文档库 最新最全的文档下载
当前位置:文档库 › 北航17系光电子实验报告1-4

北航17系光电子实验报告1-4

北航17系光电子实验报告1-4
北航17系光电子实验报告1-4

北京航空航天大学光电子技术实验报告

实验时间:2015.05.13

报告时间:2015.05.21

I.光敏电阻特性及应用试验

实验一光敏电阻特性实验

一.实验目的:

1.了解光敏电阻的工作原理。

2.掌握使用本仪器测定光敏电阻的各种特性。

3.了解从实验曲线中获取物理特性的方法。

二.实验原理:

利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示,

图(1)

光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在日常生活中随处可见,当内光电效应发生时,光敏电阻电导率的改变量为:

?σ=?p ?e?μ

p +?n ?e?μ

n

在上式中,e 为电荷电量,?p 为空穴浓度的改变量,?n 为电子浓度的改变量,μ表示迁移率,当两端加上电压U后,光电流为

式中A为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,?σ为恒定的值,因而光电流和电压成线性关系。

光敏电阻在未受到光照射时的阻值称为暗电阻,此时流过的电流称为暗电流,光敏电阻受到光照射时的阻值称为亮电阻,此时流过的电流称为亮电流,亮电流与暗电流之差称为光电流,一般暗电阻越大,亮电阻越小,光敏电阻的灵敏度越高,光敏电阻的暗电阻一般在兆欧数量级,亮电阻在几千欧以下,暗电阻与亮电阻之比一般在102~106 之间。

一般光敏电阻(如硫化铅、硫化铊)的伏安特性曲线如图(2)所示,由该曲线可知,所加的电压越高,光电流越大,而且没有饱和现象,在给定的电压下,光电流的数值将随光照增强而增大,在设计光敏电阻变换电路时,应使光敏电阻的工作电压或电流控制在额定功耗线之内。

图(2)光敏电阻伏安特性曲线

光敏电阻的光电流与光照强度之间的关系,称为光敏电阻传感器的光照特性,不同类型的光敏电阻,其光照特性也不同,多数光敏电阻传感器光照特性类似于图(3)的特性曲线,光敏电阻的光照特性呈现出一定程度的非线性特性,光敏电阻的光照度——电阻值的典型特性曲线如图(4)所示,低照度a区曲线斜率较大,中间照度区b区可近似视为直线区,也是光敏电阻的主要工作区,因而光电流随光照度增长较快,在高照度区,电阻值随照度下降慢,光电流随照度增长也变慢。

图(3)光敏电阻光照特性曲线图(4)光敏电阻照度—电阻特性曲线几

种常用光敏电阻的光谱特性曲线如图(5)所示,对于不同波长的光,光敏电阻的灵

敏度是不同的。从图中可以看出,硫化镉的峰值在可见光区域,而硫化铅的峰值在红外区域。因此,在选用光敏电阻时应当把元件和光源的种类结合起来考虑,才能获得满意的结果。

图(5)光敏电阻光谱特性曲线

当光敏电阻元件温度升高时,光敏电阻的阻值会下降,并且暗电阻比亮电阻下降更多。环境温度对低照度时电阻值的影响比在高照度时影响更大,因此,当环境温度升高时,光敏电阻的亮电阻与暗电阻之差值会减小,这意味着光敏电阻的光电流会有所降低,图(6)示出了C dS 光敏电阻在光照度一定时光电流与环境温度的关系曲线,可以看出环境温度上升时 CdS 光敏电阻的光电流会有所下降。

图(6)光敏电阻温度特性曲线

三.实验所需部件:

直流稳压电源、光敏电阻、负载电阻(选配单元电位器)、数字电压/频率表、各种光源、遮光罩、固体激光器、光照度计(自备或选配)

四.实验过程及数据处理

1. 测试光敏电阻的暗电阻、亮电阻并计算光电阻。观察光敏电阻的结构,用遮光罩将光敏

电阻完全掩盖,用万用表欧姆档测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的电阻值为亮电阻R亮,暗电阻R暗与亮电阻R亮之差为光电阻R光,光电阻越大,则光敏电阻灵敏度越高。然后在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。

