文档库 最新最全的文档下载
当前位置:文档库 › Hurwitz's Freeness Property

Hurwitz's Freeness Property

Hurwitz's Freeness Property
Hurwitz's Freeness Property

a r X i v :0809.0550v 1 [m a t h .G M ] 3 S e p 2008Hurwitz’s Freeness Property In [2]Gauss devised an algorithm to solve in integers the equation

a x 2+2

b x y +

c y 2=m,(1)

where a,b,c,m are given integers.Consider the groups G :=GL(2,Z )/{±1}?SL(2,Z )/{±1}=:H.Let ?be an integer,let F be the set all quadratic forms f (X,Y ):=a X 2+2b X Y +c Y 2(2)with a,b,c integers and b 2?ac =?,and let F be the groupoid attached to the natural action of H on F .In Article 169of [2]Gauss reduces the solution of (1)to the computation of certain hom-sets in F (see below).Assume from now on that ?is a ?xed positive nonsquare integer.The group G acts on the set I of irrational real numbers by linear fractional transformations.Let I be the corresponding groupoid,and I ?the set of real numbers ?b ?√a where f as in (2)runs over the elements of F .Then H preserves I ?,and we can form the restricted groupoid I H ?issued from the action of H on I ?.In Section 73of [1]Dirichlet notes that above formula gives a canonical groupoid isomorphism from F to I H ?.

In Section 63of [3]Hurwitz shows that the groupoid I is free over one of

its sub oriented graph,giving a very simple description of the hom-sets of I H ?,

which Dirichlet had identi?ed to the hom-sets of F ,whose computation Gauss had reduced the solution of (1)to.

We wish to phrase Hurwitz’s statement in today’s language.

Say that the derivative x ′of a point x in I is the inverse of its fractional part,let g x be the image in G of

1

?x?110 ,

so that we have x=g x x′,letγ(x)be the corresponding morphism in I from x′to x,and letΓbe the sub oriented graph of I whose vertices are the points of I and whose arrows are theγ(x).

Then I is the groupoid freely generated byΓin the following sense.

Let?be an oriented graph morphism fromΓinto any category C.Assume that ?(γ(x))is invertible for all x in I.Then?extends uniquely to a functor from I to C.

The groupoid I has a very simple structure,which can be described as follows. To ease notation put x i:=x(i).

Let g be a nontrivial morphism in I from x to y.Then there is a unique pair (i,j)of nonnegative integers satisfying x i=y j,

g=γ(y0)···γ(y j?1)γ(x i?1)?1···γ(x0)?1,

and x i?1=y j?1if i and j are positive.

The composition of two such elements is tedious but easy to compute.

Let x be in I.Recall that the sequence(x i)is eventually periodic if and only if x has degree2over Q.This makes I H?computable.In particular the stabilizer in H of f in F is in?nite cyclic.However,I is highly uncomputable.

*

We said above that Gauss reduced the solution of(1)to the computation of certain hom-sets in F.Let’s be more precise.(We only indicate some of the main statements,directing the reader to[3]for a full treatment.)Assume that m is nonzero.

Say that a solution of(1)is a representation of m by f(f being given by(2)), and that such a representation is proper of X and Y are relatively prime.It clearly suf?ces to describe the set P of proper representations of m by f.

As a general notation,write[a,b,c]for the form(2).Let n be in N.Put

n2??

?n:=

form the set S n of those substitutions h in SL(2,Z)which satisfy fh=f n,and let u n be the map from S n to P attaching to h∈S n its?rst column.

Then the u n induce a bijection form the disjoint union of the S n onto P. References

[1]Dirichlet,Peter Gustav;Vorlesungen¨uber Zahlentheorie,1863.(“Lectures

on Number Theory”,AMS translation).

http://gallica.bnf.fr/

http://gdz.sub.uni-goettingen.de/no

对鲁棒控制的认识

对鲁棒控制的认识 姓名:_______________ 赵呈涛_______________ 学号:092030071 专业: 鲁棒控制(RobustControl )方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固 定控制器称为鲁棒控制器。 鲁棒控制的早期研究,主要针对单变量系统(SIS0)的在微小摄动下的不确 定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故

