文档库 最新最全的文档下载
当前位置:文档库 › 高三数学立体几何的难点突破3常见的补形法

高三数学立体几何的难点突破3常见的补形法

高三数学立体几何的难点突破3常见的补形法
高三数学立体几何的难点突破3常见的补形法

1

几种常见的补形法

1 四面体的补形法

【例1】 在四面体ABCD 中,设AB = 1,CD =3,直线AB 与CD 的距离为

2,夹角为3

π

,则四面体的体积等于______.

【解析】 法1:如图,将四面体ABCD 补成四棱锥A – BDCE , 且BE ∥CD ,BE = CD ,则∠ABE =

3π或3

2π,BE =3,CD ∥面ABE ,∴CD 与AB 的距离即为CD 到平面ABE 的距离,亦即C 到平面ABE 的距离就是三棱锥C – ABE 的高h = 2,∴V A – BCD = V A – BEC = V C – ABE =?h 3

1

S △ABE 3sin 21231π????

?BE AB =2

1. 法2:如图,把四面体ABCD 补成三棱柱ABE – FCD ,则面ABE ∥面CDF ,AB ∥CF ,且CF = 1,则AB 与CD 的距离就是平面ABE 与平面FCD 的距离,即三棱柱的高h = 2,且∠DCF =

3π或3

2π. ∴V 柱 = S △FCD · h =

23

23sin 21=????πCF CD , 故四面体的体积为2

1

31=柱V .

法3:如图,把四面体ABCD 补成平行六面体,则四面体的体积是平行六面体体积的

31,V 平行六面体 = S 底· h =2323sin 3121=????π,故四面体的体积为2

1

.

【评注】三棱锥补成四棱锥、三棱柱或正方体可以简化求体积,本题将两异

面的直线段构成的四面体用三种不同的补形探究出. 结论:在四面体ABCD 中,设AB = a ,CD = b ,直线AB 与CD 的距离为h ,夹角为θ,则四面体的体积为V =

θsin 6

1

abh . 2.三侧棱两两垂直的三棱锥补形成长方体

【例2】已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,

PC 两两相互垂直,则正三棱锥P -ABC 球心到截面ABC 的距离为________.

【解析】正三棱锥补成正方体如图,可知球心O 为体对角线PD 的中点,且PO =3,又P 到平面ABC 的距离为h ,则13×34×(22)2

·h =13×12×2×2×2.∴h =233

.

【评注】 如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体;如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2

a 2+

b 2+

c 24

=l 2

4

(l 为长方体的体对角线长).

【变式1】利用四个面为直角三角形的三棱锥补成长方体求外接球的面积

在三棱锥V A B C -中,VA ⊥底面ABC ,90ABC ∠=?,若

A

B

F

E C

D

A

B

V

C

A

B E

D C

2

1,2,3VA AB

BC ===,则三棱锥外接球的表面积为_______.

1.14π.【解析】将三棱锥V ABC -中补成如图所示的长方体,则三棱锥的V ABC -的外接球即如图所示的长方体的外接球,球的直径等于长方体的对角线的长,∴三棱锥外接球的表面积为

2414r ππ=.

【变式2】利用三侧棱两两垂直的三棱锥补成长方体求四面体的体积 如图所示,在四面体ABCD 中,,,

AB BC BD 两两垂直,且

2AB BC ==,E 是AC 的中点,异面直线AD 与BE 所成角的

ABCD 的体积 . 2.

8

3

【解析】依题意把,,AB BC BD 视为长方体一角的三条棱,将四面体ABCD 补成长方体CFAB GHQD -.如图,连结

,GF BF ,则GFB ∠就是异面直线AD 与BE 所成角,设BD x =,则22224,8BG GF x BF ==+=,由

余弦定理求得4x =.ABCD 18=224=63

V ∴???四面体. 3.对棱相等的三棱锥补成长方体

【例3】已知四面体SABC 的三组对棱相等,依次为25、13、5,则四面体的体积为 .

【解析】 如图, 把四面体S – ABC 补形为长方体ADBE – GSHC ,设长方体的长、宽、高分别为a 、b 、c ,则有a 2

+ b 2

= (25)2

,b 2

+ c 2

= (13)2

,c 2

+ a 2

= 52

,联立以上三式并解之得:a = 4,b = 2,c = 3. 故V S – ABC = V 长方体 – 4V S –

ABD

= abc – 4 1

11=??

abc abc = 8. 心到截面ABC 的距离为________.

