文档库 最新最全的文档下载
当前位置:文档库 › 大学物理活页作业答案(全套)马文蔚

大学物理活页作业答案(全套)马文蔚

大学物理活页作业答案(全套)马文蔚
大学物理活页作业答案(全套)马文蔚

1.质点运动学单元练习(一)答案

1.B 2.D 3.D 4.B

5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。)

6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。)

7.解:(1))()2(22

SI j

t i t r -+=

)(21m j

i r

+= )(242m j

i r

-=

)(3212m j

i r r r

-=-=?

)/(32s m j

i t r v -=??=

(2))(22SI j t i dt

r

d v -== )(2SI j

dt v

d a -==

)/(422s m j i v

-=

)/(222--=s m j

a

8.解:

t A tdt A adt v t

o

t

o

ωω-=ωω-==

??

sin cos 2

t A tdt A A vdt A x t

o

t

o

ω=ωω-=+=??cos sin

9.解:(1)设太阳光线对地转动的角速度为ω

s rad /1027.73600

*62

/5-?=π=

ω

s m t

h dt ds v /1094.1cos 32

-?=ωω==

(2)当旗杆与投影等长时,4/π=ωt

h s t 0.31008.144=?=ω

π

=

10.解: ky y

v v t y y v t dv a -====

d d d d d d d -k =y v d v / d y

??+=-

=-C v ky v v y ky 2

22

121,

d d 已知y =y o ,v =v o 则2

020

2

121ky v C --= )(22

22y y k v v o o -+=

2.质点运动学单元练习(二)答案

1.D 2.A 3.B 4.C

5.14-?==s m t dt ds v ;2

4

-?==s m dt

dv

a t ;22

2

8-?==s m t R

v a n ;

2284-?+=s m e t e a n

t

6.s rad o /0

.2=ω;s rad /0.4=α;2

/8

.0s rad r a t =α=;

22/20

s m r a n =ω=

7.解:(1)由速度和加速度的定义

)(22SI j

i t dt r

d v +==;)(2SI i

dt

v

d a ==

(2)由切向加速度和法向加速度的定义

)(1

24422SI t t t dt d a t +=+=

)(1

22

22SI t a a a t n +=

-=

(3)()

)(1

22/322

SI t a v n

+==ρ

8.解:火箭竖直向上的速度为gt v v o y -?=45sin 火箭达到最高点时垂直方向速度为零,解得

s m gt

v o /8345sin =?

=

3.牛顿定律单元练习答案

1.C 2.C 3.A 4.kg Mg T 5.36721==

;2/98.02.0s m M

T a == 5.x k v x 2

2=;x x x

v k dt

dx

k dt dv v 222== 22

1

mk dt dv m

f x x == 6.解:(1)ma F F N T =θ-θsin cos

mg F F N T =θ+θcos sin

θ-θ=θ+θ=sin cos ;

cos sin ma mg F ma mg F N T

(2)F N =0时;a =g cot θ

7.解:mg R m o ≥ωμ2

R

g o μ≥

ω 8.解:由牛顿运动定律可得

dt

dv t 10

40120=+ 分离变量积分

()??

+=

t

o

v

dt t dv 4120

.6 )/(6462

s m t t v ++=

()

??

++=

t o

x

dt t t

dx 6462

.5 )(5

62223m t t t x +++=

9.解:由牛顿运动定律可得

dt

dv m

mg kv =+- 分离变量积分

??

-=+t o v

v o dt m k mg kv kdv o

t m k

mg kv mg o -=???

? ??+ln ???

? ??

+=???? ??+-

=mg kv k m mg kv mg k m t o o 1ln ln

10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2

cos =-θ,

t v

m mg d d sin =θ,

以及 t

a v d d θ

=,θd d v a t =,

积分并代入初条件得 )cos 1(22θ-=ag v ,

)2cos 3(cos 2

-=-=θθmg a

v m mg f .

4.动量守恒和能量守恒定律单元练习(一)答案

1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +?=

;2

2

12m t F v v ?+=

7.解:(1)t dt dx

v x 10==

;10==dt

dv a x x N ma F 20==;m x x x 4013=-=?

J x F W 800=?=

(2)s N Fdt I ?==

?

403

1

8.解:()1'v m m mv +=

()22

122

1'2121o kx v m m mv ++= ()

''

m m k mm v

x +=

9.解: 物体m 落下h 后的速度为 gh v 2=

当绳子完全拉直时,有 ()'2v M m gh m +=

gh m

M m v 2'+=

gh m

M mM

Mv I I T 22'22+=

==

10.解:设船移动距离x ,人、船系统总动量不变为零

0=+mv Mu

等式乘以d t 后积分,得

0=+??

t

o

t

o

mvdt Mudt

0)(=-+l x m Mx m m

M ml

x 47.0=+=

5.动量守恒和能量守恒定律单元练习(二)答案

1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/3

7.解:摩擦力mg f μ=

由功能原理 21212

10)(kx x x f -=+- 解得 )

(2212

1x x mg kx +=μ.

