文档库 最新最全的文档下载
当前位置:文档库 › 运用病毒载体实现基因治疗

运用病毒载体实现基因治疗

运用病毒载体实现基因治疗
运用病毒载体实现基因治疗

基因治疗

基因治疗 基因治疗的发展 基因治疗的设想始于1967年,1973年一名美国研究人员和几位医生在德国进行了世界上第一例基因治疗试验,接受治疗的患者为两姐妹,研究人员将一种名为肖普氏乳头瘤的病毒(这种病毒携带有一种酶基因可能会使人本身的酶分泌正常)注射到患者体内,结果是既没有产生任何疗效,也没有出现不良反应。1980年随着外源基因导入小鼠实验的成功,美国的另一名医生对两名地中海患者进行了第二例基因治疗,结果同样没有取得成功。 20世纪80年代初,美国科学家Anderson基因治疗的前景和发展方向。此后的几年之中,一大批科学家在动物身上进行了大量的基因转移实验和基因标记实验,为以后基因治疗的临床应用积累了许多经验,也奠定了临床应用的理论基础。1990年,美国国立卫生研究院的Blaste R.M.和Anderson W.F.用腺苷酸脱氨酶(ADA)基因导入一位由于ADA基因缺陷导致严重免疫缺损的4岁患者的淋巴细胞中,治疗取得了成功,转入这种可以产生腺苷酸脱氨酶能力的淋巴细胞后,患者症状得到明显缓解。第二例接收同样方法治疗的的SCID患者是一名九岁的小女孩,治疗也同样取得成功。1991年,美国科学家Rosenberg的研究小组对50名黑色素瘤晚期患者进行了基因治疗,将外源性肿瘤坏死因子转入肿瘤中的浸润淋巴细胞,结果这种转化的TIL能集中在肿瘤所在部位并杀伤肿瘤细胞,治疗也取得了一定效果。此后世界各国都掀起了基因治疗的研究热潮,1991年美国国立卫生研究院连续批准了包括肿瘤坏死因子基因导入肿瘤细胞在内的11项人类基因治疗的实验方案。2001年法国巴黎内克尔儿童医院利用基因治疗使数名有免疫缺陷的婴儿恢复了正常的免疫功能,成为基因治疗开展近十年来科学家取得的最大成功。目前基因治疗主要集中在美国,其次是欧洲。基因治疗的适用范围也越来越广,其中,癌症居基因治疗首位,其次是单基因疾病,心血管病,传染性疾病和其他疾病。 我国的基因治疗的研究工作开展的也相对较早,且获得了很好的疗效。1991年7月,中国复旦大学与第二军医大学长海医院合作,从一批自愿接受基因治疗的凝血因子IX基因缺陷血友病B患者中选择了两兄弟开始进行基因治疗临床研究。研究人员将凝血因子IX基因导入患者皮肤成纤维细胞,再将转化的皮肤成纤维细胞回输到患者体内。经过几次转化细

病毒载体概述

病毒载体概述 引言 基因导入系统(gene delivery system)就是基因治疗的核心技术,可分为病毒载体系统与非病毒载体系统。本章主要论述用于人类基因治疗的病毒载体系统。 用于基因治疗的病毒载体应具备以下基本条件: 1、携带外源基因并能包装成病毒颗粒; 2、介导外源基因的转移与表达; 3、对机体不致病。 然而,大多数野生型病毒对机体都具有致病性。因此需要对其进行改造后才能用于人体。原则上,各种类型的病毒都能被改造成病毒载体。但就是由于病毒的多样性及与机体复杂的依存关系,人们至今对许多病毒的生活周期、分子生物学、与疾病发生及发展的关系等的认识还很不全面,从而限制了许多病毒发展成为具有实用性的载体。近20年来,只有少数几种病毒如反转录病毒(包括HIV病毒)、腺病毒、腺病毒伴随病毒、疱疹病毒(包括单纯疱疹病毒、痘苗病毒及EB病毒)、甲病毒等被成功地改造成为基因转移载体并开展了不同程度的应用。 第一节病毒载体产生的原理 病毒载体的产生建立在对病毒的生活周期与分子生物学认识的基础之上。研究病毒载体首先要对病毒的基因组结构与功能有充分的了解,最好能获得病毒基因组全序列信息。病毒基因组可分为编码区与非编码区。编码区基因产生病毒的结构蛋白与非结构蛋白;根据其对病毒感染性复制的影响,又可分为必需基因与非必需基因。非编码区中含有病毒进行复制与包装等功能所必需的顺式作用元件。 各种野生型病毒颗粒都具有一定的包装容量,即对所包装的病毒基因组的长度有一定的限制。一般来说,病毒包装容量不超过自身基因组大小的105~110%。

基因重组技术的发展使病毒载体的产生成为可能。最简单的做法就是,将适当长度的外源DNA插入病毒基因组的非必需区,包装成重组病毒颗粒。比如,本实验室曾将4、5kb的lacZ基因表达盒 (CMV-lacZ-polyA)插入HSV1病毒的UL44(糖蛋白C)基因的XbaI位点中,病毒基因组的其余部分不改变,构建成重组病毒HSV1-lacZ100(吴小兵等,1998)。由于UL44基因产物对于HSV病毒在培养细胞中产毒性感染就是非必需的,因此,该重组病毒可以在细胞中增殖传代。用这种重组病毒感染细胞,能将lacZ基因带入细胞并高效表达。用同样的方法,将AAV-2病毒的rep与cap基因片段(4、3kb)插入HSV1病毒的UL2(编码尿嘧啶DNA糖基化酶)或UL44(编码糖蛋白C)基因中,构建成具有提供重组AAV载体复制与包装所需的全部辅助功能的辅助病毒rHSV-rc(伍志坚等,1999)。 然而,这样的重组病毒作为基因转移载体有许多缺点。首先,许多野生型病毒通过在细胞中产毒性复制而导致细胞裂解死亡;或带有病毒癌基因而使细胞发生转化。因此必须经过改造使其成为复制缺陷性病毒并且删除致癌基因后才能用于基因治疗。其次,插入外源DNA的长度受到很大限制,尤其对于基因组本身较小的病毒如腺病毒伴随病毒(AAV,4、7kb)、反转录病毒(8~10kb)、腺病毒(36kb),如果不去除病毒基因,可供外源DNA插入的容量就十分小。因此,必须删除更多的病毒基因以腾出位置插入较大的外源DNA。为了增加病毒载体插入外源DNA的容量,除了可以删除病毒的非必需基因外,还可以进一步删去部分或全部必需基因,这些必需基因的功能由辅助病毒或包装细胞系反式提供。 病毒载体大体上可分为两种类型: 重组型病毒载体:这类载体就是以完整的病毒基因组为改造对象。一般的步骤就是选择性地删除病毒的某些必需基因尤其就是立早基因或早期基因,或控制其表达;缺失的必需基因的功能由互补细胞反式提供;用外源基因表达单位替代病毒非必需基因区;病毒复制与包装所需的顺式作用元件不变。这类载体一般通过同源重组方法将外源基因表达单位插入病毒基因组中。如在传统的重组腺病毒构建方法中,将外源基因表达盒(exogenous gene expression cassette)插入穿梭质粒(如pXCX2或pFGdX1)的腺病毒同源序列中,与辅助