实验数据表格:(由于仪器量程限制,光敏电阻II的暗电阻无法读出)

2. 测试光敏电阻的暗电流、亮电流、光电流。按照图(8)接线,分别在暗光及环境光照射下测出输出电压U暗和U亮,电流I暗=U暗/R,亮电流I亮=U亮/R,亮电流I亮与暗电流I暗之差称为光电流I光,光电流越大则灵敏度越高。

图(7)发光管连接电路图(8)光敏电阻测量电路实验数据处理;

3. 光敏电阻的伏安特性测试。按照图(8)接线,电源可从直流稳压电源±2~±10V 间选用,每次在一定的光照条件下,测出当加在光敏电阻上电压为+2V、+4V、+6V、+8V、

+10V 时电阻R两端的电压U,和电流I,同时计算出此时光敏电阻的阻值

光敏电阻伏安特性测试数据表(暗光)(R=1k)

光敏电阻伏安特性测试数据表(正常环境光照)(R=1k)

伏安特性曲线如下图:

4. 光敏电阻的光照特性测试。按照图(8)接好实验线路,负载电阻R选定10K,光源用高亮度卤钨灯(实验者可仔细调节光源控制旋钮,得到不同的光源亮度),从电源电压U CC=2V 开始到U CC=10V,

每次在一定的外加电压下测出光敏电阻在相对光照度从“弱光

到逐步增强的电流数据,即:I

ph=U

R ,(2V ?20KΩ,4V ?40KΩ,6V ?60KΩ) ,R

同时求出此时光敏电阻的阻值,即:R

g=U

cc

-U

R

I

Ph

。这里要求尽量多测试(不少于

15 个)在不同照度下的电流数据,尤其要在弱光位置选择较多的数据点,以使所得到的数据点能够绘出较为完整的光照特性曲线。

光敏电阻光照特性测试数据表

(电压: 2V 电阻:20k)

光敏电阻光照特性测试数据表

(电压:4V 电阻:40k)

光敏电阻光照特性测试数据表

(电压: 6V 电阻:60k)

根据以上实验数据画出光敏电阻的一组光照特性曲线。

5. 光敏电阻的光谱特性测试。不同的半导体材料制成的光敏电阻有着不同的光谱特性,见图(5),当不同波长的入射光照到光敏电阻的光敏面上,光敏电阻就有不同的灵敏度。照图(8)接线,其工作电源可选用直流稳压电源的负电源,用高亮度LED(红、黄、绿、蓝、白)

。限流电

((7)作为光源,发光电源可选用直流稳压电源的正电源。发光管的接线可参照图

阻用选配单元上的10K~60K 档电位器,首先应置电位器阻值为最大,开启电源

后缓慢调小阻值,使发光管逐步发光并至最亮,当发光管达到最高亮度时不应再改变限流电阻阻值,依次将各发光管接入光电器件模板上的发光管插座。发光管与光敏电阻顶端可用附件中的黑色软管连接(透镜对透镜),分别测出光敏电阻在各种光源照射下的光电流,再用固体激光器作为光源,测得光电流,将测得的数据记入下表,据此作出两种光电阻大致的光谱特性曲线:

实验二光敏电阻的应用-----暗灯控制

一.实验目的:

1.了解光敏电阻的应用。

二.实验原理:

本实验为一种当有光照射时切断电路,无光照射时接通电路的暗通型光电控制器电路,当光照消失(无光照)时,光敏电阻C dS 的阻值增大,处理电路中的晶体管T基极电压升高,

T 导通,集电极负载L ED 流过的电流增大,LED 发光管发光。

三.实验所需部件:

光敏电阻、“光敏灯控”单元、发光二极管、数字电压/频率表

四.实验步骤:

