文档库 最新最全的文档下载
当前位置:文档库 › 钢筋接头机械连接技术

钢筋接头机械连接技术

钢筋接头机械连接技术
钢筋接头机械连接技术

钢筋接头机械连接技术

——在长江三峡工程的应用与实践

周宇刘光钱兴喜

(三联总公司湖北宜昌三峡)

【摘要】三峡工程钢筋工程量大,钢筋粗而密集,体形多变,技术要求高,传统的钢

筋接头连接方法搭接绑扎和焊接,一则成本高,二则时间长,无法满足施工要求。钢筋

机械连接技术第一次在三峡工程中广泛采用,成功地解决了钢筋接头这一难题,值得在

水电工程中推广应用。

【关键词】三峡工程钢筋接头机械连接应用实践

1概况

水工建筑物施工过程中,钢筋接头连接一直是一道消耗时间较长、劳动强度大、技术要求高的工序。多年来,传统的连接方法是搭接绑扎和焊接,根据SDJ207-82《水工混凝土施工规范》规定:Φ25以上的钢筋不能用搭接绑扎连接,只能用焊接;Φ28以上的钢筋宜用熔槽焊或帮条焊接。接头的焊接工作量很大,而且钢筋焊接的质量由于受工作环境、气候、焊接技术及检验等多种因素的影响和制约,焊接质量难于保证,因此钢筋接头的施工常成为制约工期的重要环节。

近年来,水工建筑工程向着大型化的方向发展,高层建筑、大跨度、重吨位桥梁以及核电站的建设,钢筋用量越来越多、直径越来越粗、强度越来越大、配筋越来越密集,致使钢筋接头施工越来越困难,成为制约工期和质量的重要因素。国内外对此亦十分重视,并进行了大量的研究和开发。美国规范规定,对受力复杂区大断面钢筋不允许焊接,采用加长绑扎搭接长度的办法解决。如广州抽水蓄能电站的高压岔管,没有钢衬,是钢筋混凝土岔管,钢筋为Φ36的Ⅱ级螺纹钢筋,按美国规范搭接45倍直径,指导施工的美国专家不准在钢筋上施焊,实践证明,受力情况良

好。欧洲和日本八十年代初就试行机械连接,德国在马来西亚一个工程使用冷镦粗直螺纹连接技术,日本大成公司在鲁布格电站建设中也用过冷挤压连接技术。

2钢筋机械连接技术

近十年来,我国一些从事金属加工、金属结构研究、建筑科学研究及建筑施工单位等,对钢筋接头机械连接的各种型式进行探索,开发出了冷挤压、普通锥螺纹(B级)、镦粗锥螺纹(A级)、普通直螺纹(B级)及镦粗直螺纹(A级)等技术,并对各种连接型式的机械和力学性能进行了大量研究和试验,取得了可喜的成果,已广泛应用于建筑工程中,取得了很好的社会效益和经济效益。但在水电工程中由于水工建筑物受力复杂、影响面大、工作条件恶劣等因素,更主要的是无依据可寻,故使用得太少。近年来,在水口电站的局部工作面上和天生桥一级的部份次要部位上进行了试用,取得了示范性的效果。

钢筋接头的机械连接就是用一个套子将需要连接的两根钢筋头通过机械加工连为一体。目前,我国广泛采用的钢筋接头机械连接主要是冷挤压和螺纹连接两种方法。

2.1冷挤压连接

根据不同的钢筋直径,选用不同型号的套筒,套筒为冷拨无缝钢管制成。把钢筋插入套筒内,用同规格的液压钳沿径向挤压套筒,形成数道压痕,使产生塑性变形的套筒与钢筋紧密咬合,把两根钢筋连为一体。不同强度和直径的钢筋压痕道数各不相同。

冷挤压设备主要由泵站、液压钳及管路等组成,液压钳根据不同直径的钢筋而选用不同型号的压头。外形检验主要用卡规、游标卡尺及经泵站压力表数值控制。

2.2螺纹连接

螺纹连接主要有直螺纹和锥螺纹两种。根据不同的钢筋直径选用不同的螺纹套筒,把端部加工成螺纹的钢筋连成一体,螺纹套筒用无缝钢管加工而成。为保证钢筋端部车丝后断面面积不变,使钢筋等强度连接,故把钢筋端头镦粗后再加工,镦粗采用热镦或冷镦。

近年来,又开发出冷滚压螺纹和冷轧螺纹,由于钢筋经冷加工,接头处硬度和强度均高于母材,故不需镦粗,也能达到A级标准。

螺纹连接设备主要由镦粗机、套丝机(车床)或滚丝机等组成。外形检验主要用牙形规、套规(塞规)及游标卡尺等组成。

3钢筋机械连接技术的优越性

钢筋机械连接与焊接相比,有以下突出的优点:

(1)接头性能可靠,接头强度大于钢筋母材强度;

(2)工艺简单,操作及检验方便,无需特殊的技能,一般人员稍加培训即可上岗操作;

(3)施工速度快,工效比焊接提高10倍以上;

(4)工艺适应性强,施工不受环境和气候的影响,雨天同样可以施工,尤其适合于可焊性差的钢筋的连接;

(5)应用范围广,机械连接可用于弯折筋、短距筋、钢筋笼及窄缝中不能转动的钢筋等;

(6)便于管理,施工中能源、设备及人员等投入少,减轻了现场的协调管理力度;

(7)经济,省电、省料及减少人力投入,降低了施工成本。

只要正确掌握加工和连接工艺,严格按机械连接的规范和规程实施,并严格检查,质量是完全可以保证的,特别是直螺纹连接凭直观就能检查,锥螺纹使用丝锥便能检查,冷挤压需使用卡规便能检查。

4三峡工程钢筋机械连接使用情况

三峡工程是举世瞩目的工程,设计标准、施工质量要求都很高,钢筋用量非常大,许多部位用的是Φ25以上的粗径钢筋,且含筋量很高。如永久船闸地下输水隧洞工程,设计混凝土量约50万立方米,钢筋用量达约5万吨,其中Φ28~Φ36的钢筋约占70%,约3.5万吨。厂坝段部份区域使用Φ40的Ⅲ级高强钢筋,这些粗径高强钢筋,可焊性差,如全部采用焊接方法,不仅工期难以满足施工进度的要求,质量也很难保证。钢筋接头的连接成为摆在建设、设计、监理及施工单位四方面前十分重要的课题。

永久船闸地下输水系统是三峡大坝中唯一的地下工程,水力学条件十分复杂、体形多变,导致钢筋粗大、密集;且因其工作面狭窄、处于长江水面以下,地下水多,致使钢筋接头连接的困难更为突出。地下输水系统共有竖井36个,高度大部份在90米左右,受力钢筋大部份是Φ36的Ⅱ级螺纹筋,部份竖井砼施工采用滑模或滑框翻模。其中中隔墩大井,每上升一米约有25吨钢筋,有200多个接头,如以每天滑升2米计算,则接头有400多个;如采用焊接方法连接,则需用约15台焊机同时施焊,方能满足进度要求;但高空作业,混凝土浇筑、模板滑升、钢筋吊装、埋件安装等多工序同时进行,工作面既没有放置12台焊机的空间,亦没有这么多的合格焊工;另外,钢筋最为复杂和密集的闸室段,φ36的钢筋多达8层,体形复杂,

纵横交错,空间十分狭窄,施焊十分困难;故传统的连接工艺已不能满足优质快速施工的要求。

4.1三峡钢筋机械连接试验情况

一九九七年十一月,国内相关科研生产单位将钢筋机械连接技术在三峡工地进行了演示;十二月,为输水系统钢筋连接作前期准备工作,邀请生产单位在三峡试验中心对样品进行了现场连接和单向拉伸试验,B级接头均断于接套内螺纹断面(B 级为不镦粗,由于切削螺纹后削弱母材断面),A级接头均是母材断(A级为镦粗接头,切削螺纹后的断面仍大于母材断面),使工程建设的四方有了直观认识。