病毒性肝炎的基因治疗

龙源期刊网 https://www.wendangku.net/doc/655327125.html, 病毒性肝炎的基因治疗 作者:丁雯 来源:《健康必读(上旬刊)》2018年第03期 摘要:病毒性肝炎严重威胁人类健康。全球慢性病毒性肝炎患者众多,而现有的抗病毒治疗只在少数患者显现疗效。探索更为有效的治疗方法已成为迫切需要。基因治疗可以调节病变组织的生物学功能,因此成为一种强大且可塑性极强的治疗工具。越来越多的实验室和临床研究显示了基因治疗在病毒性肝炎治疗中的潜力。本文就近年来病毒性肝炎的基因治疗策略进行综述。 关键词:病毒性肝炎;基因治疗 中图分类号:R51 文献标识码:A 文章编号:1672-3783(2018)03-0134-01 病毒性肝炎是严重危害人类健康的常见传染病,慢性病毒性肝炎可导致肝硬化和肝癌等终末期肝病,部分患者可发生肝细胞大量坏死所导致的暴发性肝衰竭,病死率高达80%~90%。病毒性肝炎严重危害人类的生命健康,但目前尚缺乏十分理想的治疗方法。干扰素α仅对不到40%的慢性HBV感染者和20%~30%的慢性HCV感染者有效。 目前广义的基因治疗是指体细胞基因治疗,即将具有防治潜能的外源基因(目的基因)通过合适载体转移到患者的相关器官组织(靶组织)的细胞内,并获得适当表达,替代、修正、补偿缺陷基因的功能或封闭、抑制异常表达的基因,以达到防治或减轻疾病的目的。因此基因治疗的对象不再局限于单基因缺陷遗传病,还包括传染性疾病在内的多种类型的疾病。研究者对病毒性肝炎基因治疗的研究也取得了许多进展。 1 反义核酸与核酶 早期利用核酸作用于靶RNAs并使其降解的方法是通过DNA寡核苷酸与互补RNAs杂交,从而引起核糖核酸酶H介导的降解作用,也就是众所周知的“反义技术”。继而人们又发现了具有催化活性的RNA分子,即核酶。目前人们可以通过设计各种反义核酸或核酶来降解靶序列。 Nash等将针对HBV衣壳包装信号、X抗原和表面抗原mRNA的锤头状核酶和反义序列克隆于lenti病毒载体,并导入表达HBV的肝细胞中,整合载体持续表达超过4个月,以HBs mRNA为靶标的反义RNA可有效降低转录子的水平,针对X抗原和表面抗原mRNA的核酶 也可有效降低HBV mRNA水平。 通过导入反义核酸或核酶的长效表达载体并使其与宿主基因组整合,一定比例的肝细胞(及其子代细胞)就会被赋予抵抗病毒感染的特性。由于这部分细胞比那些已被病毒感染的细

专题八作业:基因治疗中病毒载体的研究进展

专题八作业:基因治疗中病毒载体的研究进展? 基因治疗自1990年成功应用于重症联合免疫缺陷综合征(SCID-X1)患者的治疗,已走过了十几个年头,给人类一些疑难杂症如肿瘤的治愈带来了曙光。但其发展却屡遭挫折,比如近来发现经基因治疗的SCID-X1患者之一出现了类白血病反应,可能是基因随机整合染色体所致,使得人们不得不以怀疑的目光审视它的成长。而基因载体是阻碍其发展的主要因素,主要表现为安全性、靶向性、转染效率不高及表达时问短等问题。病毒载体是目前临床基因治疗中应用最多的载体,各种病毒载体有自身的利弊,除了对它们的选择外,病毒载体只有通过自身的不断改造完善,才能更好的服务于基因治疗,进而真正造福于人类。 1 逆转录病毒(retrovirus vectors,RVJ载体 逆转录病毒载体基因转移系统包括两部分:一部分是用外源基因替换病毒结构基因的逆转录病毒载体;另一部分是包装细胞的基因组DNA中整合了逆转录病毒结构基因。1990年世界上首例临床基因治疗采用的就是逆转录病毒载体n]。到目前为止,RV载体是基因治疗临床试验使用最多的载体,较常用的是基于moloney鼠白血病病毒(MMLV)改造而来的各种Rv载体。RV载体具有基因表达持久而稳定、转染效率较高等优点,但只能感染分裂期细胞,载体容量<8kb,与宿主细胞基因组的随机整合可引起基因突变及产生可复制的野生型病毒等危险,故需要进一步的改造完善。将水泡性口炎病毒糖蛋白(VSV-G)整合于逆转录病毒包膜中能加速各种宿主细胞对其进行膜融合和内吞,具有广泛的宿主范围和更高的转染效率,可高效的转染静止细胞,并能抵抗血清补体灭活的作用。诸多的优点使该载体在造血系统疾病和肿瘤的基因治疗方面有潜在的应用前景。为了提高逆转录病毒感染靶细胞的特异性,降低其潜在的危险性,可以在原来的病毒Env蛋白上接上一段具有特异靶向的多肽,目前应用较多的是单链可变区抗体(acFV);还可通过插入组织特异启动子实现靶向表达。第三代包装细胞系aF-crip和m 使载体与包装细胞问至少需要发生4次同源重组才可能产生有复制能力的逆转录病毒,提高了RV载体的安全性。 2 腺病毒(adenovirus,AV)载体 腺病毒载体自1993年首次被应用于临床试验以来,迄今为止大约有40%基因治疗临床试验方案采用腺病毒为载体,仅次于RV载体_3 J。至今AV载体已经发展了4代,第2、3代腺病毒去除EI、E2和E4编码序列,与第一代相比,有更低的免疫原性和更大的载体容量。第四代腺病毒仅含有反向末端重复序列