A

B

C

D

E

G

Q

H

F

高三数学知识点总结:立体几何

2019年高三数学知识点总结:立体几何 由查字典数学网高中频道提供,2019年高三数学知识点总结:立体几何,因此老师及家长请认真阅读,关注孩子的成长。 立体几何初步 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

届高三文科数学立体几何专题训练

2015届高三数学(文)立体几何训练题 1、如图3,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A 、B 的一点. ⑴求证:平面PAC ⊥平面PBC ; ⑵若PA=AB=2,∠ABC=30°,求三棱锥P -ABC 的体积. 2、如图,已知P A ?⊙O 所在的平面,AB 是⊙O 的直径,AB =2,C 是⊙O 上一点,且AC =BC =P A ,E 是PC 的中点,F 是PB 的中点. (1)求证:EF 3、如图,四棱柱1111D C B A ABCD -中,A A 1?底面ABCD ,且41=A A . 梯 形ABCD 的面积为6,且AD 平面DCE A 1与B B 1交于点E . (1)证明:EC D A 111A ABB 4、如图,已知正三棱柱ABC —A 1B 1C 1,AA 1=AB =2a ,D 、E 分别为CC 1、A 1B 的中 点. (1)求证:DE ∥平面ABC ; (2)求证:AE ⊥BD ; (3)求三棱锥D —A 1BA 的体积 . 5.如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB , 将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF . (Ⅰ)求证:NC ∥平面MFD ; P A B C O E F A B C D E A 1 B 1 C 1 D 1 A D F

F E A (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体CDFN 体积的最大值. 6、如图,在三棱锥P ABC -中,PA ⊥底面ABC,090=∠BCA ,AP=AC, 点D ,E 分别在棱,PB PC 上,且BC (Ⅰ)求证:D E ⊥平面PAC ; (Ⅱ)若PC ⊥AD ,且三棱锥P ABC -的体积为8,求多面体ABCED 的体积。 7、如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点, 且AB AF 3 1 =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上,已知2=CE . (1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积. 8、如图甲,在平面四边形ABCD 中,已知45,90,105,o o o A C ADC ∠=∠=∠=A B BD =,现将四边 形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;

2015届高三数学立体几何专题训练及详细答案

2015届高三数学立体几何专题训练 1.(2013·高考新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( ) A .16+8π B .8+8π C .16+16π D .8+16π 解析:选A. 原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+1 2 π×22×4=16+8π. 2.(2013·高考新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( ) A.500π3 cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3 解析:选A. 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =1 2 ×8=4(cm). 设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5, ∴V 球=43π×53=500π 3 (cm 3). 3.(2013·高考新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ?α,l ?β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥β

C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 解析:选D. 根据所给的已知条件作图,如图所示. 由图可知α与β相交,且交线平行于l ,故选D. 4.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33 C.23 D.13 解析:选A.法一: 如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由 等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =2 3 . 法二: 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0), B (1,1,0), C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→ =(0,1,2). 设平面B D C 1的法向量为n =(x ,y ,z ),则 n ⊥DB →,n ⊥DC 1→ ,所以有????? x +y =0,y +2z =0, 令y =-2,得平面B D C 1的一个法向量为n =(2, -2,1). 设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC → =???? ??n ·DC →|n ||DC →|=23. 5.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题 【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理 图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题 一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平 面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面

文字语言 图形语言 符号语言 性质定理 垂直于同一个平面的 两条直线平行 4.直线和平面垂直的常用性质 ①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平 面的垂线,则这两个平 面垂直 2.平面与平面垂直的性质定理 文字语言 图形语言 符号语言 性质定理 两个平面垂直,则一个 平面内垂直于交线的直线垂直于另一个平 面 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点, 且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 M D A P B C

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高考数学用补形法解立体几何题

高考数学用补形法解立体几何题 1. 正四面体补为正方体 例1. 求棱长为1的正四面体的体积。 图1 分析:常规的思路是直接用三棱锥的体积公式去求,但要首先求出此三棱锥的高,求高比较繁琐。如果将正四面体ABCD补形为正方 体(如图1),那么此正方体的棱长为,因此,求正四面体的体 积便有了新的求解思路: 例2. 如图2,正三棱锥S-ABC的侧棱与底面边长都相等,如果E、F、G分别是SC、AB、AC的中点,那么异面直线EF与BG所成角 的余弦值等于__________。图2

