.2挡板:本罐因有扶梯和竖式冷却蛇管,故不设挡板

5.8.3密封方式:本罐采用双面机械密封方式,处理轴与罐的动静问题。 5.8.4冷却管布置:采用竖式蛇管 Ⅰ 最高负荷下的耗水量W

()

12t t c Q W P -=

式中 Q 总——每1m 3

醪液在发酵最旺盛时,1h 的发热量与醪液总体积的乘积

()

h kJ Q /10

89.3155600018.46

?=??=总

c p ——冷却水的比热容,4.18kJ/(kg ·K ) t 2——冷却水终温,t 2=27℃ t 1——冷却水初温,t 1=20℃ 将各值代入上式

()

()()

s kg h kg W /9.36/10

33.1202718.410

89.35

6

=?=-??=

冷却水体积流量为3.69×10-2m 3

/s ,取冷却水在竖直蛇管中的流速为1m/s ,根据流体力学方程式,冷却管总截面积S 总为:

v W S =

式中 W ——冷却水体积流量,W=3.69×10-2m 3

/s V ——冷却水流速,v=1m/s

代入上式:

()

2

2

2

m 10

69.31

10

69.3--?=?=

总S

进水总管直径 :

()

m 217.0785

.01069.3785

.02

=?=

=

-总总S d

Ⅱ 冷却管组数和管径:设冷却管总表面积为S 总,管径d 0,组数为n ,则:

取n=8,求管径。由上式得:

()

m n S d 077.0785

.0810

69.3785

.02

0=??=

?=-总

查金属材料表选取υ89×4mm 无缝管[9]

,mm

d 81=内 m kg g /12.5=,0

d d >内,

认为可满足要求,

80mm

=平均d 。

现取竖蛇管圈端部U 型弯管曲径为300mm ,则两直管距离为600mm ,两端弯管总长度为

l :

()

mm D l 188460014.30=?==π

Ⅲ 冷却管总长度L 计算:由前知冷却管总面积

2

5.232m F =

现取无缝钢管υ89×4mm ,每米长冷却面积为

()2

025.0108.014.3m

F =??=

则:

()

m F F L 93025

.05.2320

===

冷却管占有体积:

()3

2

8.5930089

.0785.0m

V =??=

Ⅳ 每组管长L 0和管组高度:

()

m n L L 5.7712

9300===

另需连接管8m :

()

m L L 93889308=+=+=实

可排竖式直蛇管的高度,设为静液面高度,下部可伸入封头250mm 。设发酵罐内附件占有体积为0.5m 3

,则:总占有体积为

()

3

m

161.35.08.5155=++=++=附件

管液总V V V V

则筒体部分液深为:

()m S

V V 4.75

785.04.163.1612

=?-=

-封

竖式蛇管总高

()m 7.725.04.7=+=管H

又两端弯管总长mm l 18840=,两端弯管总高为600mm , 则直管部分高度:

()mm H h 71006007700600=-=-=管

则一圈管长:

()mm l h l 1608418847100220=+?=+=

Ⅴ 每组管子圈数n 0:

()圈51

.165.7700===

l L n

现取管间距为()m D 22.0089.05.25.2=?=外,竖蛇管与罐壁的最小距离为0.15m ,则可计算出搅拌器的距离在允许范围内(不小于200mm )。 Ⅵ.校核布置后冷却管的实际传热面积:

()

2

6.23593808.014.3m

L d F =??=?=实

平均实π

而前有F=232.5m 2

,F F >实,可满足要求。 5.9设备材料的选择

[10]

选用A 3钢制作,以降低设备费用。 5.10发酵罐壁厚的计算

5.10.1计算法确定发酵罐的壁厚S

[]C P

PQ S +-=

?σ2 (cm )

式中 P ——设计压力,取最高工作压力的1.05倍,现取P=0.4MPa D ——发酵罐内经,D=500cm 〔σ〕——A3钢的应用应力,〔σ〕=127MPa υ——焊接缝隙, υ=0.7 C ——壁厚附加量(cm )

321C C C C ++=

式中 C 1——钢板负偏差,现取C 1=0.8mm C 2——为腐蚀余量,现取C 2=2mm C 3——加工减薄量,现取C 3=0

()()cm mm C 28.08.2028.0==++=

()cm S 4.128.04

.07.012725004.0=+-???=

选用14mm 厚A 3钢板制作。

5.10.2封头壁厚计算:标准椭圆封头的厚度计算公式[5]

如下:

[]C P

PQ S +-=

?σ2 (cm )

式中 P=0.4MPa D=500cm

〔σ〕=127MPa

C=0.08+0.2+0.1=0.38(cm ) υ=0.7

()cm S 5.138.04

.07.012724004.0=+-???=

5.11接管设计

5.11.1接管的长度h 设计:各接管的长度h 根据直径大小和有无保温层,一般取100~200mm 。 5.11.2接管直径的确定:

按排料管计算:该罐实装醪量155m 3

,设4h 之内排空,则物料体积流量

(

)

s m Q /0108.0436001553

=?=

发酵醪流速取v=1m/s;则排料管截面积为F 物。

()2

011.01

0108.0m

v

Q F ==

2

785.0d F =物

管径:

()m F d 118.0785

.0011.0785

.0==

=

取无缝管υ133×4mm ,125.mm 〉118mm ,认为合适。

按通风管计算,压缩空气在0.4MPa 下,支管气速为20~25m/s 。现通风比0.1~0.18vvm ,为常温下20℃,0.1MPa 下的情况,要折算0.4MPa 、30℃ 状态。风量Q 1取大值,

()()s m

m Q /46.0m in

/2818.01553

3

1==?=。

利用气态方程式计算工作状态下的风量Q f [8]

(

)

s m Q f /14.020

2733027335

.01.046.03

=++?

?

=

取风速v=25m/s ,则风管截面积F f 为

()2

0056.025

14.0m

v

Q F f f ==

=

2

785.0气d F f =

则气管直径d 气为:

()m d 084.0785

.00056.0==

因通风管也是排料管,故取两者的大值。取υ133×4mm 无缝管,可满足工艺要求。 排料时间复核:物料流量Q=0.0108m 3

/s ,流速v=1m/s ; 管道截面积:

()2

2

0123.0125

.0785.0m

F =?=,

在相同的流速下,流过物料因管径较原来计算结果大,则相应流速比为

()倍88.01

0123.00108.0=?=

=

Fv

Q P

排料时间:

()h t 8.188.02=?=

5.12支座选择选用裙式支座

谷氨酸的发酵工程

谷氨酸发酵过程控制 【摘要】谷氨酸是构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。谷氨酸的质量受到发酵的条件、菌种、温度、pH、接种量和种龄等因素的影响。如果控制不好这些因素整个发酵过程发酵液受污染、出现菌体的生长缓慢和代谢产物的积累很少、发酵周期延长甚至所得产品不是最终产品。本文通过综述发酵培养基、培养条件的控制及发酵过程温度、pH、接种量和种龄的控制,以及消泡等多方面因素,来提控制高谷氨酸发酵过程的参数来提高发酵的质量以些方法。 【关键词】谷氨酸、发酵、控制 1.谷氨酸概述 谷氨酸学名:2-氨基-5-羧基戊酸。构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。L-谷氨酸是蛋白质合成中的编码氨基酸,哺乳动物非必需氨基酸,在体内可以由葡萄糖转变而来。D-谷氨酸参与多种细菌细胞壁和某些细菌杆菌肽的组成。符号:E。 1.1谷氨酸用途 1)下游产品开发 将有一定反应活性的双功能基试剂氯乙醇和L—谷氨酸直接酯化保护羧基,用三光气活化成其相应的N—羧酸酐,可直接得到侧链具有一定反应活性的聚L—氯乙基谷氨酸酯。谷氨酸可生产许多重要下游产品如L—谷氨酸钠、L—苏氨酸、聚谷氨酸等。 2)食品业 谷氨酸是在食品工业中应用较多的氨基酸。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,能显着提高食品的风味和有增香作用。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。 3)日用化妆品等 谷氨酸为世界上氨基酸产量最大的品种。如:N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。谷氨酸作为营养药物可用于皮肤和毛发。用于生发剂,能被头皮吸收,预防脱发并使头发新生,对毛乳头、毛母细胞有营养

推荐-2立方米谷氨酸发酵罐设计 精品

生物工程设备课程设计200m3谷氨酸发酵罐设计 院系:生物与化学工程学院 专业:生物工程 班级: 学号: 姓名: 指导老师: 日期:20XX年5月11日

生物反应工程与设备课程设计任务书 —机械搅拌生物反应器设计 一、课程教学目标 生物反应工程与设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求学生综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养学生全面的理论知识与工程素养,健全合理的知识结构具有重要作用。在本课程设计中,通过生化过程中应用最为广泛的设备,如机械搅拌发酵罐、气升式发酵罐、动植物细胞培养反应器,蒸发结晶设备、蒸馏设备等的设计实践,对学生进行一次生化过程发酵设备设计的基本训练,使学生初步掌握发酵设备设计的基本步骤和主要方法,树立正确的设计思想和实事求是,严肃负责的工作作风,为今后从事实际设计工作打下基础。 二、课程设计题目 设计200m3谷氨酸机械搅拌通风反应器 三、课程设计内容 1、设备所担负的工艺操作任务和工作性质,工作参数的确定。 2、容积的计算,主要尺寸的确定,传热方式的选择及传热面积的确定。 3、动力消耗、设备结构的工艺设计。 四、课程设计的要求 课程设计的规模不同,其具体的设计项目也有所差别,但其基本内容是大体相同,主要基本内容及要求如下: 1、工艺设计和计算 根据选定的方案和规定的任务进行物料衡算,热量衡算,主体设备工艺尺寸计算和简单的机械设计计算,汇总工艺计算结果。主要包括: (1)工艺设计 ①设备结构及主要尺寸的确定(D,H,H L ,V,V L ,Di等) ②通风量的计算 ③搅拌功率计算及电机选择 ④传热面积及冷却水用量的计算