基因治疗的发展及其应用

基因治疗的发展及其应用 【摘要】基因治疗一种很有发展前途的高新技术。基因治疗有望成为治疗遗传病、肿瘤、心血管病、病毒感染及其它难治性疾病的有效手段,本文通过国内外相关文献的分析,从基因治疗(基因治疗的现状、肿瘤的基因治疗)、基因预防、基因治疗技术、基因治疗存在的问题和未来发展等进行综述。 【关键词】基因治疗;基因预防;基因治疗技术;现状;问题和未来发展 人类的疾病是由于其本身的基因的核苷酸发生变化有关。近年来,基因治疗作为一种安全的、新的疾病治疗手段,在一定程度上取得了重大进展。 1 基因治疗 基因治疗(Genethrapy)是向靶细胞引入正常有功能的基因,以纠正或补偿致病基因所产生的缺陷,从而达到治疗疾病的目的,通常包括基因置换、基因修正、基因修饰、基因失活等。简而言之,基因治疗是指通过基因水平的操纵而达到治疗或预防疾病的疗法。 1.1 基因治疗的现状 生物医学的深入研究表明,人类的各种疾病都直接或间接与基因有关[1]。因此,可认为人类的一切疾病都是“基因病”。故人类疾病可分为三大类。一类是单基因病。这类疾病只需一个基因缺陷即可发生,如腺苷脱氨基酶(ADA)缺陷症。二是多基因病。此类疾病的病因大多比较复杂,不但涉及各个基因,往往还与环境因素(包括自然环境、社会环境、生活方式等)有关。基因缺陷和疾病表型都具有明显的多样性。Ⅰ型糖尿病、肿瘤、心血管疾病等皆属此类。三是获得性基因病。此乃病原微生物入侵所致,如艾滋病、乙型肝炎等。因此,理论上,人类所有的疾病都可采用基因治疗。 1.2 肿瘤的基因治疗 目前治疗癌症的基因疗法种类颇多,主要集中在免疫基因治疗、药物敏感性基因治疗、肿瘤抑制基因治疗治疗三个方面。 1.2.1 免疫基因治疗 常用方法有:①细胞因子基因治疗:将某些细胞因子基因如IL 2、IL 4、IL 6、B7 1,GM CSF等转染肿瘤细胞后,增强机体对肿瘤细胞的免疫反应。②肿瘤抗原基因免疫治疗:将某些肿瘤抗原基因如MHC基因等转染肿瘤细胞,增强肿瘤细胞免疫原性。②反义基因治疗:应用反义核酸在转录和翻译水平,通过碱基互补原则封闭某些异常基因的表达,反义核酸被称为信息药物[3]。④用抗体抑制癌基因的产物杀灭肿瘤细胞。

非病毒基因载体

概述 定义 非病毒载体是利用非病毒的载体材料的物化性质来介导基因的转移。 特点 非病毒载体具备无传染性,没有载体容量限制,材料来源广泛,化学结构可控制,且易于大量制备,在表达质粒、反义寡核苷酸或反义表达质粒真核细胞的靶向转移中,有着病毒载体不可替代的作用。 与病毒载体相比较,具有毒性低、免疫反应低,而且所携带的基因不整合至宿主细胞基因组等优点。 然而,非病毒载体的转导效率低,目的基因只能实现瞬间表达,其运送系统的颗粒较大,容易引发免疫反应和被机体所清除。 2常用材料 脂质体或脂类复合物 脂质体包括阳性、中性和阴性脂质体,其中阳性脂质体研究的最为广泛。自从1987年以来, 众多学者相继合成出许多阳离子脂质体。所有的阳离子脂质体的一端皆拥有1~2条由12~ 18个碳原子组成的疏水链, 使其在水性介质中形成双层结构, 并包裹DNA;另一端为亲水性的N+, 通过静电力与DNA结合以形成脂质复合物。 脂质体或脂质复合物经静脉注射后,很快被血浆清除并在肺组织中积蓄, 蛋白质主要在肺内皮细胞中表达,通常表达时间较短,一般在给药后4~ 24h即达峰, 1周后消失。因此,阳离子脂质载体在治疗一些肺部疾病如肺代谢性疾病、门脉高压和急性呼吸窘迫综合征等有较好前景。脂质体或脂质复合物也可直接应用于病变部位以避免静脉给药选择性差的缺点。 目前虽然在阳离子脂质体构效关系研究的基础上,合成了一些新的脂质载体, 但离理想的脂质载体还相距较远,其主要困难在于体内外转染条件的差别, 而且转染效果还取决于给药途径。因此, 只有根据实际的临床应用来个性化设计才能获得较为理想的载体, 这无疑给载体的开发带来困难。脂质体或脂质复合物并没有长期安全性报道。 阳离子多聚物 1、多聚赖氨酸:聚L-赖氨酸和去唾液酸糖蛋白连接的聚合物用于细胞的基因靶向转移, 其基因转染效果较阳离子脂质体差。有研究表明,在有或无靶向配体的情况下,多聚赖氨酸与DNA的聚合物的细胞摄取率和基因转染率都依赖于聚合复合物正电性的存在。 2、聚乙烯亚胺( polyethylenimine, PEI) :PEI阳离子聚合物表面的正电荷与DNA上带负电荷的磷酸基团产生静电作用形成复合物。这种复合物的超分子结构可以描述为一种核-壳结构, 疏水核是部分中和的DNA,外壳则是亲水的阳离子聚合物链段。这种核-壳结构,增加了体系在血液循环中的稳定性, 保护DNA在传递过程中不受DNA酶或巨噬细胞的降解。PEI阳离子聚合物由于其自身具有缓冲容量, 在不需要加入吞噬细胞或溶酶体溶解剂的情况下就显示出较好的基因转染效果。 3、树突状聚合物:树突状聚合物系一定Mr 范围的聚酰胺和含磷树状聚合物的末端氨基通过静电力与DNA结合形成的一种阳离子多聚物非病毒基因载体,聚酰胺树状聚合物的酰胺键在水或乙醇中的水解,可使基因转染率增加50倍, 其原因可能是水解增加了聚合物的柔韧性。故一些可水解的聚酰胺树状聚合物对体内颈动脉的基因转染比支链PEI更有效。 壳聚糖载体聚合物 壳聚糖作为一种天然阳离子聚合物,通过与DNA以静电方式作用使壳聚糖-DNA体系不被降解, 完全进入细胞。作为基因载体, 壳聚糖具有细胞毒性低、生物相容性好、基因免疫性低和转染效率较高等特点。 壳聚糖-DNA复合物按制备方法主要分壳聚糖及其衍生物的DNA复合物、壳聚糖-DNA纳