一九九八年三月,根据ⅡA标段的钢筋接头情况,建设四方召开钢筋接头技术会议,决定采用先试验后试用再推广的原则,稳妥推进此项工作。会后,相关生产单位在建设四方的监视之下,作了全面型式检验;西北院三峡监理中心在收到型式检验报告后,向总公司写了报告,在报告中指出,机械连接的性能远优于焊接连接,试验成果表明热镦锥螺纹、热镦直螺纹、冷镦锥螺纹、冷镦直螺纹及冷挤压五种连接型式的强度、应变、割线模量、残余变形等性能均能满足规范要求,进行破坏性拉伸试验时,试件断裂部位均是母材,试件接头强度均大于母材强度,质量均达A 级;抗疲劳试验,冷挤压接头在交变循环荷载作用下200万次未破坏,热镦粗为100~160万次(改模后超过200万次),冷镦粗为50~100万次(改模后已超过200万次),而在车间焊接的帮条焊接头为47~68万次就破坏了,说明机械连接的抗疲劳性能也远优于焊接连接。

4.2钢筋接头技术经济使用比较

三峡永久船闸地下输水系统共有钢筋约5万吨,接头约50万个,广泛使用套

筒冷挤压和镦粗直螺纹连接,施工速度快、适应面广、质量易保证,极大地提高了工效,成功地解决了钢筋接头施工时间长的难题,确保了砼施工的顺利进行。

以下为φ28~φ36的Ⅱ级螺纹钢筋绑条焊接、冷挤压及直螺纹连接在现场施工的工期及费用比较表。由于螺纹加工不占直线工期,故未计入螺纹加工时间,从表中可以看出,焊接不论成本还是工期都远远高出冷挤压和直螺纹,且质量难以控制,无法满足施工进度要求。

在现场使用中,直螺纹连接由于操作、检验最为简单,连接速度最快,质量最易于保证;冷挤压连接由于受设备重量、钢筋月牙肋大小、操作熟练程度等影响,连接速度及质量略逊于直螺纹,但在钢筋长度调整中,冷挤压最为方便。

5结束语

钢筋机械连接技术,在工业、民用建筑施工中,通过引进、吸收先进技术,已开发应用了十多年,并有了相应的规程、规范,如JGJ107-96《钢筋机械连接通用技术规程》,JGJ108-96《带肋钢筋套筒挤压连接技术规程》、《钢筋直螺纹施工及验收规程》,JGJ109-96《钢筋锥螺纹接头技术规程》等。但在水利水电建设中,大直径钢筋机械连接技术开发应用较晚,也没有相应的规程、规范,在某种验收上,阻碍了此项技术的推广应用。为此,呼吁有关政府部门应尽快出台与水电建设相适应的钢筋机械连接技术规范,以便施工单位应用、操作。

目前,三峡工程各工作面都已广泛使用钢筋接头机械连接,效果较好,产生了

极大的经济效益和社会效益,水利部和建设部亦联合发文推荐采用钢筋机械连接。由于钢筋接头机械连接技术在三峡工程中的成功使用,为钢筋机械连接在水工建筑物中的推广泛应用奠定了坚实的基础,相信在未来水电工程中大规模采用该技术已为期不远。

钢筋机械连接技术规范强制条款及常用要点 (1)

钢筋机械连接技术规范强制条款及常用要点 混凝土结构中要求充分发挥钢筋强度或对延性要求高的部位应选用Ⅱ级接头。当在同一连接区段内必须实施100%钢筋接头的连接时,应采用Ⅰ级接头。 接头宜设置在结构构件受拉钢筋应力较小部位,当需要在高应力部位设置接头时,在同一连接区段内Ⅲ级接头的接头百分率不应大于25%;Ⅱ级接头的接头百分率不应大于50%; 接头宜避开有抗震设防要求的框架的梁端、柱端箍筋加密区;当无法避开时,应采用Ⅱ级接头或I级接头,且接头百分率不应大于50%。

受拉钢筋应力较小部位或纵向受压钢筋,接头百分率可不受限制。 对直接承受动力荷载的结构构件,接头百分率不应大于50%。 接头连接件的屈服承载力和受拉承载力的标准值不应小于被连接钢筋的屈服承载力和受拉承载力标准值得(1.10)倍。

钢筋机械连接的连接区段长度按35d计算 钢筋直螺纹加工应符合下列规定:钢筋端部应切平或镦平后加再工螺纹,墩粗头不得有与钢筋轴线相垂直的横向裂纹;

钢筋丝头长度应满足企业标准中产品设计要求,公差应为0~2.0p(p为螺距):钢筋丝头宜满足6f级精度要求,应用专用直螺纹量规检验,通规能顺利旋入并达到要求的拧入长度,止规旋入不得超过3p。抽检数量10%,检验合格率不应小于95%。

安装接头时可用管钳扳手拧紧,应使钢筋丝头在套筒中央位置相互顶紧。标准型接头安装后的外露螺纹不宜超过2p。 直螺纹接头安装时的最小拧紧扭矩值 钢筋机械连接接头的现场检验应按验收批进行。同一施工条件下采用同一批材料的同等级、同形式、同规格接头,应以(500)个为一个验收批进行检验与验收,不足(500)个也应作为一个验收批

钢筋机械连接形式检验报告

钢筋机械连接对型式检验的要求? 相关标签: ?机械连接接头 ?钢筋机械连接 ?滚轧直螺纹连接 1 接头型式检验报告超过4年时必须重新取样做型式检验。接头型式检验主要作用是对各类接头按性能分级。 2 经型式检验确定其等级后,工地现场只需进行现场检验;当接头质量有严重问题,其原因不明,对定型检验结论有重大怀疑时,上级主管部门或质检部门可以提出重新进行型式检验要求。 3 考虑到国产钢筋的延性较好,在达到强度要求后,接头试件通常已有较大延性;为简化检验验收规则,取消了原规程中接头试件强度与钢筋实际强度进行对比的要求。 4 对每种型式、级别、规格、材料、工艺的钢筋机械连接接头,型式检验试件不应少于9个:单向拉伸试件不应少于3个,高应力反复拉压试件不应少于3个,大变形反复拉压试件不应少于3个。同时应另取3根钢筋试件作抗拉强度试验,全部试件均应在同一根钢筋上截取。由于型式检验比较复杂和昂贵,对各类钢筋接头只要求对标准型接头进行型式检验; 5 此外,相同类型的直螺纹接头或锥螺纹接头用于连接不同强度级别(HRB500、HRB400、HRB335)的钢筋时,可以选择其中较高强度级别(如HRB500)的钢筋进行接头试件的型式检验;在连接套筒的尺寸、材料,内螺纹以及现场丝头加工工艺均不变的情况下,HRB500级钢筋接头的型式检验报告可以兼作HRB400、HRB335级钢筋的同类型、同等级接头的型式检验报告使用,反之则不允许。钢筋母材强度试验用来判别接头试件用钢筋的母材性能和钢筋牌号。

6 用于型式检验的直螺纹或锥螺纹接头试件应散件送达检验单位,由型式检验单位或在其监督下由接头技术提供单位按本规程表6.2 l或表6.2.2规定的拧紧扭矩进行装配,拧紧扭矩值应记录在检验报告中,型式检验试件必须采用未经过预拉的试件。 7 型式检验应由国家、省部级主管部门认可的检测机构进行,并应按本规程附录B的格式出具检验报告和评定结论。

钢筋机械接头的类型

钢筋机械接头的类型 一、套筒挤压连接接头:通过挤压力使连接件钢套筒塑性变形与带肋钢筋紧密咬合形成的接头。 有两种形式,径向挤压连接和轴向挤压连接。由于轴向挤压连接现场施工不方便及接头质量不够稳定,没有得到推广;而径向挤压连接技术,连接接头得到了大面积推广使用。现在工程中使用的套筒挤压连接接头,都是径向挤压连接。由于其优良的质量,套筒挤压连接接头在我国从二十世纪90年代初至今被广泛应用于建筑工程中。 二、锥螺纹连接接头:通过钢筋端头特制的锥形螺纹和连接件锥形螺纹咬合形成的接头。锥螺纹连接技术的诞生克服了套筒挤压连接技术存在的不足。锥螺纹丝头完全是提前预制,现场连接占用工期短,现场只需用力矩扳手操作,不需搬动设备和拉扯电线,深受各施工单位的好评。但是锥螺纹连接接头质量不够稳定。 螺纹套连接法的原理比较直观和简单,它的工作示意见图5-13。在被连接的钢筋端部加工出外丝扣,而套筒两端则设有内丝扣,将套筒拧在1根钢筋上,再把另1根钢筋拧上套筒