障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了 以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。现代鲁棒 控制是一个着重控制算法可靠性研究的控制器设计方法,际环其设计目标是找到在实境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。主要的鲁棒控制理论有: 1)Kharitonov 区间理论; 2)H控制理论; 3)结构奇异值理论理论。 面就这三种理论做简单的介绍。 1 Kharitonov区间理论1.1参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系 统常常不稳定;1932年,Nyquist给出了判断系统稳定性的频域判据,在控制系统设计时,用来在系统稳定性和回路增益之间进行折衷;1945年,Bode首次提出灵敏度函数的概念,对系统的参数不确定性进行定量的描述。在此基础上,Horowitz在1962年提出一种参数不灵敏系统的频域设计方法,此后,基于灵敏度分析的方法成为控制理论中对付系统参数不确定性的主要工具。不过,这种方法是基于无穷小分析的,在实际系统的设计中并不总是能收到良好效果。因为系统的参数不确定性通并不能看作无穷小扰动;另外灵敏度分析法一般要求知道对象的标称值,这在实际中往往也难以做到。于是,人们开始研究用有界扰动来刻画参数的不确定性,出现了鲁棒辨识方法。此法给出的辨识结果不是一个确定值,而是参数空间中的一个域(如超矩形、凸多面体、椭球等)。相应地, 不确定系统的参数空间设计方法也得到广泛而深入的研究。1984年,Barmish将前苏联 学者Kharitonov的区间多项式鲁棒稳定性的著名结果一一四多项式定理。引入控制界,掀起了在参数空间中研究系统鲁棒性的热潮。 1.2关于区间多项式的几个重要定理 参数摄动通常表现为独立摄动、线性相关摄动和多线性相关摄动3种模式。判断在相应的参数摄动模式下系统鲁棒稳定性的主要定理分别是:四多项式定理、棱边定理和映射定理。 2结构奇异值理论(理论) 2. 1结构奇异值理论的产生和L定义

劳斯判据总结

3-1 稳定性 1、稳定性的概念 2、判别系统稳定性的基本原则 线性系统稳定的充要条件为:所有特征根均为负数或具有负的实数部分;即:所有特征根均在复数平面的左半部分。 由于特征根就是系统的极点,因此,线性系统稳定的充要条件也可表述为:系统的极点均在s平面的左半平面。 显然,稳定性与零点无关。当有一个根落在右半部,系统不稳定。当有根落在虚轴上(不包括原点),此时为临界稳定,系统产生持续振荡。3-2 劳斯稳定判据 劳斯判据 劳斯判据步骤如下: 1)列出系统特征方程: a o S n - a i S nd a^ 0 a。0 (3-55 检查各项系数是否大于0,若是,进行第二步。 可见,a i,i =12川是满足系统稳定的必要条件。 2)按系统的特征方程式列写劳斯表 3 )考察劳斯阵列表中第一列各数的符号,如果第一列中各数a。、

a l、 b l、 c l、的符号相同,系统稳定;如果符号不同,系统不稳 定,且符号改变的次数等于系统具有的正实部特征根的个数。 通常a o 0,因此,劳斯稳定判据可以简述为劳斯表中第一列的各数均大于零。 如果劳斯表中第一列系数的符号有变化,其变化的次数等于该特征 方程式的根在S的右半平面上的个数,相应的系统为不稳定。 探※劳斯判据特殊情况 ?I) 劳斯表某一行中的第一项等于零,而该行的其余各项不等于零用一个很小的正数;来代替零这一项,据此算出其余的各项,完成劳斯表 如果第一列;上面的系数与下面的系数符号相同,则表示该方程 中有一对共轭虚根存在,相应的系统也属不稳定。 ?I I )劳斯表中出现全零行 表示相应方程中含有一些大小相等符号相反的实根或共轭虚根。 利用系数全为零行的上一行系数构造一个辅助多项式,并以这个辅助多项式导数的系数来代替表中系数为全零的行,完成劳斯表的排列。这些大小相等、符号相反的根可通过求解辅助方程得到,而且其根的数目总是偶数的。 例如:控制系统的特征方程为

鲁棒控制

鲁棒控制理论中的H∞控制理论 (浙江大学宁波理工学院信息科学与工程分院自动化) 【摘要】首先简要的介绍了鲁棒控制中的H∞控制理论,并把其发展分为两个阶段,而后就上当已存在的H∞控制的主要成果进行了讨论和归纳,还指出了H∞控制理论尚未解决的问题。 【关键词】H∞控制理论;非线性系统;时滞;范数 1.概述 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。主要的鲁棒控制理论有:Kharitonov区间理论;H∞控制理论;结构奇异值理论u理论; 鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。 2.H∞控制理论出现的背景及意义 1981年,加拿大著名学者Zames在其论文中引入了H∞范数作为目标函数进行优化设计,标志着H∞控制理论的诞生。Zames考虑了这样一个单入单出( SISO)系统的设计问题: 假设干扰信号属于某一有限能量的已知信号集,要求设计一个反馈控制器,使闭环系统稳定,且干扰对系统的影响最小。要解决这样的问题就必须在能够使闭环系统稳定的所有控制器中选出一个控制器使之相应的灵敏度函数的H∞范数最小。 虽然Zames 首先提出了H∞最优化问题,但是他没能给出行之有效的解法。