分析:常规的思路是“平移法”,取GA的中点H,连结EH、FH,则∠EFH即为所求,但解△EFH的运算量较大。联想到正四面体可补形为正方体(如图3),相当于求与BG所成角的余弦值。在此正方体的左边补上一个大小相同的正方体,构成一个长方体(如图4),则相当于求长方体对角线BD与侧棱所成角的余弦值。 设正方体边长为1,则长方体对角线BD的长为。在中, 2. 三条侧棱两两垂直的三棱锥或对棱相等的三棱锥或一条侧棱垂直于底面的三棱锥都可以考虑补形为长方体 例3. 如图5,是直二面角, ,,那么AB与面β所成的角等于() 图5 A. 90° B. 60° C. 45° D. 30°

分析:由α⊥β,BD⊥CD,得BD⊥α同理得:AC⊥β因此,AC ⊥CD,BD⊥CD,AC⊥BD不妨把三棱锥A-BCD补形为长方体(如图5),易得∠ABC为所求的角。在Rt△ABC中,,选D。例4. 如图6,四面体P-ABC中,侧棱PA、PB、PC两两垂直,O为面ABC 上一点,且O到平面PAB、平面PAC、平面PBC的距离分别为2,3,4,求OP的长度。 分析:可补一个“小”长方体(如图6),由此可得“小”长方体的长、宽、高分别为2,3,4,求OP长可转化为求该“小”长方体的对角线长,得: 3. 一般三棱锥(三棱柱)可补形为三棱柱(平行六面体) 例5. 已知三棱锥P-ABC中,PA⊥BC,PA=BC=a,PA、BC的公垂线段DE=h,求证三棱锥的体积是。分析:以ABC为底面,PA为侧棱补形为一个三棱柱ABC-,进一步补形为平行六面体ABCD-(如图7),那么

立体几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第09讲:立体几何 1、(2010一试7)正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin 【答案】4 【解析】 O E P 1B 1 A 1 C B A 设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则 ???? ?=++-=?=+-=?,03, 022111111z y x z x BA ???? ?=-+-=?=-=?, 03, 022221211z y x B x A B n 由此可设)3,1,0(),1,0,1(==,所以cos m n m n α?=? ,即 2cos cos αα=?= .所以4 10sin =α. 解法二:如图,PB PA PC PC ==11, . 设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 . 过O 在平面B PA 1上作P A OE 1⊥,垂足为E .

连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得 3,2,5111== ===PO O B O A PA PB . 在直角O PA 1?中,OE P A PO O A ?=?11,即5 6,532= ∴?= ?OE OE . 11B O B E =∴===又.4 10 5 542sin sin 111= ==∠=E B O B EO B α. 2、(2011一试6)在四面体ABCD 中,已知?=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 【解析】 因为?=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得3 2sin ,3 1cos = = θθ. 在△DMN 中,332 33232,121=??=?=== DP DN CD DM .学科*网 由余弦定理得231312)3(1222=? ??-+=MN , 故2=MN .四边形DMON 的外接圆的直径 33 22sin === θ MN OD .故球O 的半径3=R . 3、(2012一试5)设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的

2019年高考试题汇编文科数学--立体几何

(2019全国1文)16.已知90ACB ∠=?,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距 P 到平面ABC 的距离为 . 答案: 解答: 如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的 垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ?中,由2,PC PF == ,可得出1CF =,同 理在Rt PCE ?中可得出1CE =,结合90ACB ∠=?,,OE CB OF CA ⊥⊥可得出1OE OF ==,OC = , PO == (2019全国1文)19.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=, ,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 答案: 见解析 解答: (1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . ,,E M N 分别是 11,,BC BB A D 的中点. 于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由 MN ?平面NGHM ,于是得到//MN 平面1C DE

(2) E 为BC 中点,ABCD 为菱形且60BAD ∠= DE BC ∴⊥,又 1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又 12,4AB AA ==, 1DE C E ∴=,设点C 到平面1C DE 的距离为h 由11C C DE C DCE V V --=得 1111 143232 h ?=?? 解得h = 所以点C 到平面1C DE (2019全国2文)7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