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

年产2万吨谷氨酸发酵生产的初步设计

年产2万吨谷氨酸发酵生产的初步设计

第一章总论 一、设计项目: (1)设计课题:年产2万吨谷氨酸发酵工厂的初步设计 (2)厂址:某市 (3)重点工段:糖化 (4)重点设备:糖化罐 二、设计范围: (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员);(2)产品的生产方案、生产方法、工艺流程及技术条件的制定;(3)重点车间详细工艺设计、工艺论证、设备选型及计算;(4)全厂的物料衡算; (5)全厂的水、电、热、冷、气的衡算; (6)车间的布置和说明; (7)重点设备的设计计算; (8)对锅炉、电站、空压站等提出要求及选型; (9)对生产和环境措施提出可行方案。 三、要完成的设计图纸: (1)全厂工艺流程图一张; (2)重点车间工艺流程图一张; (3)重点车间设备布置立面图一张;

(4)重点车间设备布置平面图一张; (5)重点设备装配图一张。 四、设计依据: (1)批准的设计任务书和附件可行性报告,以及可靠的设计基础资料。 (2)我国现行的有关设计和安装的设计规范和标准 (3)广东轻工职业技术学院食品系下达的毕业设计任务书 五、设计原则: (1)设计工作要围绕现代化建设这个中心,为这个中心服务。首先要有加速社会主义四个现代化早日实现的明确指导思想,做到精心设计,投资省,技术新,质量好,收效快,收回期短,使设计工作符合社会主义经济建设的总原则。 (2)要学会查阅文献,收集设计必要的技术基础资料,要善于从实际出发去分析研究问题,加强技术经济的分析工作。(3)要解放思想,积极采用技术,力求设计上具有现实性和先进性,在经济上具有合理性,尽可能做到能提高生产率,实现机械化和自动化,同时兼顾社会和环境的效益。 (4)设计必须结合实际,因地制宜,体现设计的通用性和独特性相结合,工厂生产规模、产品品种的确定,要适应国民经济的需求,要考虑资金的来源,建厂的地点、时间、三废综合

发酵罐设计

安徽工程大学课程设计任务书 班级:课题名称:生物反应器设计(啤酒露天发酵罐设计) 学生姓名: 指定参数: 1.全容:50m3 2.容积系数:75% 3.径高比:1:2 4.锥角:900 5.工作介质:啤酒 设计内容: 纸打印) 1.完成生物反应器设计说明书一份(要求用A 4 1)封面 2)设计任务书 3)生物反应器设计化工计算 4)完成生物反应器设计热工计算 5)完成生物反应器设计数据一览表 纸打印) 2.完成生物反应器总装图一份(用CAD绘图A 4 设计主要参考书: 1.生物反应器课程设计指导书 2.化学工艺设计手册 3.机械设计手册 4.化工设备 5.化工制图 接受学生承诺: 本人承诺接受任务后,在规定的时间内,独立完成任务书中规定任务 接受学生签字:生物工程教研室 2010-11-15

啤酒露天发酵罐设计 第一节 发酵罐的化工设计计算 一、发酵罐的容积确定 在选用时V 全=50m 3的发酵罐 则V 有效=V全×?=50×75%= 37.5m 3(?为容积系数) 二、基础参数选择 1.D:H: 选用D:H=1:2 2.锥角: 取锥角为900 3.封头:选用标准椭圆形封头 4.冷却方式:选取槽钢盘绕罐体的三段间接冷却(罐体两段,锥体一段,槽钢材料为A 3钢,冷却介质采用20%、-4℃的酒精溶液 5.罐体所承受最大内压:2.5㎏/㎝3 外压:0.3㎏/㎝3 6.锥形罐材质:A3钢外加涂料,接管均用不锈钢 7.保温材料:硬质聚氨酯泡沫塑料,厚度200㎜ 8.内壁涂料:环氧树脂 三、D 、H 的确定 由D:H=1:2,则锥体高度H 1=D/2tan450=D/2(450为锥角的一半) 封头高度H 2=D/4=0.25D 圆柱部分高度H 3=(2-0.5-0.25)D=1.25D 又因为V 全=V 锥+V 封+V 柱 =3π×D 2/4×H 1+24π×D 3+ 4 π ×D 2×H 3 =50 m 3 得D=3.43m 查JB-T4746-2002《椭圆形封头和尺寸》取发酵直径D=3400mm 再由V 全=50m 3,D=3.4m