自动控制原理知识点总结教学资料

2013自动控制原理知识点总结

自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边

提高控制系统的鲁棒性与适应性

提高控制系统的鲁棒性与适应性 1、含义 鲁棒性:控制器参数变化而保持控制性能的性质。 适应性:控制器能适应不同控制对象的性质。 控制系统在其特性或参数发生摄动时仍可使品质指标保持不变的性能。鲁棒性是英文robustness一词的音译,也可意译为稳健性。鲁棒性原是统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系,内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。 2、控制系统设计要求(指标) (1)、结构渐近稳定性 以渐近稳定为性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的,并且对标称值的一个邻域内的每一种情况它也是渐近稳定的,则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外,还必须满足另外一些附加的条件。这些条件称为结构渐近稳定性条件,可用代数的或几何的语言来表述,但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量,包括增益裕量和相角裕量,它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大,其特性或参数的允许摄动范围一般也越大,因此它的鲁棒性也越好。 (2)、结构无静差性 以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节,即系统输出对参考输入的稳态跟踪误差等于零),并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的,那么称此控制系统是结构无静差的。使系统实现结构无静差的控制器通常称为鲁棒调节器。在采用其他形式的数学描述时,鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成,一部分称为镇定补偿器,另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型,因此可实现对参考输入和扰动的无静差控制。对于呈阶跃变化的参考输入和扰动信号,它

自动控制原理课程总结1

HEFEI UNIVERSITY 自动控制原理课程总结 系别电子信息与电气工程系 专业自动化 班级 09自动化(1)班 姓名 完成时间 2011.12.29

自动控制原理课程总结 前言 自动控制技术已广泛应用于制造、农业、交通、航空及航天等众多产业部门,极大地提高了社会劳动生产率,改善了人们的劳动环境,丰富了人民的生活水平。在今天的社会中,自动化装置无所不在,为人类文明进步做出了重要贡献。本学期我们开了自动控制原理这门专业课,下面主要介绍下我对这门课前五章的认识和总结。 一、控制系统的数学模型 1.传递函数的定义: 在线性定常系统中,当初是条件为零时,系统输出的拉氏变换与输入的拉氏变换之比。 (1)零极点表达式: (2)时间常数表达式: 2.信号流图

(1)信号流图的组成 节点:用来表示变量或信号的点,用符号“○”表示。 支路:连接两节点的定向线段,用符号“→”表示。(2)信号流图与结构图的关系 3.梅逊公式

其中:Δ=1-La+LbLc-LdLeLf+...成为特征试。 Pi:从输入端到输出端第k条前向通路的总传递函数 Δi:在Δ中,将与第i条前向通路相接触的回路所在项除去后所余下的部分,称为余子式。 La:所有单回路的“回路传递函数”之和 LbLc:两两不接触回路,其“回路传递函数”乘积之和 LdLeL:所有三个互不接触回路,其“回路传递函数”乘积之和“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数只积并且包含表示反馈极性的正负号。 二、线性系统的时域分 1.ζ、ωn坐标轴上表示如下: (1)闭环主导 极点:

当一个极点距离虚轴较近,且周围没有其他闭环极点和零点,并且该极点的实部的绝对值应比其他极点的实部绝对值小5倍以上。(2)对于任何线性定常连续控制系统由如下的关系: ①系统的输入信号导数的响应等于系统对该输入信号响应的导数; ②系统对输入信号积分的响应等于系统对该输入信号响应的积分,积分常数由初始条件确定。 2.劳斯判据: 设系统特征方程为 : 劳斯判据指出:系统稳定的充要条件是劳斯表中第一列系数都大于零,否则系统不稳定,而且第一列系数符号改变的次数就是系统特征方程中正实部根的个数。 劳斯判据特殊情况的处理 ⑴某行第一列元素为零而该行元素不全为零时——用一个很小的正数ε代替第一列的零元素参与计算,表格计算完成后再令ε→0。 ⑵某行元素全部为零时—利用上一行元素构成辅助方程,对辅助方程求导得到新的方程,用新方程的系数代替该行的零元素继续计算。 3.稳态误差 (1)定义: (2)各种误差系数的定义公式

算 法 的 鲁 棒 性

[论文笔记]集成方法提高神经网络的对抗鲁棒性 集成方法提高神经网络的对抗鲁棒性一、多个弱防御的集成不能形成强防御1.攻击者2.防御策略3.对抗样本生成方法4.干扰大小的度量5.实验6.结论二、简单集成神经网络1.攻击方法2.集成模型3.计算梯度4.实验5.结论三、 ensemble of specialists1.利用FGSM 方法得到模型的混淆矩阵:2.伪代码如下:3.实验考虑三种模型4.实验结果四、随机自集成1.思想2.taget攻击与untarget攻击3.网络设计4.伪代码如下:5.理论分析6.结论五、集成对抗训练1.前言 2.对抗训练 3.集成对抗训练六、对抗训练贝叶斯神经网络(adv-BNN)1.前言2.PGD攻击3.BNN4.adv-BNN 一、多个弱防御的集成不能形成强防御 1.攻击者 假设攻击者知道模型的各种信息,包括模型架构、参数、以及模型的防御策略(白盒攻击)。 考虑两种白盒攻击者: (1)静态 不知道模型的防御策略,因此静态攻击者可以利用现有的方法生成对抗样本,但不针对特定的防御策略。 (2)动态 知道模型的防御策略,可以自适应地制定攻击方法,比静态攻击者更强大。

