文档库 最新最全的文档下载
当前位置:文档库 › RTL8188参考电路

RTL8188参考电路

电路原理图详解

电子电路图原理分析 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。 要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。 要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。 1.交流等效电路分析法 首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。 2.直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3.频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。 4.时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种 一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器(什么是电位器) 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。

SG3525功能简介和典型应用电路

PWM控制芯片SG3525功能简介 1.1 PWM控制芯片SG3525功能简介 随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。SG3525是用于驱动N沟道功率MOSFET。其产品一推出就受到广泛好评。SG3525系列PWM控制器分军品、工业品、民品三个等级。下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。 SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 1.1.1 SG3525引脚功能及特点简介 其原理图如图4.13下: 1.Inv.input(引脚1):误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

2.Noninv.input(引脚2):误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。 3.Sync(引脚3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。 4.OSC.Output(引脚4):振荡器输出端。 5.CT(引脚5):振荡器定时电容接入端。 6.RT(引脚6):振荡器定时电阻接入端。 7.Discharge(引脚7):振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。 8.Soft-Start(引脚8):软启动电容接入端。该端通常接一只5 的软启动电容。 https://www.wendangku.net/doc/646638171.html,pensation(引脚9):PWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。 10.Shutdown(引脚10):外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。 11.Output A(引脚11):输出端A。引脚11和引脚14是两路互补输出端。 12.Ground(引脚12):信号地。 13.Vc(引脚13):输出级偏置电压接入端。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

低成本RS-485自收发电路的参考设计

RS-485标准在工业控制、电力通讯、智能仪表等领域中使用广泛。但是,在工业控制等现场环境中,情况复杂,常会有电气噪声干扰传输线路;在多系统互联时,不同系统的地之间会存在电位差,形成接地环路,会干扰整个系统,严重时会造成系统的灾难性损毁;还可能存在损坏设备或危害人员的潜在电流浪涌等高电压或大电流。因此,对RS-485接口的隔离是非常有必要的。 ADM2483是一款集成了信号通道隔离和RS-485收发器的芯片。以单芯片实现了对RS-485接口的隔离,电路连接简单,设计方便,性能上远高于繁琐的光耦隔离485电路设计。在某些系统应用中,由于I/O口数量有限,因此我们希望半双工的RS-485收发器能够实现自收发功能,以节省用于控制RE与DE的两路I/O端口。目前,实现这一功能的主流方案是采用74HC14芯片。下面,我们采用74HC14与ADM2483实现RS-485接口的信号隔离自收发设计。 硬件电路 隔离RS-485接口电路 之前我们经常采用的485接口隔离电路是利用三个光耦隔离收发及控制信号,加上485收发器共需要4片IC,且采用光耦隔离需要限流及输出上拉电阻,必要时还会使用三极管驱动。设计电路繁琐,耗费时间长,如果没有之前使用光耦的经验,那么在选用光耦限流及输出上拉电阻方面会耗费很多不必要的时间;且光耦的输出信号上升时间较长,在与数字I/O端口相接时,需另加施密特整形才能保证信号的波形符合标准,如在FPGA、DSP等系统中的应用。 ADM2483是内部集成了磁隔离通道和485收发器的芯片,内部集成的磁隔离通道原理与光耦不同,在输入输出端分别有编码解码电路和施密特整形电路,确保了输出波形的质量。且磁隔离功耗仅为光耦的1/10,传输延时为ns级,从直流到高速信号的传输都具有超越光耦的性能优势。内部集成的低功耗485收发器,信号传输速率可达500Kbps,后端总线可支持挂载256个节点。具有真失效保护、电源监控以及热关断功能。 要实现隔离RS-485接口的电路设计只需在ADM2483的电源与地之间接一个104的去耦电容即可。当然,DC-DC隔离电源是必不可少的。其电路连接如下图:

电工基础电路图讲解

电路图基础知识讲解 对一个没有电工基础,或者刚入门的从业者,都比较迷茫,都会有这么一个问题,看到电路图,无从下手,不知道该从哪边学起,下面简单介绍下一些基础知识,供大家参考。 首先,要了解各个元件的有什么功能,有什么特点。说白了就是要了解各个元件有什么作用。 其次,要了解各个元件间的组合有什么功能。 再者,要知道一些基本的电路,比如:基本的电压源与电流源之间的相互转换电路,基本的运算放大电路等等。 然后,就是可以适当的看一点复杂的电路图,慢慢了解各个电路间电流的走向。 以上所说的模拟电路,还有数字电路就是要多了解一些‘门’的运用,比如说:与非门,与或门等等。还有在一些复杂的电路图上会有集成芯片,所以,你还要了解给个芯片引脚的作用是什么,该怎么接,这些可以在网上或书上查到,再有,提到一点就是一些电路中的控制系统,有复杂的控制系统,也有简单的控制系统,我说一个简单的,比如说单片机的,你就要了解这个单片机有多少引脚,各个引脚的功能是什么,这个单片机要一什么铺助电路想连接,这样组成一个完整的电路。 想学会电路图就是要你多看,多去了解,多去接触,这样更容易学会。 一、电子电路图的意义 电路图是人们为了研究和工程的需要,用约定的符号绘制的一种表示电路结构的图形。通过电路图可以知道实际电路的情况。这样,我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了;在设计电路时,也可以从容地在纸

上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功;而现在,我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高了工作效率。 二、电子电路图的分类 常遇到的电子电路图有原理图、方框图、装配图和印板图等 ( 一) 原理图 原理图就是用来体现电子电路的工作原理的一种电路图,又被叫做“电原理图”。这种图,由于它直接体现了电子电路的结构和工作原理,所以一般用在设计、分析电路中。分析电路时,通过识别图纸上所画的各种电路元件符号,以及它们之间的连接方式,就可以了解电路的实际工作时情况。图1 所示的就是一个收音机电路的原理图。 图一 ( 二) 方框图( 框图) 方框图是一种用方框和连线来表示电路工作原理和构成概况的电路图。从根本上说,这也是一种原理图,不过在这种图纸中,除了方框和连线,几乎就没有别的符号了。它和上面的原理图主要的区别就在于原理图上详细地绘制了电路的全部的元器

sg示范电路及详解

s g示范电路及详解文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

基于S G3525电压调节芯片的P W M B u c k三电平变换器摘要:阐述了用SG3525电压调节芯片实现PWM Buck三电平变换器的交错控制。相对于采用分立元件实现PWM Buck三电平变换器的交错控制而言,该控制方法电路简单,易于实现,可以较好地解决三电平波形的不对称问题。详细介绍了SG3525电压调节芯片,并给出了基于SG3525电压调节芯片的PWM Buck三电平变换器的具体设计方法。最后对输入电压为120V(90~180V),输出为48V/4A,开关频率50kHz的PWM Buck三电平变换器进行了实验验证。 关键词:PWM Buck三电平变换器;SG3525电压调节芯片;分立元件 0 引言 三电平变换器有下列优点: ——开关管的电压应力为输入电压的一半; ——可以大大减小储能元件的大小; ——续流二极管的电压应力为输入电压的一半。 因此,三电平变换器非常适用于高输入电压中大功率的应用场合。文献[1]详细分析了隔离与非隔离的三电平变换器的拓扑结构。 由于三电平变换器的开关数目多,对其实施有效的控制比较复杂。传统上,采用比较器、运算放大器和RS触发器等分立元件实现PWM三电平变换器的控制。但是,由于实现上述控制所需的分立元件众多,两个锯齿波不可能做到完全匹配,同时两个开关管的驱动电路也不可能完全相同,因此,两个开关管的占空比必然存在一定的差异,隔直电容Cb在一个周期内所提供的能量不可能相等,造成了三电平波形不对称。 本文采用电压调节芯片SG3525来实现PWM Buck三电平变换器的控制,可以大大减