的另一端,就实现了连接。 由于加工螺纹的小径削弱了母材的横截面积,从而降低了接头强度,一般只能达到母材实际抗拉强度的85~95%。我国的锥螺纹连接技术和国外相比还存在一定差距,最突出的一个问题就是螺距单一,从直径16~40mm钢筋采用螺距都为2.5mm,而2.5mm螺距最适合于直径22mm钢筋的连接,太粗或太细钢筋连接的强度都不理想,尤其是直径为36m m,40mm钢筋的锥螺纹连接,很难达到母材实际抗拉强度的0.9倍。 许多生产单位自称达到钢筋母材标准强度,是利用了钢筋母材超强的性能,即钢筋实际抗拉强度大于钢筋抗拉强度的标准值。由于锥螺纹连接技术具有施工速度快、接头成本低的特点,自二十世纪90年代初推广以来也得到了较大范围的推广使用,但由于存在的缺陷较大,逐渐被直螺纹连接接头所代替。 三、直螺纹连接接头: 等强度直螺纹连接接头是二十世纪90年代钢筋连接的国际最新潮流,接头质量稳定可靠,连接强度高,可与套筒挤压连接接头相媲美,而且又具有锥螺纹接头施工方便、速度快的特点,因此直螺纹连接技术的出现给钢筋连接技术带来了质的飞跃。目前我国直螺纹连接技术呈现出百花齐放的景象,出现了多种直螺纹连接形式。

钢筋机械连接形式检验报告

钢筋机械连接对型式检验的要求 相关标签: 机械连接接头 钢筋机械连接 滚轧直螺纹连接 1 接头型式检验报告超过4年时必须重新取样做型式检验。接头型式检验主要作用是对各类接头按性能分级。 2 经型式检验确定其等级后,工地现场只需进行现场检验;当接头质量有严重问题,其原因不明,对定型检验结论有重大怀疑时,上级主管部门或质检部门可以提出重新进行型式检验要求。 3 考虑到国产钢筋的延性较好,在达到强度要求后,接头试件通常已有较大延性;为简化检验验收规则,取消了原规程中接头试件强度与钢筋实际强度进行对比的要求。 4 对每种型式、级别、规格、材料、工艺的钢筋机械连接接头,型式检验试件不应少于9个:单向拉伸试件不应少于3个,高应力反复拉压试件不应少于3个,大变形反复拉压试件不应少于3个。同时应另取3根钢筋试件作抗拉强度试验,全部试件均应在同一根钢筋上截取。由于型式检验比较复杂和昂贵,对各类钢筋接头只要求对标准型接头进行型式检验; 5 此外,相同类型的直螺纹接头或锥螺纹接头用于连接不同强度级别(HRB500、HRB400、HRB335)的钢筋时,可以选择其中较高强度级别(如HRB500)的钢筋进行接头试件的型式检验;在连接套筒的尺寸、材料,内螺纹以及现场丝头加工工艺均不变的情况下,HRB500级钢筋接头的型式检验报告可以兼作HRB400、HRB335级钢筋的同类型、同等级接头的型式检验报告使用,反之则不允许。钢筋母材强度试验用来判别接头试件用钢筋的母材性能和钢筋牌号。

6 用于型式检验的直螺纹或锥螺纹接头试件应散件送达检验单位,由型式检验单位或在其监督下由接头技术提供单位按本规程表6.2 l或表6.2.2规定的拧紧扭矩进行装配,拧紧扭矩值应记录在检验报告中,型式检验试件必须采用未经过预拉的试件。 7 型式检验应由国家、省部级主管部门认可的检测机构进行,并应按本规程附录B的格式出具检验报告和评定结论。

钢筋机械连接接头工艺评定精编版

钢筋机械连接接头工艺 评定 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

恒山·天成住宅小区2#住宅楼工程钢筋机械连接接头工艺评定 编制: 审批: 河北恒山建设集团有限公司 2016年7月

目录 一、施工工艺及技术要求。 二、评定方法及评定报告。

一、材料准备 钢筋 套筒 二、施工工艺及技术要求。

1、工艺流程 2..操作步骤 (1)、检查被加工钢筋是否符合设计要求,然后将被连接钢筋用砂轮片切割机切断,使钢筋端面平整并与钢筋轴线垂直。 (2)、钢筋直螺纹滚轧设备经调试运转正常后,方可加工直螺纹丝头。钢筋滚轧直螺纹丝头加工采用剥肋滚轧工艺 3、操作过程

(1)直螺纹接头钢筋端部使用砂轮切割机切断钢筋,切口面与钢筋轴线垂直,严禁马蹄形或翘曲,严禁用剪断机剪断或用气割切割下料;墩粗头严禁有与钢筋轴线相垂直的横向裂纹。 (2)采用专业设备将待连接钢筋端头加工成螺纹,丝头加工长度为标准套筒长度的,公差应0~2P(P为螺距)加工时操作人员应控制丝头质量,保证丝头的合格率,避免返工。 (3)丝头质量的检验:操作人员对加工成型的钢筋丝头进行质量检验,检验合格后,要用专用的钢筋丝头保护帽或连接套筒对钢筋丝头进行保护,以防螺纹在钢筋搬动或运输过程中被损坏或污染。检查合格后按规格分类堆放整齐。 (4)钢筋丝头的连接:连接是用扳手将直螺纹连接套拧松并拔出钢筋连接端得保护帽,检查钢筋丝头是否和连接套规格一致,直螺纹牙是否完好无损、清洁,如发现杂物或锈蚀时用铁刷清除干净,然后用扳手或管钳将直螺纹连接套与一端钢筋拧到位,再将另一端钢筋与连接套拧到位。连接示意图如下: 根据待接钢筋所在部位及转动难易情况,选用不同的套筒类型,采取不同的安装方法,见下图: 标准型接头安装

房屋建筑工程:钢筋机械连接对型式检验的要求

房屋建筑工程:钢筋机械连接对型式检验 的要求 1.接头型式检验报告超过4年时必须重新取样做型式检验。接头型式检验主要作用是对各类接头按性能分级。 2.经型式检验确定其等级后,工地现场只需进行现场检验。当接头质量有严重问题,其原因不明,对定型检验结论有重大怀疑时,上级主管部门或质检部门可以提出重新进行型式检验要求。 3.考虑到国产钢筋的延性较好,在达到强度要求后,接头试件通常已有较大延性。为简化检验验收规则,取消了原规程中接头试件强度与钢筋实际强度进行对比的要求。 4.对每种型式、级别、规格、材料、工艺的钢筋机械连接接头,型式检验试件不应少于9个:单向拉伸试件不应少于3个,高应力反复拉压试件不应少于3个,大变形反复拉压试件不应少于3个。同时应另取3根钢筋试件作抗拉强度试验,全部试件均应在同一根钢筋上截取。由于型式检验比较复杂和昂贵,对各类钢筋接头只要求对标准型接头进行型式检验。 5.此外,相同类型的直螺纹接头或锥螺纹接头用于连接不同强度级别(HRB500、HRB400、HRB335)的钢筋时,可以选择其中较高强度级别(如HRB500)的钢筋进行接头试件的型式检验。在连接套筒的尺寸、材料,内螺纹以及现场丝头加工工艺均不变的情况下,HRB500级钢筋接头的型式检验报告可以兼作HRB400、HRB335级钢筋的同类型、同等级接头的型式检验报