慢病毒载体的构建及其在基因治疗方面的应用

慢病毒载体的构建及其在基因治疗方面的应用 摘要:慢病毒属于逆转录病毒科,为RNA病毒。经改造的慢病毒作为外源基因载体,具有其独特的特点和优势。基因治疗成功的关键是选择合适的载体系统,慢病毒载体作为一种特殊的逆转录病毒载体,具有可感染分裂细胞及非分裂细胞、转移基因片段容量较大、目的基因表达时间长、不易诱发宿主免疫反应等优点,已成为当前基因治疗载体研究的热点。近年来对其基础生物学特性、载体改造及其应用等研究均取得了较大进展,笔者对慢病毒载体的构建以及其在人类疾病基因治疗方面的应用做简单的介绍。 关键词:慢病毒载体;载体构建;基因治疗 基因治疗是向靶细胞或组织中引入外源基因DNA或RNA片段,以纠正或补偿基因的缺陷,关闭或抑制异常表达的基因,从而达到治疗的目的。其关键问题之一是如何将目的基因导入靶细胞,得到稳定、高效表达。理想的基因载体应具备:靶向特异性;高度稳定、易制备、可浓缩和纯化;无毒性;有利于基因高效转移和长期表达;容量大,易人工合成,缺乏自动复制载体自身的能力[1]。由于病毒基因组结构简单、分子背景比较清楚、易于改造和操作、感染效率高、有较高靶细胞特异性,这些都是其他载体系统无法比拟的,而慢病毒载体由于其对分裂细胞和非分裂细胞均具有感染能力且转染效率高、靶向性好和持久性表达等特点,病毒载体系统就显得格外引人注目。 1 慢病毒及其载体的简介 慢病毒属于逆转录病毒科,为RNA病毒。慢病毒除了具有一般逆转录病毒gag、pol和env3个基本结构基因外,还包含4个辅助基因vif、vpr、nef、vpu 和2个调节基因tat和rev[2]。慢病毒载体(Lentiviral vector,LV)作为外源基因载体,其产生均包括一个遗传割裂基因表达的设计。病毒元件要符合以下条件:①慢病毒组装辅助蛋白至少含有gag-pol基因;②慢病毒转基因载体RNA 包括转基因表达盒;③异质糖蛋白。目前使用不同种属来源的慢病毒载体,包括来源于人类(HIV-1和HIV-2)以及猿猴(SIV)、猫(FIV)等其它物种[3]。 2 病毒载体的构建 由于慢病毒的一些自身因素,我们需对其进行以下的一些改建,使其可以更好地为疾病治疗和科研工作服务。 2.1 最小辅助包装元件 为了减少病毒序列的数量从而减少同源重组的风险,去除了组装慢病毒载体结构中不同辅助元件或用其它的特异序列来代替。其中包括原位癌激活基因序列的调整。另外,去掉附加或调节基因与gag-pol基因一样,已在一些慢病毒载体

人基因治疗研究和制剂质量控制技术指导原则

人基因治疗研究和制剂质量控制技术指导原则 一、引言 基因治疗是指改变细胞遗传物质为基础的医学治疗。目前仅限于体细胞。 基因治疗的技术和方式日趋多样性。按基因导入的形式,分为体外基因导入(exvivo)及体内基因导入(invivo)两种形式。前者是在体外将基因导入人细胞,然后将该细胞注入人体。其制品形式是外源基因转化的细胞,适合在具有专门技术人才和GMP条件的医疗单位进行。后者则是将基因通过适当的导入系统直接导入人体,包括病毒的与非病毒的方法。其制品形式是基因工程技术改造的病毒或者是重组DNA、或者是DNA复(混)合物。基因治疗制剂种类较多,因此,本指导原则不可能用一个模式来概括,只能提出一个共同的原则,具体的方案应根据这些原则,确定研究技术路线。其基本原则:一是必须确保安全与有效,要充分估计可能遇到的风险,并提出相应的质控要求;二是要促进基因治疗的研究,并加强创新。对一些新的治疗技术路线的相应质控要求,可有一定的灵活性,应注意到基因治疗本身的特点以及它与经典的化学合成药物或基因工程药物的差别。目前,一些基因治疗研究相对比较成熟,而一些则不够完善,更加要求研究者在使用该技术指导原则时不可生搬硬套。为此,研究者应加强咨询和论证,提出一个科学可行的研究方案,最终获得确保安全有效的基因治疗制品。 在向国家药品监督管理局申报临床试验时,除须按本指导原则中"研究内容和制品质量控制"准备材料外,同时需提供下述材料: (1)国内外研究现状和进展(综述)。包括: 1.所用基因的研究现状和进展; 2.所用载体的研究现状和进展; 3.所用基因导入系统和方法的研究现状和进展; 4.该研究或制品相关的体外有效性实验资料; 5.该研究或制品相关的动物试验安全性和有效性资料; 6.该研究或制品相关的临床试验安全性和有效性资料; 7.该研究或制品的生产工艺现状; 8.该研究或制品的质量控制现状;