2021年SG3525工作原理以及输出电路驱动电路

3.2 电压型PWM控制器SG3525 欧阳光明(2021.03.07) 字体[大][中][小] SG3525是美国Silicon General公司推出的PWM控制器,它的输出级采用推挽电路,双通道输出,每一通道的驱动电流最大值达500mA,能够直接驱动功率GTR和功率MOSFET。其工作频率高达400kHz,具有欠压关断、可编程软启动等特点。SG3525是一种性能优良、功能齐全、通用性强的单片集成PWM 控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,因而被广泛应用于开关电源、电机调速等控制电路中。 图3—9 SG3525引脚排列图 SG3525的引脚排列如图3—9所示,内部结构如图3—10所示。各引脚名称、功能和用法如表3—2所示。 图3—10 SG3525内部结构图 表3—2 SG3525引脚的名称、功能和用法 续表SG3525芯片内部集成了精密基准电源、误差放大器、带同步功能的振荡器、脉冲同步触发器、图腾柱式输出晶体管、PWM比较器、PWM锁存器、软启动电路、关断电路和欠压锁定电路。 芯片+5.1V基准电压精度为±1%,由于基准电压值在误差放大器的输入共模范围内,因此,无须外接电阻。SG3525可以工作在主

从模式,也可以与外部时钟同步。通过C T端(引脚⑤) 与放电端之间的电阻可以设置死区时间。 SG3525采用电压模式控制方式,工作原理波形如图3—11所示。振荡器输出的时钟信号触发PWM锁存器(Latch),形成PWM 信号的上升沿,使主电路的开关器件开通。误差放大器的输出信号与振荡器输出的三角波信号相比较,当三角波的瞬时值高于误差放大器的输出时,PWM比较器翻转,触发PWM锁存器,形成PWM 信号的下降沿,使主电路的开关器件关断。F/F触发器用作分频器,将PWM锁存器的输出分频,得到占空比为0.5、频率为振荡器频率一半的方波。 1. 软启动 SG3525的软启动电容接入端(引脚⑧) 上通常接一个5μF的软启动电容。充电过程中,由于电容两端的电压不能突变,因此,与软启动电容接入端相连的PWM比较器反相输入端处于低电平,PWM 比较器输出为高电平。此时,PWM锁存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。只有当软启动电容的充电电压使引脚⑧处于高电平时,SG3525才能开始工作。 图3—11 SG3525的工作原理波形 2. 关断操作 通过引脚⑩(关断端)来关闭SG3525的输出。当引脚⑩上的信号为高电平时,可以实现两个功能:PWM锁存器立即动作,同时软

PCB印制电路板设计规范(doc 20页)完美版

印制电路板设计规范 一、适用范围 该设计规范适用于常用的各种数字和模拟电路设计。对于特殊要求的,尤其射频和特殊模拟电路设计的需量行考虑。 应用设计软件为Protel99SE。也适用于DXP Design软件或其他设计软件。二、参考标准 GB 4588.3—88 印制电路板设计和使用 Q/DKBA—Y004—1999 华为公司内部印制电路板CAD工艺设计规范 三、专业术语 1.PCB(Print circuit Board): 印制电路板 2.原理图(SCH图):电路原理图,用来设计绘制,表达硬件电路之间各种 器件之间的连接关系图。 3.网络表(NetList表):由原理图自动生成的,用来表达器件电气连接的关 系文件。 四、规范目的 1.规范规定了公司PCB的设计流程和设计原则,为后续PCB设计提供了设 计参考依据。 2.提高PCB设计质量和设计效率,减小调试中出现的各种问题,增加电路 设计的稳定性。 3.提高了PCB设计的管理系统性,增加了设计的可读性,以及后续维护的 便捷性。 4.公司正在整体系统设计变革中,后续需要自主研发大量电路板,合理的 PCB设计流程和规范对于后续工作的开展具有十分重要的意义。 五、SCH图设计 5.1 命名工作 命名工作按照下表进行统一命名,以方便后续设计文档构成和网络表的生成。有些特殊器件,没有归类的,可以根据需求选择其英文首字母作为统一命名。 表1 元器件命名表 按键,命名为U100,在Lib Ref中描述为KEY。这样使得整个原理图更加清晰,功能明确。 5.2 封装确定 元器件封装选择的宗旨是