2.防御策略 (1)feature squeezing 包括两个检测组件:reducing the color depth to fewer bits 和spatially smoothing the pixels with a median filter (2)specialist-1 ensemble method 根据对抗混淆矩阵将数据集分成K+1个子集,形成由K+1个分类器组成的一个集成分类器 (3)多个检测器集成 包括Gong、Metzen、Feinman三个人提出的对抗样本检测器; 3.对抗样本生成方法 利用优化方法生成对抗样本,最小化如下损失函数: loss(x′)=∣∣x′?x∣∣22+cJ(Fθ(x′),y)loss(x#x27;)=||x #x27;-x||_{2}^{2}+cJ(F_{theta}(x#x27;),y)loss(x′)=∣∣x′? x∣∣22?+cJ(Fθ?(x′),y) 其中c为超参数,该方法也称为CW攻击方法。 4.干扰大小的度量 用下式度量对抗样本与干净样本之间差异: d(x?,x)=∑i(x?x)2d(x^{*},x)=sqrt{sum_i(x^{*}-x)^{2}}d(x? ,x)=i∑?(x?x)2? 其中样本点都被归一化[0,1]之间。 5.1 攻击 feature squeezing 结论:feature squeezing 不是一种有效的防御方法。首先单独

劳斯-霍尔维茨稳定性判据

第三章控制系统的时域分析法 3.2 劳斯-霍尔维茨稳定性判据 稳定性是控制系统最重要的问题,也是对系统最基本的要求。控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。 常用的稳定性分析方法有: 1. 劳斯-赫尔维茨(Routh-Hurwitz)判据:这是一种代数判据。它是根据系统特征方程式来判断特征根在S平面的位置,来判断系统的稳定性. 2. 根轨迹法:这是一种利用图解来系统特征根的方法。它是以系统开环传递函数的某一参数为变量化出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。 3. 奈魁斯特(Nyquist)判据:这是一种在复变函数理论基础上建立起来的方法。它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。这一方法在工程上是得到了比较广泛的应用。 4. 李雅普诺夫方法上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,也适用于非线性系统。该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。 一、稳定性的概念 稳定性的概念可以通过图3-31所示的方法加以说明。考虑置于水平面上的圆锥体,其底部朝下时,我们施加一个很小的外力(扰动),圆锥体会稍微产生倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来的状态。而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的外力(扰动)后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态。

(完整版)自动控制原理知识点总结

@~@ 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择)

时滞系统的鲁棒稳定性分析_吴方向

时滞系统的鲁棒稳定性分析 X 吴方向 周宗锡 史忠科 戴冠中 (西北工业大学自动控制系?西安,710021) 摘 要 研究时滞系统的时滞独立稳定性和时滞相关稳定性问题。基于Bar balet 引理,得到了一类检验线性时滞系统稳定性的简单条件。进一步研究了一类含非线性不确定性时滞系统的鲁棒稳定性问题。数值例子表明,所得到的结果比已有结果的保守性小。关键词 时滞系统,时滞独立稳定性,时滞相关稳定性,鲁棒稳定性分类号 O 175 1 引 言 近年来,关于时滞系统的稳定性问题,经过许多学者的努力已取得了丰硕的成果[1—8]。根据所研究的稳定性是否与时滞大小有关,可以分为时滞独立稳定性问题[1—4]和时滞相关稳定性问题[5—8]。在这些研究中,一类是追求时滞独立稳定的充分必要条件,或者保证时滞相关稳定的最大滞后的精确估计,这导致了应用时计算复杂性等许多困难;另一类是寻求简单的充分条件,这又导致了一定的保守性。 本文从工程实用的角度出发,给出了一类简单的检验时滞系统稳定性的判据,并进一步研究了一类含非线性不确定性时滞系统的鲁棒稳定性。同已有的一些结果相比,本文得到的结果保守性较小。 2 时滞独立稳定性分析 在本文的推导中,需要下列Barbalet 引理: 引理1(Barbalet 引理)[9] 如果可导函数f (t )当t →+∞时有一个有限的极限值,而且f (t )的导数f a 是一致连续的,则当t →+∞时f a →0。 考虑下述线性多变量时滞系统 x a (t )=A x (t )+A 1x (t -S ), t ≥t 0 x (t )=U (t ), t 0-S ≤t ≤t 0 (1) 这里,x ∈R n 为状态向量,A ,A 1∈R n ×n 为状态矩阵,S >0为时间滞后,U (t )(t 0-S ≤t ≤t 0) 为初始条件,它绝对可积。 对于系统(1)的状态,由文献[10]有 d + ?x (t )?/d t ≤L (A )?x (t )?+‖A 1‖?x (t -S )? (2) 这里,???和‖?‖分别为向量范数和与之相容的矩阵范数,L (A )为在矩阵范数‖?‖下A 的测度。 对不等式约束方程(2)两边从t 0到t (t ≥t 0)积分,得 第14卷 增刊 V ol.14 Suppl.  控 制 与 决 策CON T ROL A N D D ECI SI ON 1999年11月  N o v.1999 X 国家自然科学基金(69774010)和西北工业大学“双新”计划基金资助课题 1999-04-17收稿,1999-06-09修回