告使用,反之则不允许。钢筋母材强度试验用来判别接头试件用钢筋的母材性能和钢筋牌号。 6.用于型式检验的直螺纹或锥螺纹接头试件应散件送达检验单位,由型式检验单位或在其监督下由接头技术提供单位按本规程表6.2l或表6.2.2规定的拧紧扭矩进行装配,拧紧扭矩值应记录在检验报告中,型式检验试件必须采用未经过预拉的试件。 7.型式检验应由国家、省部级主管部门认可的检测机构进行,并应按本规程附录B的格式出具检验报告和评定结论。

钢筋接头机械连接实施细则

钢筋接头机械连接实施细则 1. 总则 1.1本细则主要用于工程建设中的各类钢筋机械连接接头的检验。 1.2本细则依据JGJ107-2010编制。 2.仪器设备 2.1 WE-600液压式万能材料试验机、WI-100油压式万能材料试验机、游标卡尺(0~300)mm。 3.接头的性能等级要求 3.1接头连接件的屈服承载力和受拉承载力的标准值不应小于被连接钢筋的屈服承载力和受拉承载力标准值的1.10倍。 3.2接头应根据抗拉强度、残余变形以及高应力和大变形条件下反复拉压性能的差异,分为下列三个性能等级:Ⅰ级接头抗拉强度等于被连接钢筋的实际拉断强度或不小于1.10倍钢筋抗拉强度标准值。 Ⅱ级接头抗拉强度不小于被连接钢筋抗拉强度标准值。

Ⅲ级接头抗拉强度不小于被连接钢筋屈服强度标准值的1.25倍。 3.3Ⅰ级、Ⅱ级、Ⅲ级接头的抗拉强度必须符合下表的规定。 接头的抗拉强度 4. 4.1对每种型式、级别、规格、材料、工艺的钢筋机械连接接头,型式检验试件不应少于9个:单向拉伸事件不应小于3个,同时应另取3根钢筋试件作抗拉强度试验。全部试件均应在同一根钢筋上截取。 5.钢筋接头试件的试验方法 5.1型式检验试件的仪表布置和变形测量标距应符合下列规

定: 5.1.1单向拉伸和反复拉压试验时的变形测量仪表应在钢筋两侧对称布置(图一),取钢筋两侧仪表读数的平均值计算残余变形值。 5.1.2变形测量标距 式中:——变形测量标距; ——机械接头长度; ——钢筋公称直径。 图一接头试件变形测量标距和仪表布置 5.2型式检验试件最大力总伸长率的测量方法应符合下列要求: 5.2.1试件加载前,应在其套筒两侧的钢筋表面(图二)分别用细划线A、B和C、D标出测量标距为的标记线,不应小于100mm,标距长度应用最小刻度值不大于0.1mm的量具测量。 图二总伸长率的测点布置 1—夹持区;2—测量区

钢筋的机械连接方法有哪些

钢筋的机械连接方法有哪些? 钢筋连接技术可分为钢筋焊接和钢筋机械连接两大类。钢筋焊接有6种焊接方法,有的适用于预制厂,有的适用于现场施工,有的两者都适用。钢筋机械连接常用有3种方法,主要适用于现场施工。各种方法有其自身特点和不同的适用范围,并在不断发展和改进。在实际生产中,应根据具体的工作条件、工作环境和技术要求,选用合适的方法以期达到最佳的综合效益。 钢筋焊接连接 1 电阻点焊 将两钢筋安放成交叉叠接形式,压紧于两电极之间,利用电阻热熔化母材金属,加压形成焊点的一种压焊方法。 特点:钢筋混凝土结构中的钢筋焊接骨架和焊接网,宜采用电阻点焊制作。以电阻点焊代替绑扎,可以提高劳动生产率、骨架和网的刚度以及钢筋(钢丝)的设计计算强度,宜积极推广应用。 适用范围:适用于Ф6~16mm的热轧Ⅰ、Ⅱ级钢筋,Фb3~5mm的冷拔低碳钢丝和Ф4~12mm冷轧带肋钢筋。 2 闪光对焊 将两钢筋安放成对接形式,利用焊接电流通过两钢筋接触点产生塑性区及均匀的液体金属层,迅速施加顶锻力完成的一种压焊方法特点:具有生产效益高、操作方便、节约能源、节约钢材、接头受力性能好、焊接质量高等很多优点,故钢筋的对接连接宜优先采用闪光

对焊。 适用范围:适用于Ф10~40mm的热轧Ⅰ、Ⅱ、Ⅲ级钢筋,Ф10~25mm 的Ⅳ级钢筋。 3 电弧焊 以焊条作为一极,钢筋为另一极,利用焊接电流通过产生的电弧热进行焊接的一种熔焊方法。 特点:轻便、灵活,可用于平、立、横、仰全位置焊接,适应性强、应用范围广。 适用范围:适用于构件厂内,也适用于施工现场。可用于钢筋与钢筋,以及钢筋与钢板、型钢的焊接。 4 电渣压力焊 将两钢筋安放成竖向对接形式,利用焊接电流通过两钢筋端面间隙,在焊剂层下形成电弧过程和电渣过程,产生电弧热和电阻热,熔化钢筋、加压完成的一种焊接方法。 特点:操作方便、效率高。 适用范围:适用于Ф14~40mm的热轧Ⅰ、Ⅱ级钢筋连接。主要用于柱、墙、烟囱、水坝等现浇钢筋混凝土结构(建筑物、构筑物)中竖向或斜向(倾斜度在4:1范围内)受力钢筋的连接。 5 气压焊 采用氧炔焰或氢氧焰将两钢筋对接处进行加热,使其达到一定温度,加压完成的方法。 特点:设备轻便,可进行钢筋在水平位置、垂直位置、倾斜位置