1. 常用性。选择常用封装类型,不要选择同一款不常用封装类型,方便元器件购买,价格也较有优势。 2. 确定性。封装的确定应该根据原理图上所标示的封装尺寸检查确认,最好是购买实物后确认封装。 3. 需要性。封装的确定是根据实际需要确定的。总体来说,贴片器件占空间小,但是价格贵,制板相同面积成本高,某些场合下不适用。直插器件可靠性高,焊接方便,但所占空间大,高性能的MCU已经逐步没有了直插封装。实际设计应该根据使用环境需求选择器件。如下几个例子说明情况: a. 电阻贴片和直插的选择 选择直插和贴片电阻主要从精度和功率方面考虑。直插电阻一般精度较高,可以选择0.1%甚至更高的精度,功率可以根据需要选择。常见直插电阻的功率为1/4W。一般在模拟回路采用直插封装,能够更好的保证精度。(特殊情况下也可选择贴片,但须考虑成本问题) 贴片电阻精度一般常见的为5%。功率为1/10W。基本用在数字电路。成本比直插高,但是占空间小。 b. BGA封装的问题 是否选择BGA封装的元器件,主要考虑实际的需求。BGA的特点是占空间小,管脚集成度高,可靠性好,受电磁干扰程度小。但是由于管脚密闭,对于管脚的调试不方便。同时由于BGA的环形管脚排布,使得BGA封装的元器件对于电路板设计有更高要求,一般至少需要4层以上。BGA越复杂,板的层数要求越高,设计成本越高。 c. 电源芯片的封装问题 一般的数字电路常用的稳压器芯片如AS1117-3.3/1.2等。选择封装的时候应该注意其三个管脚的定义是否与设计相同。确定电源芯片的封装定义。

SG3525工作原理以及输出电路驱动电路

图3—9 SG3525引脚排列图 SG3525的引脚排列如图3—9所示,内部结构如图3—10所示。各引脚名称、功能和用法如表3—2所示。

图3—10 SG3525内部结构图 表3—2 SG3525引脚的名称、功能和用法

续表 SG3525芯片内部集成了精密基准电源、误差放大器、带同步功能的振荡器、脉冲同步触发器、图腾柱式输出晶体管、PWM比较器、PWM锁存器、软启动电路、关断电路和欠压锁定电路。

芯片+5.1V基准电压精度为±1%,由于基准电压值在误差放大器的输入共模范围内,因此,无须外接电阻。SG3525可以工作在主从模式,也可以与外部时钟同步。通过C T端(引脚⑤) 与放电端之间的电阻可以设置死区时间。 SG3525采用电压模式控制方式,工作原理波形如图3—11所示。振荡器输出的时钟信号触发PWM锁存器(Latch),形成PWM 信号的上升沿,使主电路的开关器件开通。误差放大器的输出信号与振荡器输出的三角波信号相比较,当三角波的瞬时值高于误差放大器的输出时,PWM比较器翻转,触发PWM锁存器,形成PWM信号的下降沿,使主电路的开关器件关断。F/F触发器用作分频器,将PWM锁存器的输出分频,得到占空比为0.5、频率为振荡器频率一半的方波。 1. 软启动 SG3525的软启动电容接入端(引脚⑧) 上通常接一个5μF的软启动电容。充电过程中,由于电容两端的电压不能突变,因此,与软启动电容接入端相连的PWM比较器反相输入端处于低电平,PWM比较器输出为高电平。此时,PWM锁存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。只有当软启动电容的充电电压使引脚⑧处于高电平时,SG3525才能开始工作。 图3—11 SG3525的工作原理波形 2. 关断操作 通过引脚⑩(关断端)来关闭SG3525的输出。当引脚⑩上的信号为高电平时,可以实现两个功能:PWM锁存器立即动作,同时软启动电容开始放电。放电电流只有150μA,如果关断信号为短暂的高电平,PWM信号将被中止,但此时软启动电容没有明显的放电过程。利用这个特点,可以很容易地实现逐个脉冲限幅。但是,如果引脚⑩上的高电平维持较长的时间,软启动电容将充分放电,当关断信号结束时,将进入软启动过程。特别要注意的是引脚⑩不应悬空,因为从该脚耦合进来的噪音信号将影响电路的正常工作。