发酵工艺流程

发酵工艺标准操作流程 (SOP) 一生产前准备 每次生产前按品种配方将所需原料称重准备齐全,并确认生产原料库存量,保证原料库存量足够下次生产所需、 二生产前检查 1检查蒸汽、压缩空气、冷却水进出的管路就是否畅通,所有阀门就是否良好,并关闭所有阀门、 2检查电路、控制柜、开关的状态,确保控制柜运行正常、 3检查空压机油表油表及轴承、三角带、气缸等就是否正常,确保空压机运行正常、 4检查发酵罐搅拌减速机的油量及密封轴降温水就是否正常、 三总过滤器灭菌 当蒸汽总管路上的压力为0、2-0、25MPa时,打开总过滤器进气阀输入蒸汽,同时打开出气阀的跑分阀、排气阀、排污阀,当三个阀均排出蒸汽时,调整进气阀、排污阀,稳定总过滤器压力0、15-0、2MPa,此时打开压力表下跑分,计时灭菌2-2、5小时、灭菌结束后启动空压机,当空气输入管道压力大于总过滤器压力时,关闭蒸汽阀,打开空气阀,将空气出入总过滤器,然后调整进气阀与排污阀,稳定总过滤器压力在0、15-0、2MPa,保持通气在15-20小时,当出气阀跑分与排污阀放出的空气为干燥空气时,完成灭菌、 四分过滤器灭菌 1当蒸汽管路压力为0、2-0、25MPa时,打开蒸汽过滤器的进气阀与排污阀,当蒸汽管路中无蒸汽凝结液后,再将蒸汽输入空气管路,然后打开分过滤器的进气阀、排污阀及出气阀上的跑分,当所有阀门均有蒸汽排出后,调整进气与排污阀,就是压力稳定在0、11-0、15MPa,计时灭菌30-35分钟、灭菌结束后,关闭蒸汽过滤器进出气阀、排污阀,并立即将空气输入预过滤器,使空气通过预过滤器进入到分过滤器,再调整分过滤器排污阀使压力稳定在0、11-0、15MPa,备用、

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

发酵罐的选择与计算

4.1.2.1发酵罐个数的确定 年产1000吨琥珀酸,全年的生产天数为330天,则每天产1000/330=3.03吨,需要发酵液的体积为: 28*3.03=84.84(m^3) 发酵罐的填充系数φ=70%;则每天总共有发酵罐的体积为V 0 )(3m 2.1217.0/84.847.0/V 0== 发酵周期为48小时,生产周期为80小时 发酵罐个数的确定:现选取公称体积为100m 3的发酵罐,总体积为118m 3 (个))()(总67.324*7.0*110/80*84.8424*V /V N 01===φτ 取公称体积100m 3 发酵罐4个,其中1个留作备用。 实际产量验算: 年)(吨/1059.09330/3.54%71%21.57.0110=????? 富裕量 %91.51000 10001059=- 能够满足生产需要。 4.1.2.2主要尺寸的计算 公称容积,是指罐的圆柱部分和底封头容积之和。并圆整为整数:上封头因无法装液,一般不计入容积。 罐的全容积,是指罐的圆柱部分和两封头容积之和。 1 罐径与罐体高度 现在按公称容积100m3,全罐的体积为:118m3,取高径比为H :D=2,封头与圆柱罐体的焊接处的直边高度不纳入体积,则: 3m 118V 2V =+=封全筒V 根据圆柱体体积与椭圆的体积计算公式有: () 3221182414314V m D D H D =????+??=ππ全 () 332118242785.0m D D D V =+??=π全

解方程得: () 333118242m D D =+ππ ()m D 1.413 241183=??=π 直径计算出来后,应将其值圆整到接近的公称直径系数 [12],查吴思方的《生物工程工厂设计概论》2007年版,附表25(281)通用式发酵罐系列尺寸表,则D 取4.0m , H=2D=2×4.0=8.0(m) 查阅文献,当公称直径D 为4.0m 时,标准椭圆封头的曲面高度H 为D/4,即1.0m ,焊接处的直边高度h 为0.05 则总深度为: )(m 05.105.00.1h H =+=+ 封头容积 : V 封)(封33m 38.80.424V =?= π 圆柱部分容积: ) (筒32m 53.1000.420.44V =???=π 两者之和为全容积全 V ' 3m 118V 2V =+=封全筒V 全全 V V ≈' 则设计的发酵罐其尺寸符合要求,能够满足生产工艺的需要。 2 搅拌器的设计 由于琥珀酸发酵过程有中间补料操作,对混合要求较高,因此采用六弯叶涡轮搅拌器。六弯叶涡轮式搅拌器已标准化,称为标准型搅拌器;搅动液体的循环量大,搅拌功率消耗也大,根据搅拌器型式及主要参数HG/T2123-1991标准,知100m 3发酵罐采用6-6-6弯叶式搅拌叶,搅拌器:六弯叶涡轮搅拌 器,D i :d i :L:B=20:15:5:4,搅拌器直径:D i =D/3 搅拌器直径:D i =)(33.1343m D == (取1.4m ) 叶宽:B=8.24.12.0D 2.0=?=?i 弧长:)(525.04.1375.0375.0m D l i =?==