基因治疗

基因治疗 【摘要】研究发现,以基因为基础,从疾病和健康的角度考虑,人类疾病大多直接或间接地与基因相关,故有“基因病”概念产生。根据这一概念,人类疾病大致可分为三类:单基因病、多基因病和获得性基因病。随着现代生物科学的发展,基因工程已在多个领域得到广泛应用。基因治疗是利用基因工程技术向有功能缺陷的人体细胞补充相应功能基因,以纠正或补偿其疾病缺陷,从而达到治疗疾病的目的。基因治疗作为治疗疾病的一种新手段,已经在肿瘤、感染性疾病、心血管疾病和艾滋病等疾病的治疗方面取得进展。它在一定程度上改变了人类疾病治疗的历史进程,被称为人类医疗史上的第四次革命。本文就基因治疗的载体以及基因治疗在肿瘤、艾滋病治疗方面取得的成就作出介绍,并就基因治疗的现状和问题对基因治疗的未来作出展望。 【关键词】基因治疗、载体、肿瘤、p53、IAP、艾滋病、CCR5 【正文】 一、基因治疗背景及概念 1990年9月,美国政府批准实施世界上第一例基因治疗临床方案,对一名患有重度联合免疫缺陷症(SCID)的女童进行基因治疗并获得成功,从而开创了医学的新纪元。自此以来,基因治疗已从单基因疾病扩大到多基因疾病,从遗传性疾病扩大到获得性疾病,给人类的医疗事业带来革命性变革。 基因治疗(gene therapy)是指通过一定的方式,将正常的功能基因或有治疗作用的DNA 序列导入人体靶细胞去纠正基因突变或表达失误产生的基因功能缺陷,从而达到治疗或缓和人类遗传性疾病的目的,它是治疗分子疾病最有效的手段之一。 基因治疗包括体细胞基因治疗和生殖细胞基因治疗。但由于用生殖细胞进行治疗会产生伦理道德问题,因此通常采用体细胞作为靶细胞。其基本内容包括基因诊断、基因分离、载体构建和基因转移四项。根据功能及作用方式,用于基因治疗的基因可分为三大类:(1)正常基因:可通过同源重组方式置换病变基因或依靠其表达产物弥补病变基因的功能,常用于矫正各种基因缺陷型的遗传病;(2)反义基因:通过其与病毒激活因子编码基因互补,或与肿瘤mRNA互补,从而阻断其表达,常用于治疗病毒感染或肿瘤疾病;(3)自杀基因:能将无毒的细胞代谢产物转变为有毒的化合物,用于治疗癌症。 二、基因治疗载体

肿瘤基因治疗技术

577 中国肿瘤2001年第10卷第10期 安瑞生,陈晓峰 (中国科学院北京动物研究所,北京100080) Gene Thera py Techni q ue AN Rui sheng,C HEN Xiao feng 摘要:肿瘤基因治疗就是将一段特定的遗传信息物质DNA 或RN A 通过人工方法导入肿瘤细胞以治疗肿瘤性疾病。目前的 研究主要包括三个方面:肿瘤免疫基因治疗、反义RNA 、三链D NA 。其中研究较多的是肿瘤免疫基因治疗。本文主要对肿瘤免疫基因治疗的构建、接种、应用等方面做了综述,并简要介绍了反义RNA 和三链DNA 技术。 关键词:基因治疗;基因疫苗;DNA 疫苗;反义RNA;三链DN A;肿瘤中图分类号:R730.54文献标识码:B 文章编号:1004-0242(2001)10-0577-03 收稿日期:2001-08-22肿瘤免疫基因治疗就是将具有一定功能的外源基因导入人体细胞,以补充机体所缺乏的基因或纠正机体异常表达的基因。人类基因治疗的探索始于20世纪80年代初,目前已由动物实验向临床试验过渡。本文就肿瘤的基因治疗技术的现状综述如下。 1 肿瘤免疫基因治疗 1 1 载体的构建 获得合适的抗肿瘤编码基因并将它插入到载体DNA 上,是发展肿瘤基因治疗的一个主要工作。不言而喻,目的基因的选择至关重要。抗肿瘤基因可以是单个基因或具有协同保护功能的一组基因,也可以是编码抗肿瘤基因决定簇的一段核苷酸序列。但是,这都是建立在充分了解病原体基因的基础上的。表达文库免疫技术,提供了一种在各种已知或未知病原体基因组中获得目的基因的系统而普遍有效的方法。该技术根据病原体的所有抗原都由其DNA 编码这一基本原理,将病原体基因文库中的病原体DNA 片段插入特定的质粒中,利用基因免疫的方法筛选病原体基因组中具有免疫保护功能的基因片段。目前,基因表达文库免疫技术是发现目的基因的一种最系统、客观的手段。 质粒载体必须是能在大肠杆菌中高拷贝地扩增,而在动物细胞内则能高效表达,但不复制,也不含有向宿主细胞基因组内整合的序列。用于基因治疗的载体主要有质粒和病毒,病毒载体曾经被用作抗原基因载体[1],现在主要用质粒构建载体,由于细菌质粒本身没有很强的免疫原性,这对保证质粒在体内长期稳定地表达有重要意义[2]。 载体一般以PBR322或PUC 质粒为基本骨架,它们能在 大肠杆菌内扩增,但不能在哺乳动物细胞内复制 [3] 。通常使 用的质粒载体有PBR322、PUC18、PUC19、PUC118、PUC119等。常用的质粒载体启动子多为来源于病毒基因组的巨细胞病毒(CMV)早期启动子,具有很强的转录激活作用,带有细菌复制子(ORI),真核生物的启动子和PolyA 加尾信号。启动子大多来源于病毒基因组,如CMV 、PSV 、LTR 等,其中以CMV 的转录活性最高,PolyA 序列具有保证mRNA 在体内的稳定性的作用,这种稳定性因PolyA 来源不同而异,目前认为较好的PolyA 来自牛生长激素基因或兔B 球蛋白基因。另外,还可包含一些合适的增强子、终止子、内含子、免疫激活序列及多聚腺苷酸信号等。筛选载体可以选用卡那霉素、氨苄青霉素或新霉素等抗性基因。1.2 目的基因的导入 主要途径包括间接体内法和直接体内法。间接体内法是指在体外用基因转染肿瘤细胞,然后将经转染的肿瘤细胞输入病体内,最终给予病体的疗效物质是基因修饰的细胞[4]。直接体内法是指基因片段或完整基因直接注入体内进行治疗的办法。就直接体内法而言,目前使用的方法有以下几种: 裸DNA 直接注射,将裸质粒DNA 直接注射到机体的肌肉、皮内、皮下、粘膜、静脉内。这种方法简单易行。脂质体包裹DNA 直接注射,包裹DNA 的脂质体能与组织细胞发生膜融合,而将DNA 摄入,减少了核酸酶对DNA 的破坏。注射途径类似裸DNA 直接注射[5] 。金包被DNA 基因枪轰击法,将质粒DNA 包被在金微粒子表面,用基因枪使包被DNA 的金微粒子高速穿入组织细胞。繁殖缺陷细菌携带质粒DNA 法,选择一种容易进入某组织器官的细菌,将其繁殖基因去掉,然后用质粒DNA 转化细菌,当这些细菌进入某组织器官后,由于能繁殖,则自身裂解而释放出质粒DNA [6]。经改造的mRNA 法,将目的基因的mRNA 结构进行重组后直接送入体内。 肿瘤基因治疗技术 专 题报道