1.按照仪器面板所示,将光敏电阻对应接入“光敏灯控”单元的“光敏入”,

“发光管”端口与“发光二极管Ⅰ”相接,输出端V o 接数字电压/频率表20V 档。

2.确认无误后,开启仪器电源,调节“暗光控制”电位器,使在实验室光照环境下发光管不亮。

3.然后改变光照条件,分别用白纸、带色的纸和遮光罩改变光敏电阻的光照,当光照变暗到一定程度时发光管变亮,这就是日常所用的暗光街灯控制电路的原理。

4.根据暗通电路原理,试设计一个亮通控制电路。

五.实验结果

实验总结:

1,光电子实验预习报告很重要,步骤明确,需测量也标明的很清楚,只是实验重复性大,测的数据多,需要耐心进行实验。

2,实验仪器存在误差,量程不够等问题,另外,由于实验对光照条件要求较高,而做实验时候不太能满足要求,故实验数据不准。还有做光照特性实验读数时,由于数据持续变化,导致读数不准确等等问题

3,实验时,仪器有缺漏(比如只有一个光敏电阻,无激光相关器件等等),所以建议老师下次可否使实验器材齐全。

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

北航电子电路设计数字部分实验报告

电子电路设计数字部分实验报告 学院: 姓名:

实验一简单组合逻辑设计 实验内容 描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0。 实验仿真结果 实验代码 主程序 module compare(equal,a,b); input[7:0] a,b; output equal; assign equal=(a>b)1:0; endmodule 测试程序

module t; reg[7:0] a,b; reg clock,k; wire equal; initial begin a=0; b=0; clock=0; k=0; end always #50 clock = ~clock; always @ (posedge clock) begin a[0]={$random}%2; a[1]={$random}%2; a[2]={$random}%2; a[3]={$random}%2; a[4]={$random}%2; a[5]={$random}%2; a[6]={$random}%2; a[7]={$random}%2; b[0]={$random}%2; b[1]={$random}%2; b[2]={$random}%2; b[3]={$random}%2; b[4]={$random}%2;

b[5]={$random}%2; b[6]={$random}%2; b[7]={$random}%2; end initial begin #100000 $stop;end compare m(.equal(equal),.a(a),.b(b)); endmodule 实验二简单分频时序逻辑电路的设计 实验内容 用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果。 实验仿真结果

华科电力电子实验报告

电气11级 《信号与控制综合实验》课程 电力电子部分实验报告 姓名学专业班 同组学号专业班号 同组者 实验评分表

基本实验实验编号名称/内容实验分值评分 PWM信号的生成和PWM控制的实现 DC/DC PWM升压降压变换电路性能的研究 三相桥式相控整流电路性能的研究 DC/AC单相桥式SPWM逆变电路性能的研 究 设计性实验实验名称/内容实验分值评分 实验三十九信号的调制—SPWM信号 的产生与实现 教师评价意见总分 目录

实验二十八 PWM信号的生成和PWM控制的现 (4) 实验二十九 DC/DC—PWM升压、降压变换电路性能研究 (11) 实验三十三相桥式相控整流电路性能研究 (14) 实验三十一DC/AC单相桥式SPWM逆变电路性能研究 (23) 实验三十九信号的调制—SPWM信号的产生与实现 (32) 实验心得 (40)