钢筋机械连接接头形式

目前,市场上常用的钢筋机械连接接头类型如下: 一、套筒挤压连接接头:通过挤压力使连接件钢套筒塑性变形与带肋钢筋紧密咬合形成的接头。有两种形式,径向挤压连接和轴向挤压连接。由于轴向挤压连接现场施工不方便及接头质量不够稳定,没有得到推广;而径向挤压连接技术,连接接头得到了大面积推广使用。现在工程中使用的套筒挤压连接接头,都是径向挤压连接。由于其优良的质量,套筒挤压连接接头在我国从二十世纪90年代初至今被广泛应用于建筑工程中。 二、锥螺纹连接接头:通过钢筋端头特制的锥形螺纹和连接件锥形螺纹咬合形成的接头。锥螺纹连接技术的诞生克服了套筒挤压连接技术存在的不足。锥螺纹丝头完全是提前预制,现场连接占用工期短,现场只需用力矩扳手操作,不需搬动设备和拉扯电线,深受各施工单位的好评。但是锥螺纹连接接头质量不够稳定。由于加工螺纹的小径削弱了母材的横截面积,从而降低了接头强度,一般只能达到母材实际抗拉强度的85~95%。我国的锥螺纹连接技术和国外相比还存在一定差距,最突出的一个问题就是螺距单一,从直径16~40mm钢筋采用螺距都为2.5mm,而2.5mm螺距最适合于直径22mm钢筋的连接,太粗或太细钢筋连接的强度都不理想,尤其是直径为36mm,40mm钢筋的锥螺纹连接,很难达到母材实际抗拉强度的0.9倍。许多生产单位自称达到钢筋母材标准强度,是利用了钢筋母材超强的性能,即钢筋实际抗拉强度大于钢筋抗拉强度的标准值。由于锥螺纹连接技术具有施工速度快、接头成本低的特点,自二十世纪90年代初推广以来也得到了较大范围的推广使用,但由于存在的缺陷较大,逐渐被直螺纹连接接头所代替。 三、直螺纹连接接头 等强度直螺纹连接接头是二十世纪90年代钢筋连接的国际最新潮流,接头质量稳定可靠,连接强度高,可与套筒挤压连接接头相媲美,而且又具有锥螺纹接头施工方便、速度快的特点,因此直螺纹连接技术的出现给钢筋连接技术带来了质的飞跃。目前我国直螺纹连接技术呈现出百花齐放的景象,出现了多种直螺纹连接形式。 直螺纹连接接头主要有镦粗直螺纹连接接头和滚压直螺纹连接接头。这两种工艺采用不同的加工方式,增强钢筋端头螺纹的承载能力,达到接头与钢筋母材等强的目的。 1. 镦粗直螺纹连接接头:通过钢筋端头镦粗后制作的直螺纹和连接件螺纹咬合形成的接头。其工艺是:先将钢筋端头通过镦粗设备镦粗,再加工出螺纹,其螺纹小径不小于钢筋母材直径,使接头与母材达到等强。国外镦粗直螺纹连接接头,其钢筋端头有热镦粗又有冷镦粗。热镦粗主要是消除镦粗过程中产生的内应力,但加热设备投入费用高。我国的镦粗直螺纹连接接头,其钢筋端头主要是冷镦粗,对钢筋的延性要求高,对延性较低的钢筋,镦粗质量较难控制,易产生脆断现象。 镦粗直螺纹连接接头其优点是强度高,现场施工速度快,工人劳动强度低,钢筋直螺纹丝头全部提前预制,现场连接为装配作业。其不足之处在于镦粗过程中易出现镦偏现象,一旦镦偏必须切掉重镦;镦粗过程中产生内应力,钢筋镦粗部分延性降低,易产生脆断现象,螺纹加工需要两道工序两套设备完成。 2. 滚压直螺纹连接接头:通过钢筋端头直接滚压或挤(碾)压肋滚压或剥肋后滚压制作的直螺纹和连接件螺纹咬合形成的接头。 其基本原理是利用了金属材料塑性变形后冷作硬化增强金属材料强度的特性,而仅在金属表层发生塑变、冷作硬化,金属内部仍保持原金属的性能,因而使钢筋接头与母材达到等强。 目前,国内常见的滚压直螺纹连接接头有三种类型:直接滚压螺纹、挤(碾)压肋滚压螺纹、剥肋滚压螺纹。这三种形式连接接头获得的螺纹精度及尺寸不同,接头质量也存在一定差异。 (1)直接滚压直螺纹连接接头: 其优点是:螺纹加工简单,设备投入少,不足之处在于螺纹精度差,存在虚假螺纹现象。由于钢筋粗细不均,公差大,加工的螺纹直径大小不一致,给现场施工造成困难,使套筒与丝头配合松紧不一致,有个别接头出现拉脱现象。由于钢筋直径变化及横纵肋的影响,使滚丝轮寿命降低,增加接头的附加成本,现场施工易损件更换频繁。 (2)挤(碾)压肋滚压直螺纹连接接头: 这种连接接头是用专用挤压设备先将钢筋的横肋和纵肋进行预压平处理,然后再滚压螺纹,目的是减轻钢

钢筋机械连接接头有哪些类型

你知道钢筋机械连接接头有哪些类型吗?长长见识! 一、套筒挤压连接接头:通过挤压力使连接件钢套筒塑性变形与带肋钢筋紧密咬合形成的接头。 有两种形式,径向挤压连接和轴向挤压连接。由于轴向挤压连接现场施工不方便及接头质量不够稳定,没有得到推广;而径向挤压连接技术,连接接头得到了大面积推广使用。现在工程中使用的套筒挤压连接接头,都是径向挤压连接。由于其优良的质量,套筒挤压连接接头在我国从二十世纪90年代初至今被广泛应用于建筑工程中。

二、锥螺纹连接接头:通过钢筋端头特制的锥形螺纹和连接件锥形螺纹咬合形成的接头。锥螺纹连接技术的诞生克服了套筒挤压连接技术存在的不足。锥螺纹丝头完全是提前预制,现场连接占用工期短,现场只需用力矩扳手操作,不需搬动设备和拉扯电线,深受各施工单位的好评。但是锥螺纹连接接头质量不够稳定。 螺纹套连接法的原理比较直观和简单,它的工作示意见图5-13。在被连接的钢筋端部加工出外丝扣,而套筒两端则设有内丝扣,将套筒拧在1根钢筋上,再把另1根钢筋拧上套筒的另一端,就实现了连接。

由于加工螺纹的小径削弱了母材的横截面积,从而降低了接头强度,一般只能达到母材实际抗拉强度的85~95%。我国的锥螺纹连接技术和国外相比还存在一定差距,最突出的一个问题就是螺距单一,从直径16~40mm钢筋采用螺距都为2.5mm,而2.5mm螺距最适合于直径22mm钢筋的连接,太粗或太细钢筋连接的强度都不理想,尤其是直径为36mm,40mm钢筋的锥螺纹连接,很难达到母材实际抗拉强度的0.9倍。 许多生产单位自称达到钢筋母材标准强度,是利用了钢筋母材超强的性能,即钢筋实际抗拉强度大于钢筋抗拉强度的标准值。由于锥螺纹连接技术具有施工速度快、接头成本低的特点,自二十世纪90年代初推广以来也得到了较大范围的推广使用,但由于存在的缺陷较大,逐渐被直螺纹连接接头所代替。 三、直螺纹连接接头:等强度直螺纹连接接头是二十世纪90年代钢筋连接的国际最新潮流,接头质量稳定可靠,连接强度高,可与套筒挤压连接接头相媲美,而且又具有锥螺纹接头施工方便、速度快的特点,因此直螺纹连接技术的出现给钢筋连接技术带来了质的飞跃。目前我国直螺纹连接技术呈现出百花齐放的景象,出现了多种直螺纹连接形式。 直螺纹连接接头主要有镦粗直螺纹连接接头和滚压直螺纹连接接头。这两种工艺采用不同的加工方式,增强钢筋端头螺纹的承载能力,达到接头与钢筋母材等强的目的。 1. 镦粗直螺纹连接接头:通过钢筋端头镦粗后制作的直螺纹和连接件螺纹咬合形成的接头。其工艺是:先将钢筋端头通过镦粗设备镦粗,再加工出螺纹,其螺纹小径不小于钢筋母材直径,使接头与母材达到等强。国外镦粗直螺纹连接接头,其钢筋端头有热镦粗又有冷镦粗。热镦粗主要是消除镦粗过程中产生的内应力,但加热设备投入费用高。我国的镦粗直螺纹连接接头,其钢筋端头主要是冷镦粗,对钢筋的延性要求高,对延性较低的钢筋,镦粗质量较难控制,易产生脆断现象。

建筑施工之钢筋机械连接

建筑施工之钢筋机械连接 钢筋机械连接是指通过连接件的机械咬合作用或钢筋端面的承压作用,将一根钢筋中的力传递至另一根钢筋的连接方法。这类连接方法是我国近10年来陆续发展起来的,它具有以下优点:接头质量稳定可靠,不受钢筋化学成分的影响,人为因素的影响也小;操作简便,施工速度快,且不受气候条件影响;无污染、无火灾隐患,施工安全等。在粗直径钢筋连接中,钢筋机械连接方法有广阔的发展前景。 9-6-1 一般规定 钢筋机械连接方法分类及适用范围,见表9-56。钢筋机械连接接头的设计、应用与验收应符合行业标准《钢筋机械连接通用技术规程》(JGJ 107-96)和各种机械连接接头技术规程的规定。 钢筋机械连接方法分类及适用范围表9-56 钢筋机械连接接头,应根据静力单向拉伸性能以及高应力和大变形条件下反复拉、压性能的差异,分为下列三个性能等级。 A级:接头抗拉强度达到或超过母材抗拉强度标准值,并具有高延性及反复拉压性能。 B级:接头抗拉强度达到或超过母材屈服强度标准值的1.35倍,具有一定的延性及反复拉压性能。 C级:接头仅承受压力。 A、B、C级的接头性能,应符合表9-57的规定。

钢筋机械接头性能检验指标表9-57 钢筋机械连接(JGJ 107-96)的符号意义如下: 对直接承受动力荷载的结构,其接头应满足设计要求的抗疲劳性能。当无专门要求时,对连接HRB335(HRB400)级钢筋的接头,其疲劳性能应能经受应力幅为100N/mm2,上限应力为180(190)N/mm2的200万次循环加载。 1998年对JGJ 107-96规程进行局部修订。主要修订内容有2项:①增加了SA级,其强度指标为或1.15f tk;②取消了原割线模量指标,改用接头试件加载至0.6f yk后,残余变形小于0.1mm。 接头性能等级的选定,应符合下列规定: (1)混凝土结构中要求充分发挥钢筋强度或对接头延性要求较高的部位,应采用A级接头; (2)混凝土结构中钢筋受力小或对接头延性要求不高的部位,可采用B级接头; (3)非抗震设防和不承受动力荷载的混凝土结构中钢筋只承受压力的部位,可采用C级接头。