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

发酵工业存在地主要问题及解决要求措施

发酵工业存在的主要问题及解决措施 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 1 我国发酵工业的现状 我国发酵工业是将传统的发酵工艺和现代生物工程技术相结合的基础产业,也是现代工业生物工程技术的具体应用产业。我国发酵工业目前已发展形成了具有一定规模和技术水平的门类比较齐全的独立工业体系。其中,一部分产品的发酵生产工艺及技术已接近或达到世界先进水平,并且掌握了核心工艺技术拥有知识产权。目前,我国已经是味精、柠檬酸的世界第一大生产国。2013年我国发酵行业主要产品产量、出口量及同比增长率。 2013年我国生物发酵工业全年生产值约2780亿人民币,全年的产品总产量为2429万吨,比2012年略有增长。其中,味精、淀粉糖由于价格等原因导致产量下降,而氨基酸、酵母、酶制剂行业保持了持续增长。2013年,氨基酸产品年产量为400万吨,有机酸产品年产量为158万吨,功能发酵制品年产量为310万吨。2013年我国发酵工业主要产品出口总量为万吨,比2012年增长了%。

近年来,随着食品发酵工业的迅速发展和人口不断增长,工业用粮也在不断增加,工业大量使用粮食造成了与人类争粮的局面。与此同时,这些企业排放的废水、废渣也极污染了环境,不仅消耗了大量粮食、能源和水资源,而且也严重制约了自身的发展。发酵工业耗能多、排污大,采用新技术,优化发酵生产工艺,减少废水、废渣的排放量,提高发酵原料的综合利用率,把耗能降到最低水平,以期获得最佳产品和获得最好的效益,这一直以来都是发酵工业努力的目标。 2 我国发酵工业存在的主要问题 粮食短缺问题 我国用占世界耕地面积总量7%左右的耕地,养育了占世界人口总额21%的人口,而且我国的可耕地面积还在不断减少,人口在不断增长。2013年我国粮食国总消费量为60 133万吨,而发酵主要工业耗粮约为16 970万吨,我国人均粮食占有量约为420千克,但人均粮食消费量约500千克,尤其是近几年全国各地都有旱情,导致粮食减产,有的地方甚至颗粒无收,所以降低粮耗是目前我国发酵工业所面临的重要问题。因此,发酵工业首先要面临的问题就是优化发酵生产工艺、节约粮食。

谷氨酸发酵车间的物料衡算

工艺计算 生产方法:以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取。主要技术指标: 淀粉液化工艺参数: 糖化工艺参数:

培养基配方: 灭菌各参数:

一、谷氨酸发酵车间的物料衡算 首先计算生产1000kg 纯度为100%的味精需耗用的原材料以及其他物料量。 (一)、发酵液量 设发酵液初糖和流加高浓糖最终发酵液总糖浓度为180kg/ ,则发酵液量为: )(0.8% 124%99%95%601801000 3 1m V =????= 式中 180——发酵培养基终糖浓度(kg/) 60%——糖酸转化率 95%——谷氨酸转化率 99%——除去倒罐率1%后的发酵成功率 124%——味精对谷氨酸的精制产率 (二)、发酵液配制需水解糖量,以纯糖计算: )(136017011kg V G =?= (三)、二级种液量: ) (4.0%53 12m V V == (四)、二级种子培养液所需水解糖量: )(164022kg V G == 式中 40——二级种液含糖量(kg/) (五)、生产1000kg 味精需水解糖总量: )(137616136021kg G G G =+=+= (六)、耗用淀粉原料量: 理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为: )(6.1572%)111%5.98%80(G kg G =??÷=淀粉 式中 80%—淀粉原料含纯淀粉量 98.5%—淀粉糖化转化率 (七)、液氨耗用量: 二级种液耗液氨量:2.4V 2=0.96(kg ) 发酵培养基耗液氨量:20V 1=160(kg ) 共耗液氨量:160+0.96=161.0(kg ) (八)、磷酸氢二钾耗量:

发酵罐的设计

工程大学课程设计任务书 班级: 姓名: 课题名称:生物反应器设计(啤酒露天发酵罐设计) 指定参数: 1.全容:m3 2.容积系数: 3.径高比: 4.锥角: 5.工作介质:啤酒 设计内容: 1.完成生物反应器设计说明书一份(要求用A4纸打印) ⑴封面 ⑵完成生物反应器设计化工计算 ⑶完成生物反应器设计热工计算 ⑷完成生物反应器设计数据一览表 2.完成生物反应器总装图1份(用CAD绘图A4纸打印)设计主要参考书: 1.生物反应器课程设计指导书 2.化学工艺设计手册 3.机械设计手册 4.化工设备