用于基因治疗的慢病毒载体(一)

用于基因治疗的慢病毒载体(一) 基因治疗有望成为治疗遗传病、肿瘤、病毒感染及其它难治性疾病的有效手段,但目前基因转移方法的局限性成为实现这一希望的最大障碍。非病毒学的基因转移方法效率较低;已用于人体试验的基因治疗方案绝大多数是以病毒学方法进行基因转移的,其中以逆转录病毒载体和腺病毒载体最为成熟。常用的逆转录病毒载体从小鼠白血病病毒(MLV)改造而来,虽可使目的基因整合至靶细胞基因组、实现稳定表达,但只能转导分裂细胞,目前主要用于基因治疗的离体方案;腺病毒载体既能转导分裂细胞,亦可转导静止细胞,转导效率也较高,但目的基因不整合至靶细胞基因组,仅能短暂表达,而且腺病毒本身某些抗原的表达可引起人体免疫反应,阻止其重复转导;其它一些病毒载体如腺相关病毒(AAV)载体、单纯疱疹病毒(HSV)载体亦因各种原因不能令人满意。 理想的病毒载体能同时提供高效的基因转移、长期稳定的基因表达及生物安全性。近来,一些研究者把目光投向了以Ⅰ型为人免疫缺损病毒(HIV-1)为代表的慢病毒。研究表明〔1-5〕,以HIV-1为基础构建的这类慢病毒载体具有可感染非分裂细胞、目的基因整合至靶细胞基因组长期表达、免疫反应小等优点,适于体内基因治疗,因此有望成为理想的基因转移载体。本文即对该类载体的研究进展做一简介。 1HIV-1基因组的基本结构〔6〕 HIV-1DNA前病毒的主要结构基因及其排列形式与其它逆转录病毒相同,均为5'LTR-gag-pro-pol-env-3'LTR。其中gag基因编码病毒的核心蛋白,pol基因编码病毒复制所需的酶类,env基因编码病毒的包膜糖蛋白,pro基因则编码切割蛋白前体所需的蛋白酶。与其它逆转录病毒不同的是,HIV-1基因组尚有较多调节基因,其中属于HIV-1基因复制所必需的tat基因和rev基因,分别编码两个反式激活因子Tat蛋白和Rev蛋白,前者在HIV-1基因组复制和转录延伸过程中发挥重要作用,后者则可促使HIV-1基因的表达由早期向晚期转化。非HIV-1复制所必需的调节基因有nef、vif、vpr和vpu。这些基因的编码产物都有各自的功能,有些尚未完全阐明,在此不一一赘述。 2构建HIV-1载体系统的基本原理〔7〕 HIV-1载体系统由两部分组成,即包装成分和载体成分。包装成分由HIV-1基因组去除了包装、逆转录和整合所需的顺式作用序列而构建,能够反式提供产生病毒颗粒所必需的蛋白;载体成分则与包装成分互补,即含有包装、逆转录和整合所需的HIV顺式作用序列,同时具有异源启动子控制下的多克隆位点及在此位点插入的目的基因。为降低两种成分同源重组恢复成野生型病毒的可能,需尽量减少二者的同源性,如将包装成分上5'LTR换成巨细胞病毒(CMV)立即早期启动子、3'LTR换成SV40polyA等。包装成分通常被分开构建到两个质粒上,一个质粒表达Gag和Pol蛋白,另一个质粒表达Env蛋白,其目的也是降低恢复成野生型病毒的可能。图1所示为Trono等建立的HIV-1载体系统中的一种〔1〕。将包装成分与载体成分的3个质粒共转染细胞(如人肾293T细胞),即可在细胞上清中收获只有一次性感染能力而无复制能力的、携带目的基因的HIV-1载体颗粒。 3HIV-1载体系统的改进 近年来,已有多个实验室建立了复制缺陷的HIV-1载体系统,用于不同目的的研究,如分析病毒的感染力〔8〕、筛选抗病毒药物〔9〕、评价Env糖蛋白的不同区域在介导病毒进入细胞中的作用〔10〕等。而目前对于以基因治疗为目的的HIV-1载体系统,研究的焦点集中在如何扩大其嗜性范围、确保其安全性及提供其滴度和转导能力上。1996年以来,Trono领导的课题组发表了一系列令人鼓舞的研究结果〔1~3〕,主要包括以下几方面的改进。 3.1包膜蛋白 最初的HIV-1载体颗粒,均由其本身的包膜蛋白Env所包裹,仅对CD4+的细胞具有亲嗜性。1996年,Trono课题组的Naldini等〔1〕设计的HIV-1载体系统(见图1)采用表达水疱性口炎