钢筋机械连接接头工艺评定

恒山·天成住宅小区2#住宅楼工程 钢筋机械连接接头工艺评定 编制: 审批: 河北恒山建设集团有限公司 2016年7月 目录 一、施工工艺及技术要求。 二、评定方法及评定报告。

一、材料准备 1.1 钢筋 规格批次号产地复试报告编号 HRB400 18 2970/16Y204753 河北钢铁股 份有限公司 承德分公司 160713413 HRB400 20 2719/16Y306442 河北钢铁股 份有限公司 承德分公司 160713414 HRB400 22 530/16Y306381 河北钢铁股 份有限公司 承德分公司 160713415 HRB400 25 162404673 河钢集团宣 化钢铁集团 有限责任公 司 160713416

1.2 套筒 规格接头等级产地 HRB400 18 I级沧州万力通 建筑 备件有限公 司 HRB400 20 I级沧州万力通 建筑 备件有限公 司 HRB400 22 I级沧州万力通 建筑 备件有限公 司 HRB400 25 I级沧州万力通 建筑 备件有限公 司 二、施工工艺及技术要求。

1、工艺流程 是 钢筋滚轧(剥肋)直螺纹丝头加工 直螺纹丝头尺寸及外观质量检查、是否符合要求 将不合格的 丝头切去 连接套筒质量 检查及验收 连接完成后,对接头及拧紧 力矩值进行检查 用扳手或管钳 现场拧合安装 丝头螺丝用塑料保护帽或 拧上连接套筒保护 待连接钢筋断料、端头切 否

2..操作步骤 (1)、检查被加工钢筋是否符合设计要求,然后将被连接钢筋用砂轮片切割机切断,使钢筋端面平整并与钢筋轴线垂直。 (2)、钢筋直螺纹滚轧设备经调试运转正常后,方可加工直螺纹丝头。钢筋滚轧直螺纹丝头加工采用剥肋滚轧工艺 3、操作过程 (1)直螺纹接头钢筋端部使用砂轮切割机切断钢筋,切口面与钢筋轴线垂直,严禁马蹄形或翘曲,严禁用剪断机剪断或用气割切割下料;墩粗头严禁有与钢筋轴线相垂直的横向裂纹。 (2)采用专业设备将待连接钢筋端头加工成螺纹,丝头加工长度为标准套筒长度的?,公差应0~2P(P为螺距)加工时操作人员应控制丝头质量,保证丝头的合格率,避免返工。 (3)丝头质量的检验:操作人员对加工成型的钢筋丝头进行质量检验,检验合格后,要用专用的钢筋丝头保护帽或连接套筒对钢筋丝头进行保护,以防螺纹在钢筋搬动或运输过程中被损坏或污染。检查合格后按规格分类堆放整齐。 (4)钢筋丝头的连接:连接是用扳手将直螺纹连接套拧松并拔出钢筋连接端得保护帽,检查钢筋丝头是否和连接套规格一致,直螺纹牙是否完好无损、清洁,如发现杂物或锈蚀时用铁刷清除干净,然后用扳手或管钳将直螺纹连接套与一端钢筋拧到位,再将另一端钢筋与连接套拧到位。连接示意图如下:根据待接钢筋所在部位及转动难易情况,选用不同的套筒类

钢筋机械连接接头工艺评定

恒山·天成住宅小区2#住宅楼工程钢筋机械连接接头工艺评定 编制: 审批: 河北恒山建设集团有限公司 2016年7月

目录 一、施工工艺及技术要求。 二、评定方法及评定报告。

一、材料准备 1.1 钢筋 规格批次号产地复试报告编号 HRB400 18 2970/16Y204753河北钢铁股份有限 公司承德分公司 160713413 HRB400 20 2719/16Y306442河北钢铁股份有限 公司承德分公司 160713414 HRB400 22 530/16Y306381 河北钢铁股份有限 公司承德分公司 160713415 HRB400 25 162404673 河钢集团宣化钢铁 集团有限责任公司 160713416 1.2 套筒 规格接头等级产地 HRB400 18 I级沧州万力通建筑备件有限公司 HRB400 20 I级沧州万力通建筑备件有限公司 HRB400 22 I级沧州万力通建筑备件有限公司 HRB400 25 I级沧州万力通建筑备件有限公司 二、施工工艺及技术要求。

1、工艺流程 2..操作步骤 (1)、检查被加工钢筋是否符合设计要求,然后将被连接钢筋用砂轮片切割机切断,使钢筋端面平整并与钢筋轴线垂直。 (2)、钢筋直螺纹滚轧设备经调试运转正常后,方可加工直螺纹丝头。钢筋滚轧直螺纹丝头加工采用剥肋滚轧工艺 3、操作过程 (1)直螺纹接头钢筋端部使用砂轮切割机切断钢筋,切口面与钢筋轴线垂直,严禁马蹄形或翘曲,严禁用剪断机剪断或用气割切割下料;墩粗头严禁有与钢筋轴线相垂直的横向裂纹。 (2)采用专业设备将待连接钢筋端头加工成螺纹,丝头加工长度为标准套筒长度的 是 钢筋滚轧(剥肋)直螺纹丝头加工 直螺纹丝头尺寸及外观质量检查、是否符合要求 将不合格的 丝头切去 连接套筒质量 检查及验收 连接完成后,对接头及拧紧 力矩值进行检查 用扳手或管钳 现场拧合安装 丝头螺丝用塑料保护帽或 拧上连接套筒保护 待连接钢筋断料、端头切 否

钢筋机械连接接头施工方案

西安市地铁六号线二期工程(劳动南路站~纺织城站)土建 施工项目TJSG-16标段 钢筋机械连接接头 施工方案 编制: 审核: 审批: 中铁十六局集团有限公司 西安地铁六号线TJSG-16标项目经理部 二零一八年九月

目录 1总则 (1) 1.1编制依据 (1) 1.2适用范围 (1) 1.3人员要求 (1) 1.4主要设备 (1) 1.5原材要求 (1) 2接头等级的选定 (2) 3施工工序 (2) 3.1钢筋下料 (2) 3.2钢筋加工 (2) 4施工质量要求 (3) 4.1丝头加工质量 (3) 4.2直螺纹钢筋接头的安装质量 (4) 5施工注意事项 (4) 6成品保护 (5) 7质量保证措施 (5) 8安全保证措施 (6) 8.1安全用电 (6) 8.2 机械安全 (6) 8.3绿色和文明施工 (7)

1总则 1.1编制依据 1、《钢筋机械连接技术规程》(JGJ107-2016) 2、《混凝土结构设计规范》(GB50010-2010) 3、《混凝土结构工程施工规范》(GB50666-2011) 4、《混凝土结构工程施工质量验收规范》(GB50204-2015) 1.2适用范围 本方案适用于西安地铁六号线二期工程TJSG-16标广济街站所采用的直螺纹钢筋机械连接施工。 1.3人员要求 加工钢筋技术人员必须按该技术交底进行培训,经考核合格后方可进行上岗操作,人员应相对稳定。 1.4主要设备 套丝机、管钳扳手、扭力扳手、切割机。 1.5原材要求 1.5.1钢筋原材 所有钢筋原材进场后,必须对到场钢筋的质量保证书、出厂合格证等进行复核,并按不同批次、规格、炉号及不同厂家的原材进行外观和力学性能的检测。其中,外观检测中,重点检查钢筋表面不得出现裂纹、结疤和折叠;表面的凸块和其他缺陷的深度和高度不得大于所在部位尺寸的偏差。 1.5.2连接套筒 钢筋连接直螺纹套筒为定型产品,每批套筒进场时须核实其产品合格证,经进场质检员复核合格后方可用于施工。