5.化工制图 接受学生承诺: 本人承诺接受任务后,在规定的时间内,独立完成任务书中规定的任务。 接受学生签字: 生物工程教研室 2010-11-15

发酵罐设计 第一节 发酵罐的化工设计计算 一、 发酵罐的容积确定 由指定参数:V 全= 30m 3 ?=85% 则:V 有效=V 全*?= 25.5 m 3 二、 基础参数选择 1、D :H :由指定参数选用D :H=1:4 2、锥角:由指定参数取锥角为900 3、封头:选用标准椭圆形封头 4、冷却方式:选取槽钢盘绕罐体的三段间接冷却(罐体两段,槽钢材质为A 3 钢,冷却介质采用20%、-4℃的酒精溶液) 5、罐体所承受最大内压:2.5KG/CM 3 外压:0.3KG/CM 3 6、锥形罐材质:A3钢外加涂料,接管均用不绣钢 7、保温材料:硬质聚氨酯泡沫塑料,厚度200mm 8、内壁涂料:环氧树脂 三、D 、H 的确定 由D :H=1:4,则锥体高度H 1 =D/2tg450 =0.5D 封头高度H 2=D/4=0.25D 圆柱部分高度H 3 =(4.0-0.5-0.25)D=3.25D 又因为V 全=V 锥+V 封+V 柱 =3π×D 2/4×H 1+24 π×D 3 + 4 π ×D 2×H 3

(完整版)味精的生产工艺说明

味精的生产工艺说明 一、味精及其生理作用 1. 味精的种类 按谷氨酸的含量分类:99%、95%、90%、80%四种 按外观形状分类:结晶味精、粉末味精 2.味精的生理作用和安全性 (1)参与人体代谢活动:合成氨基酸 (2)作为能源 (3)解氨毒 味精的毒性试验表明是安全的。 二、味精的生产方法 味精的生产方法:水解法、发酵法、合成法和提取法。 1、水解 原理:蛋白质原料经酸水解生成谷氨酸,利用谷氨酸盐酸盐在盐酸中的溶解度最小的性质,将谷氨酸分离提取出来,再经 中和处理制成味精。 生产上常用的蛋白质原料——面筋、大豆及玉米等。 水解中和,提取 蛋白质原料——谷氨酸————味精 2、发酵法 原理: 淀粉质原料水解生成葡萄糖,或直接以糖蜜或醋酸为 原料,利用谷氨酸生产菌生物合成谷氨酸,然后中和、提取 制得味精。 淀粉质原料—→糖液—→谷氨酸发酵—→中和—→味精

3、合成法 原理:石油裂解气丙烯氧化氨化生成丙烯腈,通过羰化、 氰氨化、水解等反应生成消旋谷氨酸,再经分割制成L-谷氨酸, 然后制成味精。 丙烯→氧化、氨化→丙烯睛→谷氨酸→味精 4、提取法 原理:以废糖蜜为原料,先将废糖蜜中的蔗糖回收,再将废液用碱法水解浓缩,提取谷氨酸,然后制得味精。 水解、浓缩中和,提取 废糖蜜————→谷氨酸————→味精 二、味精的生产工艺图 三、原料来源

谷氨酸发酵以糖蜜和淀粉为主要原料。 糖蜜:是制糖工厂的副产物,分为甘蔗糖蜜和甜菜糖蜜两大类。 淀粉:来自薯类、玉米、小麦、大米等 1、淀粉的预处理 (1)淀粉的水解 原料→粉碎→加水→液化→糖化→淀粉水解糖 (2)淀粉的液化 在 -淀粉酶的作用将淀粉水解生成糊精和低聚糖。 (3)淀粉的糖化 在糖化酶(如曲霉菌糖化剂)的作用下将糊精和低聚糖水解成葡萄糖。 喷射液化器出口温度控制在100-105℃,层流罐温度维持在95-100 ℃,液化时间约1h,然后进行高温灭酶。淀粉浆液化后,通过冷却器降温至60 ℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60 ℃左右,pH值4.0-4.4,糖化时间48h.糖化结束后,将糖化罐加热至80-85 ℃,灭酶30min.过滤得葡萄糖液。