SG3525 中文资料 引脚功能 应用电路

SG3525 中文资料引脚功能应用电路 1 PWM控制芯片SG3525功能简介 随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。SG3525是用于驱动N沟道功率M OSFET。其产品一推出就受到广泛好评。SG3525系列PWM控制器分军品、工业品、民品三个等级方面。下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。 SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 2 SG3525引脚功能及特点简介 其原理图如图1下: 图1 SG3525内部电路图

图2 SG3525引脚图 1.Inv.input(引脚1):误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。 2.Noninv.input(引脚2):误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。 3.Sync(引脚3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。 4.OSC.Output(引脚4):振荡器输出端。 5.CT(引脚5):振荡器定时电容接入端。 6.RT(引脚6):振荡器定时电阻接入端。 7.Discharge(引脚7):振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

48V电动车充电高清电路图与原理详解

工作原理 220V 交流电经 LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经 C3 滤波后形成约 300V 的直流电压,300V 直流电压经过启动电阻 R4 为脉宽调制集成电路 IC1 的 7 脚提供启动电压,IC1 的 7 脚得到启动电压后,(7 脚电压高于 14V 时,集成电路开始工作),6 脚输出 PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过 VT1 的 S 极-D 极-R7-接地端.此时开关变压器 T1 的 8-9绕产生感应电压,经 VD6,R2 为 IC1 的 7 脚提供稳定的工作电压,4 脚外接振荡阻 R10 和振荡电容 C7 决定 IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器 4N35)配合用来稳定充电压,调整 RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级 6-5 绕组输出的电压经快速恢复二极管 VD60 整流,C18 滤波得到稳定的电压(约 53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻 R38,稳压二极管 VZD1,滤波电容 C60,为比较器 IC3(LM358)提供 12V 工作电源,VD12 为 IC3 提供基准压,经 R25,R26,R27 分压后送到 IC3 的 2 脚

和 5 脚。 正常充电时,R33 上端有 0.18-0.2V 的电压,此电压经 R10 加到 IC3 的3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动 VT2 导通,散热风扇得开始工作,第二路经过电阻 R34 点亮双色二极管 LED2 中的红色发光二极管,第三路输入到 IC3 的 6 脚,此时 7 脚输出低电平,双色发光二极管 LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到 44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管 LED2 中的红色发光二极管熄灭,三极管 VT2 截止,风扇停止运转,同时 IC3 的 7 脚输出高电平,此高电平一路经过电阻 R35 点亮双色发光二极管 LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经 R52,VD18,R40,RP2 到达 IC2 的 1 脚,使输出电压降低,充电器进入 200MA-300MA 的涓流充电阶段(浮充),改变 RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障 这种类型充电器的常见故障有下面几种情况: 1、高压电路故障:该部分路出现问题的主要现象是指示灯不亮。通常还伴有保险丝烧断,此时应检查整流二极管 VD1-VD4 是否击穿,电容 C3 是否炸裂或者鼓包, VT2 是否击穿, R7,R4 是否开路,此时更换损坏的元件即可排除故障,若经常烧 VT1,且 VT1 不烫手,则应重点检查 R1,C4,VD5 等元器件,若VT1 烫手,则重点检查开关变压器次级路中的元器件有无短路或者漏电。若红色指示灯闪烁,则故障多数是由 R2 或者 VD6 开路,变压器 T1 线脚虚焊引起。 2、低压电路故障:低压电路中最常见的故障就是电流检测电阻 R33 烧断,此时的故障现象是红灯一直亮,绿灯不亮,输出电压低,电瓶始终充不进电,另外,若 RP2 接触不良或者因振动导致阻值变化(充电器注明不可随车携带就是怕 RP2 因振动而改变阻值),就会导致输出电压移。若输出电压偏高,电瓶会过充,严重时会失水-发烫,最终导致充爆,若输出电压偏低,会导致电瓶欠充,缩短其寿命。