钢筋机械连接施工工艺试验方案

目录 一、工程概况 (2) 二、试验目的 (2) 三、编制的依据 (2) 四、施工准备 (3) 五、适用围 (4) 六、工艺原理 (4) 七、工艺流程及操作要点 (4) 八、质量要求 (7) 九、钢筋连接接头检验 (8) 十、结论 (9) 十一、安全及环保措施 (9) 十二、附页 (10)

滚轧直螺纹钢筋机械连接工艺性试验案 一、工程概况 本工程排水箱涵采用现浇C30钢筋砼结构,全长110m,箱涵断面采用双部净空5.0×5.0m,顶底板及侧墙厚0.8m,中间隔墙厚0.6m。箱涵纵向按10m标准长度设置一道变形缝,变形缝具体设置位置可根据基础情况进行适当调整,变形缝缝宽0.03m,采用橡胶止水带和聚硫密封膏封闭。箱涵在与既有箱涵连接位置采用植筋现浇0.6m长,截面尺寸与箱涵保持一致。排水箱涵进口处设置八字墙,墙身采用C20素砼结构,;进口底面采用M7.5砂浆铺砌MU30片截水墙。 箱涵两侧填料采用砂卵回填,涵底地基承载力不小于0.8MPa,对达不到设计要求的区域需进行基础换填。 普通钢筋:应符合GB1499.1-2007和GB1499.2-2007标准的相关规定。除特殊注明外,直径≥12mm者采用HRB400钢筋;钢筋直径≥Ф20时采用等强度滚压直螺纹机械连接。 焊条:采用E5003焊条。 二、试验目的 通过滚轧直螺纹工艺性试验确定各项参数,确保现场钢筋机械连接的质量。 三、编制的依据 1、施工组织设计及箱涵施工案。 2、《钢筋机械连接通用技术规程》JGJ107-2010。 3、《滚轧直螺纹钢筋连接接头》JG163-2004。 4、《水工混凝土施工规》(SDJ207—1982)。

钢筋机械连接接头的设计原则和性能等级

钢筋机械连接接头的设计原则和性能等级 The manuscript was revised on the evening of 2021

1接头的设计应满足强度及变形性能的要求。 2?接头连接件的屈服承载力和抗拉承载力的标准值应不小于被连接钢筋的屈服承载力和抗拉承载力标准值的倍。 3接头应根据其等级和应用场合,对单向拉伸性能、高应力反复拉压、大变形反复拉压、抗疲劳、耐低温等各项性能确定相应的检验项目。 4根据抗拉强度以及高应力和大变形条件下反复拉压性能的差异,接头应分为下列三个等级: Ⅰ级:接头抗拉强度不小于被连接钢筋实际抗拉强度或倍钢筋抗拉,并具有高延性及反复拉压性能。 Ⅱ级:接头抗拉强度不小于被连接钢筋抗拉,并具有高延性及反复拉压性能。 Ⅲ级:接头抗拉强度不小于被连接钢筋屈服的倍,并具有一定的延性及反复拉压性能。 5?Ⅰ级、Ⅱ级、Ⅲ级接头的抗拉强度应符合表3.0.5的规定。 6?Ⅰ级、Ⅱ级、Ⅲ级接头应能经受规定的高应力和大变形反复拉压循环,且在经历拉压循环后,其抗拉强度仍应符合本规程表3.0.5的规定。

7?Ⅰ级、Ⅱ级、Ⅲ级接头的变形变形性能应符合表的规定。 8?对直接承受动力的结构构件,接头应满足设计要求的抗疲劳性能。当无专门要求时,对连接HRB335级钢筋的接头,其疲劳性能应能经受应力幅为

100N/`MM^2`,最大应力为180N/`MM^2`的200万次循环加载。对连接 HRB400级钢筋的接头,其疲劳性能应能经受应力幅为100N/`MM^2`,最大应力为190N/`MM^2`的200万次循环加载。 9?当混凝土结构中钢筋接头部位的温度低于-10℃时,应进行专门的试验。

钢筋机械连接接头类型

钢筋机械连接接头类型 一、套筒挤压连接接头:通过挤压力使连接件钢套筒塑性变形与带肋钢筋紧密咬合形成的接头。有两种形式,径向挤压连接和轴向挤压连接。由于轴向挤压连接现场施工不方便及接头质量不够稳定,没有得到推广;而径向挤压连接技术,连接接头得到了大面积推广使用。现在工程中使用的套筒挤压连接接头,都是径向挤压连接。由于其优良的质量,套筒挤压连接接头在我国从二十世纪90年代初至今被广泛应用于建筑工程中。 二、锥螺纹连接接头:通过钢筋端头特制的锥形螺纹和连接件锥形螺纹咬合形成的接头。锥螺纹连接技术的诞生克服了套筒挤压连接技术存在的不足。锥螺纹丝头完全是提前预制,现场 连接占用工期短,现场只需用力矩扳手操作,不需搬动设备和拉扯电线,深受各施工单位的好评。但是锥螺纹连接接头质量不够稳定。由于加工螺纹的小径削弱了母材的横截面积,从而降低了接头强度,一般只能达到母材实际抗拉强度的85~95%。我国的锥螺纹连接技术和国外相比还存在一定差距,最突出的一个问题就是螺距单一,从直径16~40mm钢筋采用螺距都为2.5mm,而2.5mm螺距最适合于直径22mm钢筋的连接,太粗或太细钢筋连接的强度都不理想,尤其是直径为36mm,40mm钢筋的锥螺纹连接,很难达到母材实际抗拉强度的0.9倍。许多生产单位自称达到钢筋母材标准强度,是利用了钢筋母材超强的性能,即钢筋实际抗拉强度大于钢筋抗拉强度的标准值。由于锥螺纹连接技术具有施工速度快、接头成本低的特点,自二十世纪90年代初推广以来也得到了较大范围的推广使用,但由于存在的缺陷较大,逐渐被直螺纹连接接头所代替。 三、直螺纹连接接头 等强度直螺纹连接接头是二十世纪90年代钢筋连接的国际最新潮流,接头质量稳定可靠,连接强度高,可与套筒挤压连接接头相媲美,而且又具有锥螺纹接头施工方便、速度快的特点,因此直螺纹连接技术的出现给钢筋连接技术带来了质的飞跃。目前我国直螺纹连接技术呈现出百花齐放的景象,出现了多种直螺纹连接形式。 直螺纹连接接头主要有镦粗直螺纹连接接头和滚压直螺纹连接接头。这两种工艺采用不同的加工方式,增强钢筋端头螺纹的承载能力,达到接头与钢筋母材等强的目的。 1. 镦粗直螺纹连接接头:通过钢筋端头镦粗后制作的直螺纹和连接件螺纹咬合形成的接头。其工艺是: 先将钢筋端头通过镦粗设备镦粗,再加工出螺纹,其螺纹小径不小于钢筋母材直径,使接头与母材达到等强。国外镦粗直螺纹连接接头,其钢筋端头有热镦粗又有冷镦粗。热镦粗主要是消除镦粗过程中产生的内应力,但加热设备投入费用高。我国的镦粗直螺纹连接接头,其钢筋端头主要是冷镦粗,对钢筋的延性要求高,对延性较低的钢筋,镦粗质量较难控制,易产生脆断现象。