基因治疗在疾病防治中的应用

基因治疗在疾病防治中的应用 120311102 张宇鑫 [摘要] 传染病是目前人类所面临的一类重大疾病,在某些疾病状态下,人类还未寻找到理想的治疗方法,如病毒感染等。现代基因治疗是一种应用基因工程技术和分子遗传学原理,对人类疾病进行治疗的新疗法。主要是指对致病基因的修正和基因增强及采用外源性细胞因子基因、核酶、基因药物进行疾病治疗的方法。经过多年的发展,技术逐步走向成熟,在传染性疾病的防治中显示了重大的临床应用前景。传染性疾病的基因治疗包括:基因疫苗、RNA干扰、反义技术、药物靶向治疗等。 [关键词] 基因疫苗反义技术药物靶向治疗 一、现状 1.1我国传染病预防现状 21世纪人类依然面临着传染病的挑战,就全球而言,艾滋病是当前首恶,由于其病毒极易发生变异,所以到目前为止疫苗仍在试验阶段,缺乏理想的特效药物,免疫损伤治疗难度大。我国2003年比2002年发病率上升44.39%,人类免疫缺陷病毒检出率提高了55%。并且防治工作面临来自传统传染病和新发传染病的双重压力:传统传染病威胁持续存在,新发传染病不断出现。近10年来,我国几乎每一两年就有1种新发传染病出现,许多新发传染病起病急,早期发现及诊断较为困难,缺乏特异性防治手段,早期病死率较高。其次,人口大规模流动增加了防治难度,预防接种等防控措施难于落实。三是环境和生产生活方式的变化增加了传染病防治工作的复杂性。一些地区令人堪忧的城乡环境卫生状况,以及传统的生产生活方式,使一些人畜共患病持续发生。 1.2基因治疗研究的现状 (1) 复合免疫缺陷综合征的基因治疗 1991年美国批准了人类第一个对遗传病进行体细胞基因治疗的方案,即将腺苷脱氨酶(ADA)采用反转录病毒介导的间接法导入一个4岁患有严重复合免疫缺陷综合征(SCID)的女孩,大约1-2月治疗一次,8个月后,患儿体内ADA水平达到正常值的25%,未见明显副作用。此后又进行第2例治疗获得类似的效果。 (2)黑色素瘤的基因治疗 对肿瘤进行基因治疗是人们早已期望的事,在进行了多方面探索的基础上,发现了肿瘤浸润淋巴细胞(即能在肿瘤部位持续存在而无副作用的一种淋巴细胞)在肿瘤治疗中的作用。于1992年实施了TNF/肿瘤细胞和IL-2/肿瘤细胞方案,即分别将IL-2基因肿瘤坏死细胞(TNF)基因导入取自患者自身并经培养的肿瘤细胞,再将这些培养后的肿瘤细胞注射至病人臀部,3周后切除注射部位与其引流的淋巴结,在适合条件下培养T细胞,将扩增的T细胞与IL-2合并用于病人,结果5名黑色素瘤病人中1名肿瘤完全消退,2名90%的肿瘤消退,另2人在治疗后9个月死亡。由于携有TNF的TIL可积于肿瘤处,因而TIL的应用提高了对肿瘤的杀伤作用。

基因治疗的困难与前景

基因治疗的困难与前景 基因治疗是利用遗传学的原理治疗人类疾病的新手段,传统意义上的基因治疗是指目的基因导入靶细胞后与宿主细胞的基因发生基因重组,成为宿主细胞的一部分,从而可以稳定地遗传下去,并达到疾病治疗的目的。 目前,基因治疗主要的策略有4种。基因置换是利用正常的基因整个地替换突变基因,使突变基因永久地得到更正。基因修正是将突变基因的突变碱基序列用正常的序列加以纠正,而其余未突变的正常部分予以保留。相比前面两种策略,基因修饰则是间接利用目的基因的表达产物来改变宿主细胞的功能。而基因失活是利用反义技术来封闭某些基因的表达,以达到抑制有害基因表达的目的。就技术方面而言,基因置换是最常用的策略之一。 基因治疗的发展和实施,要依赖于相关的技术和研究。其中最为重要的是人类基因组计划(HGP)和基因工程技术。美国国会于1990年批准了这一项目,并决定从1990年10月1日组织实施。计划耗资30亿美金,历时15年完成。这个浩大繁杂的计划成为了国际合作项目。美国,英国,日本,法国,德国和中国6个国家相继加入到计划中。HGP最终任务是要破译人体遗传物质DNA分子所携带的所有的遗传信息。HGP的实施,使人们对自身基因的认识达到一个质的飞跃。使人们进一步认识各种基因的生物学

功能以及与遗传病之间的关联,认识遗传病的分子缺陷的基础知识,为遗传病的基因治疗奠定基础。 HGP为基因治疗提供了基础知识,而真正的成功操作则要依赖基因工程技术。其中最重要的是基因治疗的载体构建。病毒载体是常用的载体之一。如:逆转录病毒载体,腺病毒载体等。而非病毒载体主要为显微注射法和电穿孔DNA转移法。 从1967年Nirenbery提出基因治疗实施。在1990年9月,美国FDA批准了人类首例基因治疗,针对于SCID的病例的基因治疗研究。同年9月14日第一位基因治疗的患者被成功回输带有矫正基因的T细胞。 基因治疗的基础研究虽然已经有近半个世纪,但基因治疗的成功案例并不多,所涉及的疾病领域也不广。其中的问题还存在很多。其中伦理问题和技术安全问题是最受关注的。 对生殖细胞的操作有不可预知性,有可能使后代产生缺陷。就目前的技术还不能做到避免外源基因的插入引起的生殖细胞的基因突变。这种改变是否符合我们后代的最佳利益。这就提出了一个新的伦理问题。我们是否有权这样做。我们对后代的责任是什么。基因治疗还面临着很大的社会风险,通过遗传筛查可以不让可能患遗传病的人出生,以此来预防遗传病。这会鼓励强迫性的优生规划和对