立体几何巧思妙解之割补法

立体几何巧思妙解之割补法 在立体几何解题中,对于一些不规则几何体,若能采用割补法,往往能起到化繁为简、一目了然的作用。 一 、求异面直线所成的角 例1、如图1,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于( ) 000090604530A B C D 分析:平移直线法是求解异面直线所成角最基本的方法。如图1,只要AC 的中点G ,连EG ,FG ,解△EFG 即可.应该是情理之中的事。若把三棱锥巧妙补形特殊的正方体,定会叫人惊喜不已。 巧思妙解:如图2,把正三棱锥S-ABC 补成一个正方体11AGBH ACB S -, 1//,EF AA ∴异面直线EF 与SA 所成的角为0145A AS ∠=。故选C 。 二、体积问题 例2、如图3,已知三棱锥子P —ABC ,10,PA BC PB AC PC AB ======锥子P —ABC 的体积为( )。 4080160240A B C D 分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶 点到底面的高无法作出,自然无法求出。若能换个角度来思考,注意到三 棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不 难解决。 巧思妙解:如图4所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易 知三棱锥P —ABC 的各边分别是长方体的面对角线。 PE=x,EB=y,EA=z 不妨令,则由已知有: 2222221001366,8,10164x y x z x y z y z ?+=?+=?===??+=? ,从而知 416810468101606 P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=??-????= 例3、如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) (A ) 32 (B )33 (C )34 (D )23

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

高三文科数学立体几何专题练习加详细答案

高三文科数学专题立体几何 1. (2013汕头二模)设I、m是不同的两条直线, 题中为真命题的是() A ?若I ,,则I// C .若I m, // ,m ,则1 【答案】D 【解析】T I ,// ,?- I ,- .■ m D .若I , // ,m ,则I m 2. (2013东城二模)给出下列命题: ①如果不同直线m、n都平行于平面,则m、n—定不相交; ②如果不同直线m、n都垂直于平面,则m、n—定平行; ③如果平面、互相平行,若直线m ,直线n ,则m//n ; ④如果平面、互相垂直,且直线m、n也互相垂直,若m 则n 则真命题的个数是() A . 3 B . 2 C. 1 D. 0 【答案】C 【解析】只有②为真命题. 3. 设I为直线,,是两个不同的平面,下列命题中正确的是 A .若I // ,I// ,贝U // B.若1 ,I ,则// C .若1 ,I// ,贝U // D .若,I// ,则I 【解析】B 4. (2013 东莞 -模)如图,平行四边形ABCD 中,CD 1, BCD 60,且BD CD ,正方形ADEF和平面ABCD垂直,G, H是DF ,BE的中点. (1)求证:BD 平面CDE ; (2)求证:GH //平面CDE ; (3)求三棱锥D CEF的体积. C 是不重合的两个平面,则下列命 B.若I// , ,则I//

【解析】(1)证明:平面 ADEF 平面ABCD ,交线为AD , ?/ ED AD , ? ED 平面 ABCD , ?- ED BD ? 又 BD CD , ?- BD 平面 CDE . (2) 证明:连接 EA ,则G 是AE 的中点, ??? EAB 中,GH//AB , 又 AB//CD , ? GH // CD , ? GH // 平面 CDE ? (3) 设Rt BCD 中BC 边上的高为h , 是棱PA 上的动点. (1) 若Q 是PA 的中点,求证: PC // 平面BDQ CQ ; (2) PC , PB PD ,求证:BD 解析:证明:(1)连结AC ,交BD 于O ,如图: 若 PB 3, ABC 60°,求四棱锥P ABCD 即:点C 到平面 DEF 的距离为 … V D CEF V C DEF _3 2 _3 3 5.(2013丰台二模)如图所示,四棱锥P ABCD 中, 底面ABCD 是边长为2的菱形,Q