简单了解各种机械连接的优缺点

我国粗钢筋机械连接技术是八十年代中后期才发展起来的,随着套筒冷挤压开发应用,近年来,钢筋机械连接发展较快,钢筋连接套筒,相继开发出锥螺纹、镦粗切削直螺纹、挤压肋滚压直螺纹、剥肋滚压直螺纹连接技术。 1、套筒冷挤压连接是用高压油泵作动力源,通过挤压机将连接套筒沿径向挤压,使套筒产生塑性变形,与钢筋相互咬合,形成一个整体来传递力的。由于设备笨重,工人劳动强度大,设备保养不好易产生漏油污染钢筋,影响效力正常发挥,给使用维修带来不便,连接速度不如螺纹连接,套筒较大,成本比螺纹连接高。 2、锥螺纹连接是用锥螺纹套丝机将钢筋端头先加工成锥螺纹,然后把带锥螺纹的套筒与待对接钢筋连接在一起。钢筋与套筒连接时必须施加一定的拧紧力矩才能保证连接质量,若工人一时疏忽拧不紧,钢筋受力后易产生滑脱,锥螺纹底径小于钢筋母材基圆直径,接头强度会被削弱,影响接头性能,虽然锥螺纹连接对中性好,但对钢筋要求较严,钢筋不能弯曲或有马蹄形切口,否则易产生丝扣不全,给连接质量留下隐患。所以,现场管理应要求较严。 3、镦粗切削直螺纹连接是先将钢筋的马蹄形端头切掉,再用钢筋镦头机将钢筋端头镦粗,用直螺纹套丝机将其切削成直螺纹,通过直螺纹套筒将待对接的钢筋连接在一起。镦粗直螺纹连接不仅工序繁锁,镦粗后的钢筋头部金相组织发生变化,不经回火处理,会产生应力集中,延性降低,对改善接头受力是不利的。 4、挤压肋滚压直螺纹连接是用直螺纹滚压机把钢筋端部滚压成直螺纹,然后用直螺纹套筒将两根待对接的钢筋连在一起。由于钢筋端部经滚压成形,钢筋材质经冷作处理,螺纹及钢筋强度都有所提高,弥补了螺纹底径小于钢筋母材基圆直径对强度削弱带来的影响,实现了钢筋等强度连接。该项技术的特点是加工工序少、连接强度高、施工方便等优点,由于钢筋本身轧制公差较大,丝头加工质量控制难度大,滚丝轮受力条件恶劣、工作寿命低。 5、等强度剥肋滚压直螺纹连接是在一台专用设备上将钢筋丝头通过剥肋---滚压螺纹自动一次成形,由于螺纹底部钢筋原材没有被切削掉,而是被滚压挤密,钢筋产生加工硬化,提高了原材强度,从而实现了钢筋等强度连接的目的。此技术以其操作简单,加工工序少,滚丝轮工作寿命长,接头稳定可靠,施工便捷;螺纹牙型好,精度高,不存在虚假螺纹,连接质量可靠稳定。

钢筋机械连接现场检验与验收

钢筋机械连接现场检验与验收 1、工程中应用钢筋机械接头时,应由该技术提供单位提交有效的型式检验报告。 2、钢筋连接工程开始前,应对不同钢筋生产厂的进场钢筋进行接头工艺检验;施工过程中,更换钢筋生产厂时,应补充进行工艺检验。工艺检验应符合下列规定: 1)每种规格钢筋的接头试件不应少于3根; 2)每根试件的抗拉强度和3根接头试件的残余变形的平均值均应符合本规程表3 0.5和表3.0.7的规定; 3)接头试件在测量残余变形后可再进行抗拉强度试验,并宜按本规程附录A表A 1.3中的单向拉伸加载制度进行试验; 4)第一次工艺检验中1根试件抗拉强度或3根试件的残余变形平均值不合格时,允许再抽3根试件进行复检,复检仍不合格时判为工艺检验不合格。 钢筋连接工程开始前,应对不同钢厂的进场钢筋进行接头工艺检验,主要是检验接头技术提供单位所确定的工艺参数是否与本工程中的进场钢筋相适应,并可提高实际工程中抽样试件的合格率,减少在工程应用后再发现问题造成的经济损失,施工过程中如更换钢筋生产厂,应补充进行工艺检验。此外工艺检验中增加了测定接头残余变形的要求,这是控制现场接头加工质量,克服钢筋接头型式检验结果与施工现场接头质量严重脱节的重要措施; 某些钢筋机械接头尽管其强度满足了规程的要求,接头的残余变形不一定能满足要求,尤其是螺纹加工质量较差时;增加本条要求后可以大大促进接头加工单位的自律,或淘汰一部分技术和管理水平低的加工企业。工艺检验中,用残余变形作为接头变形的控制值,测量接头试件的单向拉伸残余变形比较简单,较为适合各施工现场的检验条件 3、接头安装前应检查连接件产品合格证及套筒表面生产批号标识;产品合格证应包括适用钢筋直径和接头性能等级、套简类型,生产单位、生产日期以及可追溯产品原材料力学性能和加工质量的生产批号。 套筒均在工厂生产,影响套简质量的因素较多,如原材料性能、套简尺寸、螺纹规格、公差配合及螺纹加工精度等,要求施工现场土建专业质检人员进行批

钢筋机械连接接头质量检验

钢筋机械连接接头质量检验(2010.6.16) 一、钢筋机械连接检验的类型 有3种类型,即型式检验、工艺检验和现场检验。 1、接头型式检验: 在下列情况应进行型式检验:(1)确定接头性能等级时;(2)材料、工艺、规格进行改动时;(3)型式检验报告超过4年时。 施工单位应将配件(如套筒)提供单位的型式检验报告列入工程验收资料,并归档留存;型式检验报告标准样式见《钢筋机械连接技术规程》(JGJ107-2010)附录B.(套筒材质为《热轧优质碳素结构园钢》GB/T699-1999); 2、工艺检验: 钢筋连接工程开始前,应对不同钢筋生产厂的进场钢筋进行接头工艺检验;施工过程中,更换钢筋生产厂时,应补充进行工艺检验。工艺检验应符合下列规定: (1)每种规格钢筋的接头试件不应少于3根; (2)每根试件的抗拉强度和3根接头试件的残余变形的平均值均应符合JGJ107-2010表3.0.5和表3.0.7的规定 (3)接头试件在测量残余变形后可再进行抗拉强度试验,并宜按JGJ107规程附录A表A.1.3中的单向拉伸加载制度进行试验; (4)第一次工艺检验中1根试件抗拉强度或3根试件的残余变形平均值不合格时,允许再抽3根试件进行复检,复检仍不合格时判 为工艺检验不合格。 (5)应由具备上岗资格的实际操作人员,采用相同的设备、材料,在与实际施工相同的条件下操作,制成钢筋接头,送试验室进行检验合格后方可实施钢筋连接施工作业。 3、现场检验(接头抽样): 应进行外观质量和接头力学性能检验,机械连接接头每500个为一检验批,不足时也为一批。 二、钢筋机械连接接头的质量跟踪 1、接头的等级(以HRB335为例,σs=335,σb=455)接头应根据抗拉强度、残余变形以及高应力和大变形条件下反复拉压性能的差异,分为下列三个性能等级: Ⅰ级:接头抗拉强度等于被连接钢筋的实际拉断强度(当试件断于钢筋母材时,表明接头已满足规定要求)或不小于1.10倍钢筋抗拉强度标准值(455×1.10=50.05)(当试件断于机械接头长度区段时,应满足此要求,才能判为合格),残余变形小并具有高延性及反复拉压性能。Ⅱ级: 接头抗拉强度不小于被连接钢筋抗拉强度的标准值(σb=455),残余变形较小并具有高延性及反复拉压性能。 Ⅲ级:接头抗拉强度不小于被连接钢筋屈服强度标准值的1.25倍,残余变形较小并具有一定的延性及反复拉压性能。, 2、接头的应用(摘自JGJ107-2010第四章) (1)结构设计图纸中应列出设计选用的钢筋接头等级和应用部 位; (2)接头等级的选定应符合下列规定: 1)砼结构中要求充分发挥钢筋强度或对延性要求高的部位应优先选用Ⅱ级接头。当在同一连接区段必须实施100%钢筋接头的连接时,应采用Ⅰ级接头; 2)砼结构中钢筋应力较高但对延性要求不高的部位可采用Ⅲ级接头。 3)结构构件中纵向受力钢筋的接头宜相互错开。连接区段长度应按35d计算。在同一连接区段内有接头的受力钢筋截面面积占受力钢筋总截面面积的百分率(以下简称接头百分率)应符合下列规定: ①接头宜设置在结构构件受拉钢筋应力较小部位,当需要在高应力部位设置接头时,在同

相关文档
相关文档 最新文档