sg3525示范电路及详解

基于SG3525电压调节芯片的PWM Buck三电平 变换器 摘要:阐述了用SG3525电压调节芯片实现PWM Buck三电平变换器的交错控制。相对于采用分立元件实现PWM Buck三电平变换器的交错控制而言,该控制方法电路简单,易于实现,可以较好地解决三电平波形的不对称问题。详细介绍了SG3525电压调节芯片,并给出了基于SG3525电压调节芯片的PWM Buck三电平变换器的具体设计方法。最后对输入电压为120V(90~180V),输出为48V/4A,开关频率50kHz的PWM Buck三电平变换器进行了实验验证。 关键词:PWM Buck三电平变换器;SG3525电压调节芯片;分立元件 0 引言 三电平变换器有下列优点: ——开关管的电压应力为输入电压的一半; ——可以大大减小储能元件的大小; ——续流二极管的电压应力为输入电压的一半。 因此,三电平变换器非常适用于高输入电压中大功率的应用场合。文献[1]详细分析了隔离与非隔离的三电平变换器的拓扑结构。 由于三电平变换器的开关数目多,对其实施有效的控制比较复杂。传统上,采用比较器、运算放大器和RS触发器等分立元件实现PWM三电平变换器的控制。但是,由于实现上述控制所需的分立元件众多,两个锯齿波不可能做到完全匹配,同时两个开关管的驱动电路也不可能完全相同,因此,两个开关管的占空比必然存在一定的差异,隔直电容Cb在一个周期内所提供的能量不可能相等,造成了三电平波形不对称。 本文采用电压调节芯片SG3525来实现PWM Buck三电平变换器的控制,可以大大减小由分立元件实现时所带来的三电平波形不对称的问题,实现方法简单有效。 1 Buck三电平变换器 1.1 三电平两种开关单元 文献[2]分析了三电平DC/DC变换器的推导过程:用两只开关管串联代替一只开关管以降低电压应力,并引入一只箝位二极管和箝位电压源(它被均分为两个相等的电压源)确保两只开关管电压应力均衡。电路中开关管的位置不同,其箝位电压源与箝位二极管的接法也不同。文中提取出两个三电平开关单元如下图1所示。图1(a)中,箝位二极管的阳极与箝位电压源的中点相连,称之为阳极单元;图1(b)中,箝位二极管的阴极与箝位电压源的中点相连,称之为阴极单元。 (a)三电平阳极单元(b)三电平阴极单元 图1 两种三电平开关单元 1.2 Buck三电平变换器

继电器控制电路模块及原理讲解

能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。 工作原理: 如图所示。V1为单结晶体管BT33C,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导