例谈构造平行六面体解立体几何题

例谈构造平行六面体解立体几何题 立体几何题的题设中若有“垂直”(包括线线垂直、线面垂直及面面垂直)可以试着构造长方体来求解,若没有“垂直”也可尝试构造平行六面体来求解.本文以普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版)(下简称教科书)中的题目及几道高考题来谈谈这种解题方法. 题1 (教科书第106页例2)如图1,甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处.从,A B 到直线l (库底与水坝的交线)的距离AC 和BD 分别为a 和b ,CD 的长为c ,AB 的长为d .求库底与水坝所成二面角的余弦值. 图1 图2 解 可在如图2所示的平行六面体中求解:因为,//CD AC AC A D '⊥,所以CD A D '⊥.又CD BD ⊥,所以CD ⊥面A DB ',得AA A B ''⊥,所以222A B d c '=-. 在A BD '?中,由余弦定理可求得2222 cos 2a b c d A DB ab ++-'∠=,此即所求二面角的余弦值. 题 2 (教科书第107页练习第2题)如图3,60?的二面角棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,求CD 的长. 图3 图4 解 可在如图4所示的平行六面体中求解:在ACE ?中,6,6,60AC AE BD CAE ===∠=?,由余弦定理可求得252CE =.

可证BA ⊥面ACE ,所以有DE CE ⊥,在CDE ?中可求得217CD =. 题3 (教科书第113页第12题)一条线段夹在一个直二面角的两个半平面内,它与两个半平面所成的角都是30?,求这条线段与这个二面角的棱所成角的大小. 解 可在如图5所示的长方体中求解:30ADB DAE ∠=∠=?,可不妨设2AD =,得1,3,2DE CB AB AE BD BE CD =======,所以在Rt ACD ?中可求得45ADC ∠=?,即夹在直二面角A BE D --的线段AD 与棱BE 所成角的大小是45?. 图5 题 4 已知两平行平面,αβ的距离为23,点,A B α∈,点,C D β∈,且3,2AB CD ==,异面直线,AB CD 成60?角,求四面体ABCD 的体积. 解 可在如图6所示的平行六面体中求解: 图6 在图6所示的平行六面体中,60A CD '∠=?或120?, 133,23sin 322 A CD A C A B S A CD '?''===??∠=,所以13323332 A BCD A BCD V V '--===. 题 5 (2012·安徽·文·15) 若四面体ABCD 的三组对棱分别相等,即,,A B CD A C B D AD BC ===,则下列命题正确的是 (写出所有正确命题的编号)。 ①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等 ③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180° ④连接四面体ABCD 每组对棱中点的线段相互垂直平分 ⑤从四面体ABCD 每个顶点出发的三条棱可作为一个三角形的三边长

高三数学立体几何专题复习课程

高三数学立体几何专 题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空 间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三 视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的 高宽高分别为,,m n k = =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4 a b ?+≤当且仅当2a b ==时取等号.

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何 第一讲 空间几何体 1.棱柱、棱锥 (1)棱柱的性质 侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质 侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图 (1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题 (1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长. (2)柱、锥的内切球找准切点位置,化归为平面几何 问题. 4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式 ①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l ); ③圆台的表面积S =π(r ′2 +r 2 +r ′l +rl ); ④球的表面积S =4πR 2 . (2)体积公式 ①柱体的体积V =Sh ; ②锥体的体积V =1 3 Sh ;

③台体的体积V =1 3(S ′+SS ′+S )h ; ④球的体积V =43 πR 3 . 1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A .4 B.143 C.16 3 D .6 答案 B 解析 由三视图知四棱台的直观图为 由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=14 3. 2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )

《立体几何》专题(文科)

高三文科数学第二轮复习资料 ——《立体几何》专题 一、空间基本元素:直线与平面之间位置关系的小结.如下图: 二、练习题: 1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是 A .平行 B .相交 C .异面 D .平行、相交、异面都有可能 2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A . V 21 B .V 31 C .V 41 D .V 3 2 3.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是 A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥ C .,,m αγβγα⊥⊥⊥ D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 D 1 B 1

线A C 1上的点,若 a PQ= 2 ,则三棱锥P BDQ -的体积为 A3 B3 C3 D.不确定 5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是 A 1 2Q B 2 3 Q C 2 π Q D 2 3π Q 6.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证: (1)EG∥平面BB1D1D; (2)平面BDF∥平面B1D1H; (3)A1O⊥平面BDF; (4)平面BDF⊥平面AA1C. 7.如图,斜三棱柱ABC—A’B’C’中,底面是边长为a的正三角形, 侧棱长为 b,侧棱AA’与底面相邻两边AB、AC都成450角,求 此三棱柱的侧面积和体积. 8.在三棱锥P—ABC中,PC=16cm,AB=18cm,PA=PB=AC=BC=17cm,求三棱锥的体积V P-ABC.