鲁棒控制综述

鲁棒控制综述 课程目标 1.了解鲁棒控制研究的基本问题 2.掌握鲁棒控制的基础知识和基本概念 3.明确鲁棒控制问题及其形式化描述 4.掌握几种鲁棒稳定性分析与设计方法 5.掌握状态空间H∞控制理论 6.了解鲁棒控制系统的μ分析与μ综合方法 7.初步了解非线性系统鲁棒控制方法 8.掌握时滞系统的鲁棒控制稳定性分析 控制系统就是使控制对象按照预期目标运行的系统。 大部分的控制系统是基于反馈原理来进行设计的 反馈控制已经广泛地应用于工业控制、航空航天和经济管理等各个领域。 不确定性 在实际控制问题中,不确定性是普遍存在的 所描述的控制对象的模型化误差 可能来自外界扰动 因此,控制系统设计必须考虑不确定性带来的影响。 控制系统设计的任务 对于给定的控制对象和传感器,寻找一个控制器,使反馈控制系统能够在实际工作环境中按预期目标运行 ●实际控制对象就是具体的装置、设备或生产过程 ●通过各种建模方法,可以建立实际控制对象的模型 ●针对控制对象的模型,应用控制理论提供的设计方法设计出控制器,对实际控制对 象实施控制 ●控制系统的控制效果在很大程度上取决于实际控制对象模型的准确性 ●在控制系统设计中采用的模型与实际控制对象存在着一定的差异,即存在着模型不 确定性 ●控制系统的运行也受到周围环境和有关条件的制约 ●例如,在图1-1中,传感器噪声n和外部扰动d分别来自控制系统本身和控制系统 所处的环境,它们往往是一类未知的扰动信号 ●这种扰动不确定性对控制系统的运动将产生的影响 控制系统设计中需要考虑的不确定性 (1)来自控制对象的模型化误差; (2)来自控制系统本身和外部的扰动信号 ●需要一种能克服不确定性影响的控制系统设计理论 ●这就是鲁棒控制所要研究的课题 1.1.2 控制系统设计的基本要求 在控制系统设计中,往往把图1-1所示的反馈控制系统更一般化,考虑如图1-3所示的单位反馈控制系统,其中P是控制对象,C是控制器。

-自动控制原理知识点汇总

-自动控制原理知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变

自动控制理论知识点总结

1.自控系统的基本要求:稳定性、快速性、准确性(P13) 稳定性是由系统结构和参数决定的,与外界因素无关,这是因为控制系统一般含有储能元件或者惯性元件,其储能元件的能量不能突变。因此系统收到扰动或者输入量时,控制过程不会立即完成,有一定的延缓,这就使被控量恢复期望值或有输入量有一个时间过程,称为过渡过程。 快速性对过渡过程的形式和快慢提出要求,一般称为动态性能。 准确性过渡过程结束后,被控量达到的稳态值(即平衡状态)应与期望值一致。但由于系统结构,外作用形式及摩擦,间隙等非线性因素的影响,被控量的稳态值与期望值之间会有误差的存在,称为稳态误差。+ 2.选作典型外作用的函数应具备的条件:1)这种函数在现场或试验室中容易得到 2)控制系统在这种函数作用下的性能应代表在实际工作条件下的性能。3)这种函数的数学表达式简单,便于理论计算。 常用典型函数:阶跃函数,幅值为1的阶跃称为单位阶跃函数 斜坡函数 脉冲函数,其强度通常用其面积表示,面积为1的称为单位脉冲函数或δ函数 正弦函数,f(t)=Asin(ωt-φ),A角频率,ω角频率,φ初相角 3.控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。(P21) 静态数学模型:在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程 动态数学模型:描述变量各阶导数之间关系的微分方程 建立数学模型的方法:分析法根据系统运动机理、物理规律列写运动方程 实验法人为给系统施加某种测试信号,记录其输出响应,并用合适的数学模型去逼近,也称为系统辨识。 时域中的数学模型有:微分方程、差分方程、状态方程 复域中的数学模型有:传递函数、结构图 频域中的数学模型有:频率特性 4.非线性微分方程的线性化:切线法或称为小偏差法(P27) 小偏差法其实质是在一个很小的范围内,将非线性特性用一段直线来代替。 连续变化的非线性函数y=f(x),取平衡状态A为工作点,在A点处用泰勒级数展开,当增量很小时略去高次幂可得函数y=f(x)在A点附近的增量线性化方程y=Kx,其中K是函数f(x)在A 点的切线斜率。 5.模态:也叫振型。线性微分方程的解由特解和齐次微分方程的通解组成。 通解由微分方程的特征根决定,它代表自由运动。如果n阶微分方程的特征根是λ1,λ2……λn且无重根,则把函数e t1λ,e t2λ……e ntλ称为该微分方程所描述运动的模态。每一种模态代表一种类型的运动形态,齐次微分方程的通解则是它们的线性组合。 6.传递函数:线性定常系统的传递函数定义为零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比。(P30) 零初始条件是指输入量加于系统之前,系统处于稳定的工作状态,此时输出量及各阶导数为零;输入量是在t大于等于0时才作用于系统,因此在t=0-时,输入量及其各阶导数均为零。 1)传递函数是复变量s的有理真分式函数,且所有系数均为实数; 2)传递函数是一种用系统参数表示输出量与输入量之间关系的表达式,它只取决于系统或元件 的结构和参数,而与输入量的形式无关,也不反映系统内部的任何信息。 3)传递函数与微分方程有相通性。 4)传递函数的拉式反变换是脉冲响应