2020年中国细胞和基因疗法市场分析报告

2020年中国细胞和基因疗法市场分析报告 简介:全球范围内,细胞和基因疗法(CGT)不仅改变了人类治疗遗传疾病和疑难杂症的方式,同时也正在颠覆整个制药生态圈。至2019年底,全球共推出超过27种CGT产品,约990家公司从事下一代疗法研发和商业化,全球CGT市场规模有望在2025年超过119.6亿美元。 对于志在赢占中国细胞和基因疗法市场的国内外企业,必须采用独特的商业模式解决这些本土问题在强有力的政策支持下,中国已经成为全球CGT 发展的沃土,2017年至2019 年期间共有 1,000 多项临床试验已经开展或正在进行,中国政府授予数千项相关专利,位居全球第二。45 家本土企业以及四家合资公司引领中国CGT 生物技术行业蓬勃发展,并拥有获批的CGT 新药临床试验申请(IND)。 尽管CGT行业繁荣发展,但外商投资监管、报销时间的不确定性、技术和知识产权本土化要求、医疗服务机构的能力差异等中国CGT生态圈的多个环节,均为CGT产品的顺利商业化带来重大挑战。对于志在赢占中国细胞和基因疗法市场的国内外企业,必须采用独特的商业模式解决这些本土问题,并且需要围绕市场准入、监管、产品组合与知识产权、以及商业化能力建立卓越发展框架,制定相应战略并衡量成效。此外,这些企业还应考虑如

何有效获取日益丰富的本土创新技术,培养专业能力,依托生态圈合作在全球开发此类知识产权。 本文将探究影响中国 CGT 行业的关键因素和主要趋势,助力投资者、企业和研究人员塑造不断创新且可持续发展的中国CGT行业,并且从中受益。 一、应对新冠疫情危机 随着全球新冠疫情危机继续蔓延,并将持续数月或更长时间,预计将为CGT行业带来如下影响: CGT基础生物医学研究相关的资金支持会继续增加。CGT不仅可能治疗甚至治愈非传染性的疑难杂症,例如遗传疾病或晚期肿瘤,也有可能通过恢复人体的自然免疫力防治新型传染病。例如,一家致力于为遭受威胁生命的病毒性疾病患者开发细胞疗法的波士顿公司AlloVir近期宣布,和美国贝勒医学院合作开发针对新冠病毒的异体T 细胞疗法。 在中国推动CGT产品商业化的企业将面临更多不确定性。正在开展或计划中的临床研究可能会被中断,与国家药品审评中心的沟通和监管审批或将推迟,涉及CGT生产原材料进出口的供应链可能受到影响,而且市场准入相关事宜也将延期。 企业需要重新调整其产品发布时间安排,基于对监管审批流程、供应链应对能力和目标医院在降低新冠病毒影

基因工程之基因治疗

基因治疗 摘要: 生物技术在生命科学领域扮演者重要的角色,基因治疗在治疗方面,将新的遗传物质转移到某个个体的体细胞内使其获得治疗效果;在基因工程方面,将正常的有功能的基因置换或增补缺陷基因。近些年来,已对若干人类单基因遗传病和肿瘤开展了临床的基因治疗。基因治疗作为治疗疾病的一种新手段,正愈来愈受到人们的重视和关注。 关键词:基因工程基因治疗基因 一、基因治疗的历史 随着DNA双螺旋结构的发现和以DNA重组技术为代表的现代分子生物学技术的发展以及人类对疾病认识的不断深入,越来越多的证据证明,多种疾病与基因的结构或功能改变有关,因而萌生了从基因水平治疗疾病的念头和梦想。 早在1968年,美国科学家发表了“改变基因缺损:医疗美好前景”的文章,首次在医学界提出了基因疗法的概念。1989年美国批准了世界上第一个基因治疗临床试验方案。1990年美国NIH的Frenuch Anderson博士开始了世界上第一个基因治疗临床试验,用腺苷酸脱氨酶基因治疗了一位ADA基因缺陷导致的严重免疫缺损的四岁女孩,并获得成功[1]。 1994年美国科学家利用经过修饰的腺病毒为载体,成功地将治疗遗传性囊性纤维化病的正常基因cfdr 转入患者肺组织中。2000年,法国巴黎内克尔儿童医院利用基因治疗,使数名有免疫缺陷的婴儿恢复了正常的免疫功能,取得了基因治疗开展近十年最大的成功[2]。 2004年1月,深圳赛百诺基因技术有限公司将世界第一个基因治疗产品重组人p53抗癌注射液正式推向市场,这是全球基因治疗产业化发展的里程碑[3]。迄今报道已有数千例基因治疗患者,病种主要是恶性肿瘤、艾滋病、血友病B、病毒性肝炎等等。 二、基因治疗的概念 基因治疗是指向有功能缺陷的细胞补充相应的基因,以纠正或补偿其基因缺陷,从而达到治疗的目的。 广义的说,基因治疗就是应用基因或基因产物治疗疾病的一种方法。狭义的说,基因治疗是把外界的正常基因或治疗基因,通过载体转移到人体的靶细胞,进行基因修饰和表达,治疗疾病的一种手段。

基因治疗的研究现状以及应用前景分析

基因治疗的研究现状以及应用前景分析 摘要: 基因治疗是一种通过基因水平的操作而达到治疗或预防的高新技 术。可治疗包括遗传性疾病、癌症、感染性疾病、心血管疾病和自身 免疫性疾病在内的多种疾病。近几年来基因治疗在全球范围内虽然取 得了快速发展,但也遇到了很多技术、伦理以及法律问题。未来基因 治疗的主要目 标是在法律和伦理要求范围内,开发更加安全高效的基因导入系统, 更好的服务于人类。本文主要论述了基因治疗的研究现状,并在此基 础上分析了其应用前景。 关键词:基因治疗,研究现状,应用前景 Abstract: ?Gene therapy is a new technology by which people can cute and prevent many diseases at the level of genes, such as,genetic disease,infectional disease,cardiovascular disease and autoimmune disease.At the past years , gene therapy has been developed all around the world , however , it has also come across some probloms , including technology ,laws and ethics. At the future , the main aim of gene therapy is to develop more safe and efficient gene delivery system within the limits of laws and ethics .The research status and application prospect of gene therapy are discussed in this paper.

相关文档
相关文档 最新文档