实验二十八 PWM信号的生成和PWM控制的实现 一.实验目的 分析并验证基于集成PWM控制芯片TL494的PWM控制电路的基本功能,从而掌握PWM 控制芯片的工作原理和外围电路设计方法。 二.实验原理 PWM控制的基本原理:将宽度变化而频率不变的的脉冲作为电力电子变换器电路中的开关管驱动信号,控制开关管的适时、适式的通断;而脉冲宽度的变化与变换器的输出反馈有着密切的联系,当输出变化时,通过输出反馈调节开关管脉冲驱动信号,调节驱动脉冲的宽度,进而改变开关管在每个周期中的导通时间,以此来抵消输出电压的变化,从而满足电能变换的需要。 本实验中采用实验室中已有的PWM控制芯片TL494来完成实验,当然在进行具体的PWM控制之前,我们必须要详细的了解和认识该控制芯片的工作原理和方式,如何输出?输出地双路信号存在怎样的关系?参考信号是如何形成的?反馈信号是如何加载到控制芯片上,同时又是如何以此反馈信号来完成输出反馈的?另外我们也必须了解和认识到对不同开关管进行驱动时,为保证开关管的完全可关断,保证电路的正常可靠工作,死区时间的控制方式。最后我们也要了解为防止电力电子变换器在突然启动时,若开放较宽脉冲而带来的较大冲击电流的影响(和会给整个电路带来许多不利影响),控制芯片要采用“软启动”的方式,这也是本实验中认识的一个重点。 三.实验内容 (1)考察开关频率为20kHz,单路输出时,集成电路的软启动功能。 (2)考察开关频率为20kHz,单路输出时,集成电路的反馈电压Vf对输出脉宽的影响。(3)考察开关频率为20kHz,单路输出时,集成电路的反馈电流If对输出脉宽的影响。(4)考察开关频率为20kHz,单路输出时,集成电路的保护封锁功能 (5)考察开关频率为20kHz,单路输出时,集成电路死区电压对输出脉宽的影响。 四.实验步骤 本实验采用单路输出,将端口13接地。 1.PWM脉宽调节:软启动后,在V1端口施加电压作为反馈信号Vf,给定信号Vg=2.5v,改变V1端口电压大小,即可改变V3,从而改变输出信号的脉宽。V3越大,K越大,C=J+K越大,脉宽越小;反之脉宽越大。记录不同V1下的输出波形并与预计实验结果比较。 2.软启动波形:为防止变换器启动时较大的冲击电流,控制芯片TL494和其他控制芯片相似也采用了软启动。在启动时,为防止变换器冲击电流的出现,驱动脉宽应从零开始增大,逐渐变宽到工作所需宽度。本实验中此功能由脉冲封锁端口电位的逐渐开放来实现,电位又打逐渐变小,便可实现软启动。为对控制芯片的该控制过程有更明确和清晰的认识,我们可以观察芯片启动过程中“启动和保护端口4”(TP3)的电压波形变化并与实验前预测进行比较。

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

北航电子电路设计训练模拟分实验报告

北航电子电路设计训练模拟部分实验报告

————————————————————————————————作者:————————————————————————————————日期:

电子电路设计训练模拟部分实验 实验报告

实验一:共射放大器分析与设计 1.目的: (1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。 (2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察 静态工作点的变化对输出波形的影响。 (3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。 (4)观察失真现象,了解其产生的原因。 图 1 实验一电路图 2.步骤: (1)请对该电路进行直流工作点分析,进而判断管子的工作状态。 (2)请利用软件提供的各种测量仪表测出该电路的输入电阻。 (3)请利用软件提供的各种测量仪表测出该电路的输出电阻。 (4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。 (5)请利用交流分析功能给出该电路的幅频、相频特性曲线。 (6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。 (提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注 意信号源幅度和频率的选取,否则将得不到正确的结果。) 3.实验结果及分析: (1)根据直流工作点分析的结果,说明该电路的工作状态。 由simulate->analyses->DC operating point,可测得该电路的静态工作点为:

中南大学电力电子实验报告

电力电子实验报告 学院名称:信息科学与工程学院 指导老师: 专业班级:电气0802班 学生姓名: 学号:

目录 实验1-1 三相脉冲移相触发电路------------------------3 一、实验目的-------------------------------------------------------3 二、实验内容---------------------------------------------------- --3 三、实验电路原理------------------------------------------------3 四、实验设备------------------------------------------------------4 五、实验步骤和方法---------------------------------------------4 实验1-2 三相桥式整流电路的研究---------------------5 一、实验目的------------------------------------------------------5 二、实验内容------------------------------------------------------5 三、实验设备------------------------------------------------------5 四、实验步骤和方法---------------------------------------------5 五、注意事项------------------------------------------------------9 六、实验原理------------------------------------------------------9 七、实验结果------------------------------------------------------10 实验1-3 三相桥式变流电路反电动势负载的研究-11 一、实验目的------------------------------------------------------11 二、实验内容------------------------------------------------------11 三、实验设备------------------------------------------------------11 四、实验步骤和方法---------------------------------------------11 五、实验结果------------------------------------------------------13 实验1-4 单相交流调压电路----------------------------14 一、实验目的------------------------------------------------------14 二、实验内容------------------------------------------------------14 三、实验设备------------------------------------------------------14 四、实验步骤和方法---------------------------------------------14 五、实验原理------------------------------------------------------16 六、实验结果------------------------------------------------------16 实验心得-----------------------------------------------------18

电力电子实验报告

电力电子实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验一SCR(单向和双向)特性与触发实验 一、实验目的 1、了解晶闸管的基本特性。 2、熟悉晶闸管的触发与吸收电路。 二、实验内容 1、晶闸管的导通与关断条件的验证。 2、晶闸管的触发与吸收电路。 三、实验设备与仪器 1、典型器件及驱动挂箱(DSE01)—DE01单元 2、触发电路挂箱Ⅰ(DST01)—DT02单元 3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代) 4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元 5、逆变变压器配件挂箱(DSM08)—电阻负载单元 6、慢扫描双踪示波器、数字万用表等测试仪器 四、实验电路的组成及实验操作 图1-1 晶闸管及其驱动电路

1、晶闸管的导通与关断条件的验证: 晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。打开系统总电源,将系统工作模式设置为“高级应用”。将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。闭合控制电路及挂箱上的电源开关,调节“DT03”单元的电位器“RP2”使“K”点输出电压为“0V”;闭合主电路,用示波器观测T1两端电压;调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况,记录使T1由截止变为开通的门极电压值,它正比于通入T1门极的电流I G;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测T1的端电压情况。断开主电路、挂箱电源、控制电路。将加在晶闸管和电阻上的主电源换成交流电源,即“AC15V”直接接“R1”一端,T1的阴极直接接“O”;依次闭合控制电路、挂箱电源、主电路。调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测并记录T1的端电压情况。通过实验结果,参考教材相关章节的内容,分析晶闸管的导通与关断条件。实验完毕,依次断开主电路、挂箱电源、控制电路。 2、晶闸管的触发与吸收电路: 将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;用导线连接“DT02”单元输出端子“OUT11”和“OUT12”与“DE01”单元的脉冲变压器输入端“IN1”和“IN2”;取主电源的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”;“DP01”单元的同步信号输出端“A”和“B”连接到锯齿波移相触发电路的同步信号输入端“A”和“B”;将“DE01”的脉冲变压器输出“g1”和“k1”分别接至单向

电力电子实验报告

实验题目:MPD-15实验设备《电力电子技术》班级:自动化1405 姓名:KZY 学号:0901140450X 指导老师:XXX

实验一、三相脉冲移相触发电路 1.实验目的:熟悉了解集成触发电路的工作原理、双脉冲形成过程及掌握集成触发电路的 应用。 2.实验内容:集成触发电路的调试及各点波形的观察与分析。 3.实验设备:YB4320A型双线示波器一台;万用表一块;MPD-15实验设备中“模拟量可逆 调速系统”控制大板中的“脉冲触发单元”。 4.实验接线:见图1 图1 该实验接好三根线:即SZ与SZ1,GZ与GND,U GD与U CT连接好就行了。 5.实验步骤: (1)将实验台左下方的三相电源总开关QF1合上;(其它开关和按钮不要动) (2)将模拟挂箱上左边的电源开关拨至“通”位置,此时控制箱便接入了工作电源和三相交流同步电源U sa U sb U sc (注:U sa U sb U sc 与主回路电压:U A16 U B16 U C16相位一致)。 (3)将模拟挂箱上正组脉冲开关拨至“通”位置,此时正组脉冲便接至了正组晶闸管。 (4)用示波器观察U sa U sb U sc孔的相序是否正确,相位是否依次相差120°(注:用示波器的公共端接GND孔,其它两信号探头分别依次检查三个同步信号)。 (5)触发器锯齿波斜率的整定 (6)触发器相位特性整定:

实验二三相桥式整流电路的研究 一、实验目的 1、熟悉三相桥式整流电路的组成、研究及其工作原理。 2、研究该电路在不同负载(R、R+L、R+L+VDR)下的工作情况,波形及其特性。 3、掌握晶体管整流电路的试验方法。 二、实验设备 1、YB4320A型双线示波器一台 2、万用表一块 3、模拟量挂箱一个 4、MPD-08试验台主回路 三、实验接线 1、先断开三相电源总开关QF1; 2、触发器单元接线维持实验一线路不变; 3、主回路接线按图5进行。 A N0 图5 三相桥式整流电路(虚线部分用导线接好) 四、实验步骤(注意:根据表1中 所对应的Uct数据来调节Uct大小)

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

实验报告-电力电子仿真实验

电力电子仿真实验 实验报告 院系:电气与电子工程学院 班级:电气1309班 学号: 1131540517 学生姓名:王睿哲 指导教师:姚蜀军 成绩: 日期:2017年 1月2日

目录 实验一晶闸管仿真实验 (3) 实验二三相桥式全控整流电路仿真实验 (6) 实验三电压型三相SPWM逆变器电路仿真实验 (18) 实验四单相交-直-交变频电路仿真实验 (25) 实验五VSC轻型直流输电系统仿真实验 (33)

实验一晶闸管仿真实验 实验目的 掌握晶闸管仿真模型模块各参数的含义。 理解晶闸管的特性。 实验设备:MATLAB/Simulink/PSB 实验原理 晶闸管测试电路如图1-1所示。u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。 图1-1 晶闸管测试电路 实验内容 启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型 双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。 图1-3 交流电压源模块参数

图1-4 晶闸管模块参数 图1-5 脉冲发生器模块参数 固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为0.02s(即频率为50Hz),脉冲宽度为2(即7.2o),初始相位(即控制角)设置为0.0025s(即45o)。 串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。 元件串联RLC分支并联RLC分支 类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0 单个电感0L inf inf L0 单个电容00C inf inf C

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

FPGA实验报告北航电气技术实验

FPGA电气技术实践 实验报告 院(系)名称宇航学院 专业名称飞行器设计与工程(航天)学生学号XXXXXXXX 学生姓名XXXXXX 指导教师XXXX 2017年11月XX日

实验一四位二进制加法计数器与一位半加器的设计实验时间:2017.11.08(周三)晚实验编号20 一、实验目的 1、熟悉QuartusII的VHDL的文本编程及图形编程流程全过程。 2、掌握简单逻辑电路的设计方法与功能仿真技巧。 3、学习并掌握VHDL语言、语法规则。 4、参照指导书实例实现四位二进制加法计数器及一位半加器的设计。 二、实验原理 .略 三、实验设备 1可编程逻辑实验箱EP3C55F484C8 一台(包含若干LED指示灯,拨码开关等)2计算机及开发软件QuartusII 一台套 四、调试步骤 1四位二进制加法计数器 (1)参照指导书实例1进行工程建立与命名。 (2)VHDL源文件编辑 由于实验箱上LED指示灯的显示性质为“高电平灭,低电平亮”,为实现预期显示效果应将原参考程序改写为减法器,且”q1<= q1+1”对应改为”q1<= q1-1”,以实现每输入一个脉冲“亮为1,灭为0”。 由于参考程序中的rst清零输入作用并未实现,所以应将程序主体部分的最外部嵌套关于rst输入是否为1的判断,且当rst为1时,给四位指示灯置数”1111”实现全灭,当rst为0时,运行原计数部分。 (3)参照指导书进行波形仿真与管脚绑定等操作,链接实验箱并生成下载文件 (4)将文件下载至实验箱运行,观察计数器工作现象,调试拨动开关查看是否清零。 可以通过改变与PIN_P20(工程中绑定为clk输入的I/O接口)相连导线的另一端所选择的实验箱频率时钟的输出口位置,改变LED灯显示变化频率。 并且对照指导书上对实验箱自带时钟频率的介绍,可以通过改变导线接口转换输入快慢,排查由于clk输入管脚损坏而可能引起的故障。