自动控制原理知识点总结

河南省郑州市惠济区河南商业高等专科学校,文化路英 才街2号 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 2.自动控制系统的两种常用控制方式是什么?(填空) 3.开环控制和闭环控制的概念?掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) sa 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) 第二章 1.控制系统的数学模型有什么?(填空) 2.了解微分方程的建立? 3.传递函数定义和性质?认真理解。(填空或选择) 4.七个典型环节的传递函数(必须掌握)。了解其特点。(简答) 5.动态结构图的等效变换与化简。三种基本形式,尤其是式2-61。主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。(化简) 6.系统的开环传递函数、闭环传递函数(重点是给定作用下)、误差传递函数(重 点是给定作用下):式2-63、2-64、2-66 第三章 1.P42系统的时域性能指标。各自的定义,各自衡量了什么性能?(填空或选择) 2.一阶系统的单位阶跃响应。(填空或选择) 3.二阶系统: (1)传递函数、两个参数各自的含义;(填空)

(2)单位阶跃响应的分类,不同阻尼比时响应的大致情况(图3-10);(填空)(3)欠阻尼情况的单位阶跃响应:掌握式3-21、3-23~3-27;参考P51例3-4的欠阻尼情况、P72习题3-6。 4.系统稳定的充要条件?劳斯判据的简单应用:参考P55例3-5、3-6。(分析题) 5.用误差系数法求解给定作用下的稳态误差。参考P72习题3-13。(计算题) 第四章 1.幅频特性、相频特性和频率特性的概念。 2.七个典型环节的频率特性(必须掌握)。了解其伯德图的形状。(简答题) 3.绘制伯德图的步骤(主要是L(ω)) 4.根据伯德图求传递函数:参考P110习题4-4。(分析题) 5.奈氏判据的用法:参考P111习题4-6。(分析题) 6.相位裕量和幅值裕量的概念、意义及工程中对二者的要求。(填空或判断) 7.开环频率特性与时域指标的关系中低频段、中频段、高频段各自影响什么性能?注意相位裕量和穿越频率各自影响什么性能?(填空或判断) 第五章 1.常用的校正方案有什么?(填空) 2.PID控制: (1)时域表达式P122式5-18 (2)P、PI、PD、PID控制各自的优缺点?(简答题) 第六章 填空

第七章 PID控制与鲁棒控制

第七章 PID 控制与鲁棒控制 7.1 引言 一、PID 控制概述 目前,基于PID 控制而发展起来的各类控制策略不下几十种,如经典的Ziegler-Nichols 算法和它的精调算法、预测PID 算法、最优PID 算法、控制PID 算法、增益裕量/相位裕量PID 设计、极点配置PID 算法、鲁棒PID 等。本节主要介绍PID 控制器的基本工作原理及几个典型设计方法。 1、三种控制规律 P 控制: p K G = ()∞↑?e K p ↓↓,但稳定性; I 控制: s T G i 1 = ; D 控制: ,s T G d =; 2、PID 的控制作用 (1) PD 控制: ()()() dt t du T K t u K t u d p p 112+= ()() ()s K K s T K s U s U G D p d p +=+== 112 PD 有助于增加系统的稳定性. PD 增加了一个零点D p K K z -=,提高了系统的阻尼,可改善暂态性能. (2) PI 控制:

()()()dt t u T K t u K t u t i p p ?+ =0 1 12 ()s K K s T K s G I p i p +=???? ??+=11 PI 提高了系统按稳态误差划分的型. (3)PID 控制 ()()()dt t du T K dt t u T K u K t u d p t i p p 10 112++ =? ()s K d K K s G D I p ++ = 7.2 PID 控制器及其参数的调整 一、PID 控制概述 1、PID 控制器的工作原理 下图为它的控制结构框图,典型PID 为滞后-超前校正装置。 由图可见,PID 控制器是通加对误差信号e(t)进行比例、积分和微分运算,其结果的加权,得到控制器的输出u(t),该值就是控制对象的控制值。PID 控制器的数学描述为:

自动控制原理基本概念总结

《自动控制原理》基本概念总结 1.自动控制系统的基本要求是稳定性、快速性、准确性 2.一个控制系统至少包括控制装置和控制对象 3.反馈控制系统是根据被控量和给定值的偏差进行调节的控制系统 4.根据自动控制系统是否形成闭合回路来分类,控制系统可分为开环控制系统、闭环控制系统。 根据信号的结构特点分类,控制系统可分为:反馈控制系统、前馈控制系统和前馈-反馈复合控制系统。根据给定值信号的特点分类,控制系统可分为:恒值控制系统、随动控制系统和程序控制系统。 根据控制系统元件的特性分类,控制系统可分为:线性控制系统、非线性控制系统。 根据控制信号的形式分类,控制系统可分为:连续控制系统、离散控制系统。 5.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程 6.系统的传递函数完全由系统的结构和参数决定 7.对复杂系统的方框图,要求出系统的传递函数可以采用梅森公式 8.线性控制系统的特点是可以应用叠加原理,而非线性控制系统则不能 9.线性定常系统的传递函数,是在零初始条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比。 10.信号流图中,节点可以把所有输入支路的信号叠加,并把叠加后的信号传送到所有的输出支路。 11.从控制系统稳定性要求来看,系统一般是具有负反馈形式。 12.组成控制系统的基本功能单位是环节。 13.系统方框图的简化应遵守信号等效的原则。 14.在时域分析中,人们常说的过渡过程时间是指调整时间 15.衡量一个控制系统准确性/精度的重要指标通常是指稳态误差 16.对于二阶系统来说,系统特征方程的系数都是正数是系统稳定的必要条件 17.若单位反馈系统在阶跃函数作用下,其稳态误差ess为常数,则此系统为0型系统 18.一阶系统的阶跃响应无超调 19.一阶系统 G(s)= K/(Ts+1)的T越大,则系统的输出响应达到稳态值的时间越长。 20.控制系统的上升时间tr、调整时间tS等反映出系统的快速性。 21.二阶系统当0<ζ<1时,如果ζ增加,则输出响应的最大超调量将减小。 22.对于欠阻尼的二阶系统,当阻尼比ξ保持不变时,无阻尼自然振荡频率ωn越大,系统的超调量σp不变 23.在单位斜坡输入信号作用下,?II型系统的稳态误差 ess=0 24.衡量控制系统动态响应的时域性能指标包括动态和稳态性能指标。 25.分析稳态误差时,将系统分为0型系统、I型系统、II型系统…,这是按开环传递函数中的积分环节数来分类的。 26.二阶系统的阻尼系数ξ=时,为最佳阻尼系数。这时系统的平稳性与快速性都较理想。 27.系统稳定性是指系统在扰动消失后,由初始偏差状态恢复到原来的平衡状态的性能。 28.系统特征方程式的所有根均在根平面的左半部分是系统稳定的充要条件。 29.如果系统中加入一个微分负反馈,将使系统的超调量减小。 30.确定根轨迹与虚轴的交点,可用劳斯判据判断。 31.主导极点的特点是距离虚轴很近。 32.根轨迹上的点应满足的幅角条件为∠G(s)H(s)等于±(2l+1)π (l=0,1,2,…) 33.如果要求系统的快速性好,则闭环极点应距离虚轴越远越好。 34.根轨迹的分支数等于特征方程的阶数/开环极点数,起始于开环传递函数的开环极点,终止于开环传递函数的开环零点。 35. 根轨迹与虚轴相交时,在该交点处系统处于临界稳定状态,系统阻尼为0