发酵罐毕业设计说明书

摘要 发酵罐是化工生产中实现化学反应的主要设备。其作用:①使物料混合均匀; ②使气体在液相中很好分散;③使固体颗粒在液相中均匀悬浮;④使不均匀的另一液相均匀悬浮或充分乳化。目前已广泛地用于制药、味精、酶制、食品行业等。它的主要组成部分包括釜体、搅拌装置、传热装置、轴封装置。还根据需要加其他的附件,如装焊人孔、手孔和各种接管(为了便于检修内件及加料、排料),安装温度计、压力表、视镜、安全泄放装置(为了操作过程中有效地监视和控制物料的温度、压力)等。釜体是由简体和两个封头组成,它的作用是为物料进行化学反应提供一定的空间。搅拌装置是由传动装置,搅拌轴和搅拌器组成,它的作用是参加反应的各种物料均匀混合,使物料很好地接触而加速化学反应的进行。搅拌装置可以分为非潜水型(仅驱动机和减速机及传动系统露在液体外面和潜水型(从驱动机至搅拌器全部潜入液体内)两种类型。传热装置是在釜体内部设置蛇管或在釜体外部设置夹套,它的作用是使控制物料温度在反应所需要范围之内。 本发酵罐的设计容积是63立方米,属于大型罐设计,采用蛇管传热,三级搅拌。 关键词:搅拌罐;搅拌器;釜体;传热装置;轴封装置;人孔

Abstract Fermentation is a chemical reaction to achieve the production of major equipment. Its role is:①to mixed materials; ②the gas is well dispersed in the liquid phase; ③ making uniform solid particles suspended in liquid;④souneven suspension or other liquid emulsified in uniform。For the uniform reaction, now is widely used in pharmaceutical, monosodium glutamate, enzyme system and food industries. Its main components include the reactor body, mixing equipment, heat transfer equipment and seal device. Also add other accessories needed, such as assembly and welding manhole, hand hole and all over (in pieces for ease of maintenance and feeding, nesting), install thermometers, pressure gauges, mirrors, safety relief device (for operation effectively monitor and control the material temperature, pressure) and so on. Mixing device is a gear, shaft and agitator stirring composition, its role is to participate in a variety of materials, reaction mixed evenly, so that good contact material to accelerate the chemical reaction. Mixing devices can be divided into non-diving type (only driven machines and gear and transmission system disclosed in the liquid outside and dive type (from the driving machine to sneak into a liquid blender all) types. Heat transfer device is set in the interior of reactor body coil or external tank set up in the jacket, its role is to control the materials needed in the reaction temperature range. The design of the fermentation tank volume is 63 cubic meters,and this is a large tank design with coil heat transfer and three mixings. Key words:mixing tank;mixer;kettle body;heat transfer equipment;seal device;manhole.

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法一一从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清 液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗 脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 ⑵连续等电工艺一一将谷氨酸发酵液适当浓缩后控制40 C左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40 C进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3) 发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行 超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20?3.25,然后进入常温的 等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整 pH值至4.5?7,蒸发、浓缩、再在第三调酸罐中调pH值至 3.20?3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。 (4) 水解等电点法 发酵液-一浓缩(78.9kPa , 0.15MPa 蒸汽)----盐酸水解(130 C, 4h ) 一过滤-- ---滤液脱色-----浓缩-----中和,调pH至3.0-3.2 ( NaOH或发酵液) 一-低温放置, 析晶---- 谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑸低温等电点法 发酵液-----边冷却边加硫酸调节PH4.0-4.5----- 加晶种,育晶2h-----边冷却边加硫酸 调至pH3.0-3.2——冷却降温——搅拌16h——4 C 静置4h——离心分离—— --谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑹直接常温等电点法 发酵液-----加硫酸调节PH4.0-4.5----- 育晶2-4h----- 加硫酸调至pH3.5-3.8------ 育 晶2h------加硫酸调至pH3.0-3.2------ 育晶2h------冷却降温------搅拌16-20h------ 沉淀2-4h ------- 谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1) 浓缩段原料:蒸汽将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa ,浓缩时间6h,结晶。 终点产物:结晶液(去一次中和段) (2 ) 一次中和段辅料:硫酸,纯水结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤

50吨L-谷氨酸生产车间设计

目录 年产50吨L-谷氨酸的工艺设计 1文献评述 1.1产品概述 1.1.1名称 学名:L-谷氨酸-水化合物; 商品名:L-谷氨酸。因L-谷氨酸起源于小麦,故俗称麸酸。 英文名:Monosodium L-glutamate 其它名称:L-2-Aminoglutaric acid, H-Glu-OH, L-glutamic acid, L(+)-glutamic acid, H-L-Glu-OH, S-2-Aminopentanedioic acid 1.1.2 产品规格及标准 结构式: 分子式C 6H 14 N 4 O 2 .C 5 H 9 NO 4 分子量321.33 1.1.3理化性质 L-谷氨酸为白色鳞片状晶体。无臭,稍有特殊的滋味和酸味。呈微酸性。微溶于冷水,易溶于热水,几乎不溶于乙醚、丙酮和冷醋酸中,不溶于乙醇和甲醇。247-249℃分解,200℃升华,相对密度1.538(20/4℃),旋光度[α]+30-+33°。 1.1.4产品用途 (1)食品业 氨基酸作为人体生长的重要营养物质,不仅具有特殊的生理作用,而且在食品工业中具有独特的功能。 (2)日用化妆品等 谷氨酸为世界上氨基酸产量最大的品种,作为营养药物可用于皮肤和毛发。