电力电子实验报告

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:一、实验项目名称:锯齿波同步移相触发电路实验

接于“7”端。注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。 3.调节脉冲移相范围 将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使α=180O,其波形如图4-4所示。 调节MCL—18的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=Umax时,α=30O,以满足移相范围α=30O~180O的要求。 4.调节Uct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。 用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。 七、实验报告 1、观察波形 ⑴、“1”、“2”孔波形

⑵、“3孔波形” ⑶、“4”孔波形

⑸、U G1K1波形

2、调节脉冲移相范围 ⑴U2、U5波形

⑵、U G1K1、U G2K2波形 ⑶、U G1K1、U G3K3波形

北航17系光电子实验报告实验5讲解

光电子技术实验报告

实验五光电池特性实验 一.实验目的: 1.学习掌握硅光电池的工作原理。 2.学习掌握硅光电池的基本特性。 3.掌握硅光电池基本特性测试方法。 二.实验原理: 光电池是一种不需要加偏置电压就能把光能直接转换成电能的PN结光电器件,按光电池的功用可将其分为两大类:即太阳能光电池和测量光电池,本仪器用的是测量用的硅光电池,其主要功能是作为光电探测,即在不加偏置的情况下将光信号转换成电信号。 图(20)图(21)如图(20)所示为2DR型硅光电池的结构,它是以P型硅为衬底(即在本征型硅材料中掺入三价元素硼或镓等),然后在衬底上扩散磷而形成N型层并将其作为受光面。如图(21)所示当光作用于PN结时,耗尽区内的光生电子与空穴在内建电场力的作用下分别向N区和P区运动,在闭合电路中将产生输出电流IL,且负载电阻RL上产生电压降为U。显然,PN结获得的偏置电压U与光电池输出电流IL与负载电阻RL有关,即U=IL?RL,当以输出电流的IL为电流和电压的正方向时,可以得到如图(22)所示的伏安特性曲线。

图(22)图(23)光电池在不同的光强照射下可以产生不同的光电流和光生电动势,硅光电池的光照特性曲线如图(23)所示,短路电流在很大范围内与光强成线性关系,开路电压随光强变化是非线性的,并且当照度在2000lx时就趋于饱和,因此,把光电池作为测量元件时,应把它当作电流源来使用,不宜用作电压源。 硒光电池和硅光电池的光谱特性曲线如图(25)所示,不同的光电池其光谱峰值的位置不同,硅光电池的在800nm附近,硒光电池的在540nm附近,硅光电池的光谱范围很广,在450~1100nm之间,硒光电池的光谱范围为340~750nm。 图(24)图(25)光电池的温度特性主要描述光电池的开路电压和短路电流随温度变化的情况,由于它关系到应用光电池设备的温度漂移,影响到测量精度或控制精度等主要指标,光电池的温度特性如图(24)所示。开路电压随温度升高而下降的速度较快,而短路电流随温度升高而缓慢增加,因此,当使用光电池作为测量元件时,在系统设计中应考虑到温度的漂移,并采取相应的措施进行补偿。 三.实验所需部件: 两种光电池、各类光源、实验选配单元、数字电压表(4 1/2位)自备、微安表(毫安表)、激光器、照度计(用户选配)。