小干扰稳定的鲁棒性能指标及分析

小干扰稳定的鲁棒性能指标及分析 莫逆,杨素,刘锋,梅生伟 (清华大学 电力系统及发电设备安全控制和仿真国家重点实验室 北京100084) 摘 要:本文借助鲁棒性能分析方法,通过选取恰当的扰动和评价输出信号,构成电力系统小干扰稳定的鲁棒分析模型,提出采用系统从扰动输入到评价输出信号的2/H H ∞范数组合作为小干扰稳定的评价指标,全面反映 系统抑制振荡的能力。为验证该指标的正确性,本文选取4机2区域系统作为测试系统,与现有指标进行了对比研究,测试结果表明:本文提出的2/H H ∞组合物理意义清晰,直观有效,能全面反映系统的小干扰稳定性,显示出应用上的优越性。系统测试还表明:该指标可有效地应用于系统小干扰稳定性能的评估、控制器安装位置选择,以及指导控制器参数调整等方面。 关键词:小干扰稳定;低频振荡;2/H H ∞组合指标 0 引言 随着现代电力系统规模日益增大,低频振荡 问题时有发生,严重威胁电网的安全稳定,因此,电力系统的小干扰稳定研究一直是各国学者长期关注的问题。目前小干扰稳定研究最主要的指标是线性化系统状态矩阵的特征值和阻尼比。系统的特征值与系统的各种振荡模式对应,特征值实部的符号决定了系统的小干扰稳定性,而阻尼比则体现了某个振荡模式下的系统阻尼能力[1,4]。为了保证整个系统稳定性,研究小干扰稳定需要考虑所有振荡模式的阻尼,同时也必须考虑控制模式以及其他特征值。通常的控制设计方案只以振荡模式阻尼比为控制目标,有可能在改善一个模式的阻尼时引起其他模式的性能恶化。因此,如何实现多阻尼控制策略之间的相互协调在理论和工程两方面都是一个具有重要意义的课题。 鲁棒性分析方法中的2/H H ∞指标是从控制系统中提出,本质是定量描述系统输入输出增益,换句话说,是衡量系统对输入的抑制能力。其中,H ∞指标表示系统对最坏输入的抑制能力,而2H 指标则描述系统对全部频段输入的平均抑制能力[2,3] 。借鉴这一观点,本文提出采用2/H H ∞组合指标综合评价系统的小干扰稳定性能。 1 小干扰稳定的鲁棒性分析模型 电力系统的机电动态特性可以用微分代数方程进行统一描述。本文发电机采用三阶模型, 则其微分方程的具体形式为: 0m e ''''d0q f q d d d (1) (1)()M p p D T e v e x x i δ ωωωω?=-?=---??=---? (1-1) 其接口方程为: ''q a q q d l d d a d q l q 0()0()v r i e x x i v r i x x i ?=+-+-?=+--? (1-2) 其中: δ为发电机转子角度,ω为角速度标幺值, 0ω为角速度额定值,m p 为机械功率,' q e 为q 轴暂态电动势,D 为阻尼系数,' d0T 为d 轴暂态时间常数,M 为惯量时间常数,f v 为励磁电动势, d x 为d 轴电抗,' d x 为d 轴暂态电抗,q x 为q 轴电抗,a r 和l x 分别为定子电阻和漏抗,d i 和q i 分别为定子电流的d 轴和q 轴分量,d v 和q v 分别为定子电压的d 轴和q 轴分量。 为了消去代数变量,还必须考虑输电网络模型。建立系统状态方程,通过节点收缩得到系统的ODE 形式,并在平衡点处线性化,得到相对坐标下的小干扰稳定分析的状态方程模型[4]: ?=?x A x (1-3) 在系统(1-3)中添加干扰输入和评价输出信号, 即可得电力系统小干扰稳定的鲁棒分析模型[3]: ?=?+=?+1111x A x B w z C x D w (1-4) 其中,w 为干扰输入,z 为评价输出信号,1B 为干扰的输入增益矩阵,1C 为评价输出信号中状态变量的系数矩阵,11D 为评价输出信号中扰动的直接输出增益矩阵。 2 2/H H ∞组合指标 设系统从扰动输入w 到评价输出信号z 的 传递函数矩阵为()s zw T ,即: ()()()s s s =zw z T w (2-1) 根据Parseval 定理,可以推得传递函数矩阵 ()s zw T 的2H 范数2()s zw T 的物理意义为w 为脉冲输入时,评价输出信号z 的总的能量[2]。()s zw T 的H ∞范数等于系统的频率响应的最大奇异值的上界,它恰好等于系统的评价输出信号能量与扰动输入能量的比的上界,即:

自动控制原理总经典总结

《自动控制原理》总复习

第一章自动控制的基本概念 一、学习要点 1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对 象、控制器、反馈、负反馈控制原理等。 2.控制系统的基本方式: ①开环控制系统;②闭环控制系统;③复合控制系统。 3.自动控制系统的组成:由受控对象和控制器组成。 4.自动控制系统的类型:从不同的角度可以有不同的分法,常有: 恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。 5.对自动控制系统的基本要求:稳、快、准。 6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。 二、基本要求 1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。 2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制 系统稳、准、快三方面的基本要求。 3.了解控制系统的典型输入信号。 4.掌握由系统工作原理图画方框图的方法。 三、内容结构图

四、知识结构图 第二章 控制系统的数学模型 一、学习要点 1.数学模型的数学表达式形式 (1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。 2.数学模型的图形表示 (1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。 二、基本要求 1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变 量、输出变量、中间变量等概念,要准确掌握。 2、了解动态微分方程建立的一般方法及小偏差线性化的方法。 3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入 响应、零状态响应等概念有清楚的理解。 4、正确理解传递函数的定义、性质和意义。熟练掌握由传递函数派生出来的系统开环传递函 数、闭环传递函数、误差传递函数、典型环节传递函数等概念。(#) 5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图 及结构图的简化,并能用梅逊公式求系统传递函数。(##)

相关文档