sg示范电路及详解

基于SG3525电压调节芯片的PWM Buck三电平变换 器 摘要:阐述了用SG3525电压调节芯片实现PWM Buck三电平变换器的交错控制。相对于采用分立元件实现PWM Buck三电平变换器的交错控制而言,该控制方法电路简单,易于实现,可以较好地解决三电平波形的不对称问题。详细介绍了SG3525电压调节芯片,并给出了基于SG3525电压调节芯片的PWM Buck三电平变换器的具体设计方法。最后对输入电压为120V(90~180V),输出为48V/4A,开关频率50kHz的PWM Buck三电平变换器进行了实验验证。 关键词:PWM Buck三电平变换器;SG3525电压调节芯片;分立元件 0 引言 三电平变换器有下列优点: ——开关管的电压应力为输入电压的一半; ——可以大大减小储能元件的大小; ——续流二极管的电压应力为输入电压的一半。 因此,三电平变换器非常适用于高输入电压中大功率的应用场合。文献[1]详细分析了隔离与非隔离的三电平变换器的拓扑结构。 由于三电平变换器的开关数目多,对其实施有效的控制比较复杂。传统上,采用比较器、运算放大器和RS触发器等分立元件实现PWM三电平变换器的控制。但是,由于实现上述控制所需的分立元件众多,两个锯齿波不可能做到完全匹配,同时两个开关管的驱动电路也不可能完全相同,因此,两个开关管的占空比必然存在一定的差异,隔直电容Cb在一个周期内所提供的能量不可能相等,造成了三电平波形不对称。 本文采用电压调节芯片SG3525来实现PWM Buck三电平变换器的控制,可以大大减小由分立元件实现时所带来的三电平波形不对称的问题,实现方法简单有效。 1 Buck三电平变换器 1.1 三电平两种开关单元 文献[2]分析了三电平DC/DC变换器的推导过程:用两只开关管串联代替一只开关管以降低电压应力,并引入一只箝位二极管和箝位电压源(它被均分为两个相等的电压源)确保两只开关管电压应力均衡。电路中开关管的位置不同,其箝位电压源与箝位二极管的接法也不同。文中提取出两个三电平开关单元如下图1所示。图1(a)中,箝位二极管的阳极与箝位电压源的中点相连,称之为阳极单元;图1(b)中,箝位二极管的阴极与箝位电压源的中点相连,称之为阴极单元。 (a)三电平阳极单元(b)三电平阴极单元 图1 两种三电平开关单元 1.2 Buck三电平变换器 为了确保两只开关管的电压应力相等,三电平变换器一般由上述两种开关单元共同组成。文献[2]所分析的半桥式三电平变换器的推导思路,可以推广到所有的直流变换器中,由此提出了一族三电平变换器拓扑。图2为Buck三电平变换器主电路拓扑及其4个工作模态。 模态1 如图2(a)所示。在t=0时刻,触发开关管S2,使S2导通,二极管D2则反偏截止,电压源Vin通过隔直电容Cb给电感L充电。 模态2 如图2(b)所示。在t=t1时刻,关断S2,则D2导通,电路由D1及D2续流,电感L放电。 模态3 如图2(c)所示。直至t=t2时刻,控制电路使S1导通,二极管D1则反偏截止,隔直电

SG3525芯片

SG3525芯片 SG3525 是一款功能齐全、通用性强的单片集成PWM 芯片。由基准电压调整器、振荡器、误差放大器、比较器、锁存器、欠压锁定电路、闭锁控制电路、软起动电路、输出电路构成(图一)。因其外围电路简单,故将SG3525集成电路应用于各类开关电源、斩波器的控制具有较高的性价比。 图一、SG3525内部结构 一、S G3525的主要特点 其主要特点为:输出级采用推挽输出,双通道输出,占空比0一50%可调,每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。可直接驱动功率MOS管,工作频率高达500KHz,具有欠压锁定、过压保护和软启动等功能。该芯片内部电路由基准电压源、振荡器、误差放大器、PWM比较器与锁存器、分相器、欠压锁定输出驱动级,软启动及关断电路等组成。可正常工作的温度范围是0—70C°,基准电压为5.1士1%,工作电压范围很宽,为8V到35V。 二、S G3525引脚端子的功能 SG3525采用16端双列直插DIP封装,各引脚端子(图二)功能如下: (1)INV.Input(反相输入端1):误差放大器的反相输入端,此端通常与9脚构成负反馈。(2)N.I.Input(同相输入端2):此端通常接到基准电压16脚的分压电阻上,取得基准比较电压与反相输入端的取样电压相比较。 (3)SYNC(同步端3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。