电力电子实验报告

实验一、直流斩波电路的性能研究 一、实验目的 1.熟悉降压斩波电路和升压斩波电路的工作原理。 2.掌握这两种基本轿波电路的工作状态及波形情况。 二、实验项目 降压型(Buck)斩波电路性能研究。 三、实验原理 3.1 实验原理图 降压斩波电路 四、实验步骤及方法 1.熟悉各个模块的功能,检査控制电路和主电路的电源开关是否为关闭状态。 2.按照实验原理图进行接线。 3.对 PWM 控制模块依次进行如下设置: a 调节“幅值调节”旋钮,向左旋转至最小。 b“控制方式”开关拨为开环。 c“载波频率”设置为 20K。 d“输出模式”开关拨为模式 1。 4.打开底柜 24V 和 15V 电源,将 PWM 控制模块的开关拨为 ON,用示波器分别观察载波(三角波)和 PWM 信号的波形,记录其波形、频率和幅值。调节“幅值调节”旋钮,观察 PWM 信号的变化情况。 5.斩波电路的输入直流电压 Ui 由底柜的可调直流源给出,观察 Ui 波形,记录其平均值。

6.接通主电路和控制电路的电源。调节“幅值调节”旋钮,改变 PWM 波的占空比,观测输出电压 U o 波形。分别记录几组 PWM 信号占空比α, U i 、U o 的平均值。 五、实验结果 1.Vi=50V时,D=19.04%,输出电压波形如下图所示,由图知,Vo=8.8V,Vo理论值=Vi*D=9.52V。 2.Vi=40V时,D=66.94%,输出电压波形如下图所示,由图知,Vo=20V,Vo理论值=Vi*D=26.776V。 六、结果分析 将降压斩波电路中实际输出电压与理论分析结果逬行比较, 讨论产生差异的原因。 答:实际上斩波电路会由于输出端使用电容滤波,而造成输出电压与理论值不同。

三相桥式全控整流电路实验报告

三相桥式全控整流电路实 验报告 Prepared on 24 November 2020

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o 的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V —2V 的脉冲。注:将面板上的Ublf 接地(当三相桥式全控整流电路使用I 组桥晶闸管VT1~VT6时),将I 组桥式触发脉冲的六个琴键开关均拨到“接通”, 琴键开关不按下为导通。 (4)将给定输出Ug 接至MCL-33面板的Uct 端,在Uct=0时,调节偏移电压Ub ,使=90o 。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1) 电阻性负载 按图接线,将Rd 调至最大450 (900并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv 、U vw 、U wu ,从0V 调至70V(指相电压)。调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90° 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd 调至最大(450)。 调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30 O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90°

北航eda实验报告

2014-2015-2-G02A3050-1 电子电路设计训练(数字EDA部分) 实验报告 (2015年5月19日) 教学班学号姓名组长签名成绩120311王天然* 120311马璇 120312唐玥 自动化科学与电气工程学院

目录 ( 2015年5月19日).........................................错误!未定义书签。目录 .........................................................错误!未定义书签。实验一、简单组合逻辑和简单时序逻辑............................错误!未定义书签。 简单的组合逻辑设计..................................错误!未定义书签。 实验目的和内容:..................................错误!未定义书签。 实验源代码:......................................错误!未定义书签。 测试模块源代码:..................................错误!未定义书签。 简单分频时序逻辑电路的设计...........................错误!未定义书签。 实验目的和内容:..................................错误!未定义书签。 实验源代码:......................................错误!未定义书签。 实验测试源代码:..................................错误!未定义书签。 (选作)设计一个字节(8位)比较器....................错误!未定义书签。 实验内容:........................................错误!未定义书签。 实验代码:........................................错误!未定义书签。 实验测试源代码:..................................错误!未定义书签。 实验小结.............................................错误!未定义书签。实验二、条件语句和always过程块...............................错误!未定义书签。 实验任务1——利用条件语句实现计数分频时序电路.......错误!未定义书签。 实验要求.........................................错误!未定义书签。 模块的核心逻辑设计...............................错误!未定义书签。 测试程序的核心逻辑设计...........................错误!未定义书签。 仿真实验关键结果及其解释.........................错误!未定义书签。 实验任务2——用always块实现较复杂的组合逻辑电路....错误!未定义书签。

相关文档