聚谷氨酸是一种出色的环保塑料,可用于食品包装、一次性餐具及其它工业用途,可在自然界迅速降解,不污染环境。随着科学的进步,研究的深入,谷氨酸新的应用领域将越来越广。 (3)医药行业 谷氨酸还可用于医药,因为谷氨酸是构成蛋白质的氨基酸之一,虽然它不是人体必须的氨基酸,但它可作为碳氮营养与机体代谢,有较高的营养价值。 2、工业生产方法的选择和论证 2.1L-谷氨酸生产方法的选择与确定 2.1.1传统工艺中L-谷氨酸的生产方法有两种:合成法和发酵法。 (1)合成法 丙烯腈与氢和一氧化碳在高温,高压和催化剂的作用下得到β-氰基丙醛(OHCCH2CH2CN),后者与氰化钾和氯化铵进行斯脱拉克(Straker)反应生成氨基腈。将氨基腈用氢氧化钠水解,得谷氨酸二钠,然后用硫酸中和,生成D,L-谷氨酸析出,将D,L-谷氨酸进行光学分离,即可分成L-谷氨酸和D- 谷氨酸,后者经消旋化再返回到中和工序。此法日本曾用之生产L-谷氨酸10年之久,于1973年停用。 (2)发酵法 此法是L-谷氨酸工业生产的主要方法。薯类,玉米,木薯等的淀粉水解糖或糖蜜,借助于微生物类,以铵盐,尿素等提供氮源,于大型发酵罐中,在通气搅拌下进行发酵30-50个小时,保持30-40度。PH值为7-8,发酵完毕。 表1.两种方法的比较 缺点优点 合成法需要高压,有易燃,有毒物质,设 备投资大,年产量小于5000吨L- 谷氨酸时不经济,生产工艺复杂 不用粮食,采用石油废气 发酵法需设置菌种实验室,生产过程需要 严格消毒灭菌原料来源广,设备腐蚀性小,劳动强度小,可自动化,连

通用式发酵罐

第一章发酵车间设备得选型 一,酵罐得设计 谷氨酸发酵属于好氧型发酵,因此均用机械搅拌通风发酵罐进行生产。现在主要根据设计工厂得年产量以及工艺计算,考虑到生产管理操 作占地面积以及后续工程得配套方面,并通过对功率消耗利用率得分 析。本设计采用公称容积200立方米带有机械通风式发酵罐。 ⑴,发酵罐型得设计 1, 罐直径D 选高径比1:2 即 D/H = 1/2 由 2 H=2D 取D=5m 则 V=196、25m3 2,封头 发酵罐得封头有碟型与椭圆型两种。椭圆型封头中得曲率半径变化就是连续得,其中应力就是均匀得,因而在同样条件下,椭圆型封头产生得应力比碟型小,但制造困难。综合考虑本设计采用碟型封头。 由《化工设备机械设计基础》,得: D=5000mm h 1=1240mm h 2 =60mm M=1、0748D2=26、87m2 V =0、1227 D3 =15、34m3 ⑴,发酵罐得容积: ①公称容积指圆柱部分与底料容积之与 V 公称= V+ V =196、25+15、34=211、59 m3 ②罐得总容积 V 总= V+2 V =226、93 m3 ③罐得容积装料系数0、773 V= 0、773V 总 =175、42 m3 ⑵高度 ①罐体高度 h = H+=10000+=12600 mm=12、6 m ②圆筒高度 H=10 m ⑶表面积 ①圆柱得内表面积 M 1 ==3、14=157 m2

②罐得总表面积M=210、74 m2 3,罐壁厚得设计 发酵罐在使用过程中,其内部承受一定得压力,如灭菌蒸汽压力,运转时得保压,搅拌时得震动及装液负荷等,同时考虑到各接管口得影响罐体应有一定得强度。现取在过程中承受得最大压力0、4Mpa(表压)作为设计压力。 ⑴罐圆柱体部分壁厚,可有下式计算 其中:Pc :罐压 Di :罐径 :许用应力 :焊缝系数 、 =16 mm ⑵封头壁厚 标准碟型封头,参考《化工设备机械设计基础》第201页 4,支座 大型发酵罐由于重量大以及要求运转稳定,故采用裙式支座直接装在基础上。裙座为圆筒型,其内径与罐内径相等。群做筒体与罐封头应采用全焊缝对接连续焊裙座,底座高度现取600 m m 二,冷却装置得确定 1,冷却装置形式得确定采用列管式换热器 ⑴热负荷 m3 则总热负荷106W ⑵传热温度得计算 一般取醪液温度T=3233℃,本设计取33℃,因发酵为3334℃, 考虑到近年气温普遍升高,现采用地下水。冷却水进口温度10℃,出口20℃,则平均温度

相关文档
相关文档 最新文档