图二、SG3525引脚 (4)OSCoutPut(同步输出端4):同步脉冲输出。作为多个芯片同步工作时使用。如不需多个芯片同步工作时,3脚和4脚悬空。 (5)CT(振荡电容端5):振荡电容接至5脚,另一端直接接至地端。其取值范围为0.001uF 到0.luF。正常工作时,在CT两端可以得到一个从0.7V到3.6V变化的锯齿波。 (6)RT(振荡电阻端6):振荡电阻一端接至6脚,另一端直接接至地端。RT的阻值决定了内部恒流值对CT充电,其取值范围为2KΩ到150KΩ,RT和CT越大充电时间越长,反之则充电时间短。 (7)Discharge(放电端7):CT的放电由5、7两端的死区电阻RD决定。把充电和放电回路分开,有利于通过死区电阻来调节死区时间,使死区时间调节范围更宽。其取值范围为0Ω到500Ω。放电电阻RD和CT越大放电时间越长,反之则放电时间短。 (8)Csoft—start(软启动端8):比较器的反相端即软启动器控制端8,端8可外接软启动电容,该电容由内部的50uA恒流源充电。 (9)Comp (补偿端9):在误差放大器输出端9脚与误差放大器反相输入端1脚间接电阻与电容,构成PI调节器,补偿系统的幅频、相频响应特性。 (10)Shutdown(关断端10):10端为PWM锁存器的一个输入端,一般在10端接入过流检测信号。当脚10电压大于0.7V时,芯片将进行限流操作,当脚10电压超过1.4V时,将使PWM锁存器关断,直至下一个时钟周期才能够恢复。 (11)outPutA,0utPutB(脉冲输出端11、14):输出末级采用推挽输出电路,驱动场效应功率管时关断速度更快11脚和14脚相位相差180°,拉电流和灌电流峰值达200mA。由于存在开闭滞后,使输出和吸收间出现重迭导通"在重迭处有一个电流尖脉冲,持续时间约为100ns。可以在推挽输出电路电压输入端VC处接一个约0.1uf的电容滤去电压尖峰。(12)Ground(接地端12):该芯片上的所有电压都是相对于Ground而言,即是功率地也是信号地。在实验电路中,由于接入误差放大器反向输入端的反馈电压也是相对与12脚而

SG3525变压器参考

SG3525中文资料引脚图应用电路图(1) 简介:SG3525中文资料引脚图应用电路图随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用。为此,美国硅通用半导体公司推出了SG3525,以用于驱动 ... 关键字:SG3525 SG3525中文资料引脚图应用电路图 随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用。为此,美国硅通用半导体公司推出了SG3525,以用于驱动N 沟道功率MOSFET。SG3525是一种性能优良、功能齐全和通用性强的单片集成PWM控制芯片,它简单可靠及使用方便灵活,输出驱动为推拉输出形式,增加了驱动能力;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,同时能限制最大占空比。其性能特点如下: 1)工作电压范围宽: 8~35V。 2)内置5.1 V±1.0%的基准电压源。 3)芯片内振荡器工作频率宽100Hz~400 kHz。 4)具有振荡器外部同步功能。

5)死区时间可调。为了适应驱动快速场效应管的需要,末级采用推拉式工作电路,使开关速度更陕,末级输出或吸入电流最大值可达400mA。 6)内设欠压锁定电路。当输入电压小于8V时芯片内部锁定,停止工作(基准源及必要电路除外),使消耗电流降至小于2mA。 7)有软启动电路。比较器的反相输入端即软启动控制端芯片的引脚8,可外接软启动电容。该电容器内部的基准电压Uref由恒流源供电,达到2.5V的时间为t=(2.5V/50μA)C,占空比由小到大(5 0%)变化。 8)内置PWM(脉宽调制)。锁存器将比较器送来的所有的跳动和振荡信号消除。只有在下一个时钟周期才能重新置位,系统的可靠性高。 l 脉宽调制器SG3525简介 1.1 结构框图 SG3525是定频PWM电路,采用原理16引脚标准DIP封装。其各引脚功能如图1所示,内部原理框图如图2所示。

相关文档