高考数学专题 立体几何专题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力与运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点就是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】 题型1 空间几何体的三视图以及面积与体积计算 例 1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影就是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别就是长为a 与b 的线段,则a b +的最大值为 A. 22 B. 32 C. 4 D. 5 2分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k ,由题意得2227m n k ++=,226m k +=1n ?=, 21k a +=,21m b +=,所以22(1)(1)6 a b -+-=228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号. 点评:本题就是高考中考查三视图的试题中难度最大的一个,我们通过移动三个试图把问题归结为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决. 例2下图就是一个几何体的三视图,根据图中数据,可得该几何体的表面积就是 A.9π B.10π C.11π D.12π

用补形法解立体几何题的常用策略

用补形法解立体几何题的常用策略 罗建中 一、棱锥补成棱柱 例1 一个四面体的所有棱长都为 2,四个顶点在同一球面上,则球的表面积为 A. π3 B. π 4 C. π3 3 D. π 6 分析:正四面体可看作是正方体经过切割而得到,因而构造一个棱长为1的正方体ABCD1 1 1 1 D C B A -,则四面体D BC A 1 1 -就是棱长为2的正四面体,而正方体的外接球就是四面体的外接球,又正方体的对角线长就是球的直径,易知对角线长度为3,故球表面积 2 2 3 4 S?? ? ? ? ? π = π =3。 评注:对棱长全相等的正四面体通常把它补成正方体。若是相对棱长相等的四面体,则可考虑把它补成长方体。 例2 如图1,在底面是直角梯形的四棱锥ABCD S-中,∠ABC=? 90,SA⊥面ABCD,SA=AB=BC=1,AD=2 1 。 (1)求四棱锥ABCD S-的体积; (2)求面SCD与面SBA所成的二面角的正切值。 解:(1)解答略。 (2)以SA为棱,构造正方体AECB-SFGH,如图2,分别取棱SF、HG中点M、N,连结DM、MN、SN、ND,设ND与SC相交于O,连接MO。 则有面MDN∥面SAB,且SM⊥面MDN, 所以所求的二面角等于二面角S-DN-M。 在正方体AECB-SFGH中,△NSD与△NMD都是等腰三角形,所以SO⊥DN, MO⊥DN,所以∠SOM是二面角S-DN-M的平面角。又MO2 1 = SB=2 2 ,SM=2 1 ,所以2 2 MO SM SOM tan= = ∠ ,故所求二面角的正切值是2 2 。

评注:从一顶点出发的三条棱互相垂直的锥体通常可考虑把它补成长方体或正方体。 二、三棱柱可补成四棱柱 例3 已知斜三棱柱的侧面11ACC A 与平面ABC 垂直,∠ABC=?90,BC=2,AC=32,且C A AA 11⊥,C A AA 11=,求点C 到侧面11ABB A 的距离。 解:把斜三棱柱ABC 111C B A -补成如图3所示的平行六面体,设所求的距离为d ,则d 也是平面11A ABB 与平面 11C CMM 间距离,作AC D A 1⊥于点D ,作AB E A 1⊥于点F ,因为C A AA 11=,32AC =,C A AA 11⊥,所以 3 D A 1=,又∠ABC=?90,BC=2,所以22AB =,因侧面11ACC A 与底面ABC 垂直,AC D A 1⊥于点D ,所以 AB D A 1⊥,又AB E A 1⊥,知AB ⊥面ED A 1,因而AB ⊥ED ,又∠ABC=?90,所以DE ∥BC ,D 为AC 中点,且 1BC 21 DE == , 故 2 DE D A E A 2211=+=,而 d S D A S V 11ABB A 1ABMC ?=?=平行六面体。 所以 3 2 3 2S D A S d 11ABB A 1ABMC ==?= 。 评注:本例通过斜三棱柱补成四棱柱,从而达到把线面距离转化为面面距离,再通过等积变换达到简化解题之目 的。 三、棱台补成棱锥 例4 如图4,三棱柱ABC 111C B A -中,若E 、F 分别为AB 、AC 的中点,平面F C EB 11将三棱柱分成体积为1V 、2 V 的两部分,那么21V :V 等于多少?

相关文档
相关文档 最新文档