8.解:根据牛顿运动定律 R

v m F mg N 2

cos =-θ

由能量守恒定律

mgh mv =22

1

质点脱离球面时 R

h

R F N -=

θ=cos ;

0 解得:3

R h =

9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①

2

12

211m m v m v m v ++=

(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差

22122221)(212121v v v m m m m E p +-+=

② 联立①、②得 )/()(2

1

2122121m m m m E p +-=

v v

10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.

0)(=--MV V u m ① mgR MV V u m =+-22

2

1

)(21 ② 解得: )(2m M M gR

m

V +=;M

gR

m M u )(2+=

(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2

=-

M mg m M mg R mu mg N /)(2/2

++=+= mg M

m

M M mg m M Mmg N 23)(2+=++=

6.刚体转动单元练习(一)答案

1.B 2.C 3.C 4.C

5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。 6.

2ln k

J

7.解:(1)由转动定律,2/2.39s rad J

Fr

==

α (2)由刚体转动的动能定理J Fh E E k k 490==?= (3)根据牛顿运动定律和转动定律:

mg –F ’=ma rF ’=J α a=r α

联立解得飞轮的角加速度22

/8.21s rad mr

J mg

=+=

α 8.解:(1)由转动定律 α=2312ml l mg

l

g 23=α (2)取棒与地球为系统,机械能守恒

mgl E k 2

1

=

(3)棒下落到竖直位置时

223

1

2121ω??=ml mgl l

g

3=ω

9.解:(1)系统的能量守恒,有222

1

21ω+=

J mv mgh ω=r v

联立解得: J mr mghr v +=

2

2

2 ; J

mr mgh

+=ω2

2 (2)设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:

mg – T =ma T r =J β 由运动学关系有: a = r β

联立解得: 2

mr J mgJ

T +=

10.解:以中心O 为原点作坐标轴Ox 、Oy 和O z 如图所示,取质量为

y x m d d d ρ=

式中面密度ρ为常数,按转动惯量定义,

)(12

)()(3322

2222

2

2b a ab y y x x m y x a a b b +ρ

=

+ρ=+=???--d d d z J 薄板的质量 ab m ρ= 所以 )(12

22

b a m J +=

z

7.刚体转动单元练习(二)答案

1.C 2.A 3.D 4.B 5.o ω3;

o J 3

1 6.

o ω34;22

1o o J ω 7.解:小球转动过程中角动量守恒

ω=ω4

2

2o o o

r m mr o ω=ω4

22222

32121o o o mr J J W ω=ω-ω=

8.子弹与木杆在水平方向的角动量守恒

ω???

? ????? ??+=2

221221212l m l m l v m ()l m m v m 21236+=ω

9.解:圆环所受的摩擦力矩为mgR M μ=,

由转动定律 α=μ2

mR mgR , R

g μ=α 至圆环停止所经历的时间 g

R

t μω=αω=

00 10.解:落下过程棒的机械能守恒。设棒刚到竖直位置时角速度为ω

2

312122L

Mg ML =ω?, ① 碰撞过程,物体与棒系统角动量守恒

ω=

23

1

ML mvx , ② 碰撞过程轴不受侧向力,物体与棒系统水平方向动量守恒

ω=

M L

mv 2

, ③ ①、③消去ω,得 gL m

M

v 32=

, ④ ②、④消去v ,得 L x 3

2=

.

8.机械振动单元练习(一)答案

1. B 2. B 3. C 4. A

5. 0.10cos(π/6π/3)m x t =+ 6. 2:1

7. 解:0.1m A =,2π/πT ω==

运动方程cos()0.1cos(π)m x A t t ω??=+=+

(1)由旋转矢量法π/2?=-,0.1cos(ππ/2)m x t =-; (2)由旋转矢量法π/3?=,0.1cos(ππ/3)m x t =+; (3)由旋转矢量法π?=,0.1cos(ππ)m x t =+。

8. 解:木块处于平衡位置时,浮力大小F mg =。上下振动时,取其处于力平衡

位置点为坐标原点,竖直向下作为x 轴正向,则当木块向下偏移x 位移时,合外力为

'F P F =+∑

其中,浮力2

'F F gSx mg ga x ρρ=+=+

合外力

2

'F P F ga x kx ρ=-=-=-∑

2k ga ρ=为常数,表明木块在其平衡位置上下所作的微小振动是简谐运动。

由22d x F m dt =∑可得木块运动的微分方程为2220d x ga x

dt m

ρ+

=

令2

2

ga m

ρω=

,可得其振动周期为

2T ω

=

=

9. 解:如图,由旋转矢量法可知

π/3t ω?=

π/31/3s t ω?== 10. 解:(1)22111

224

p E kx E kA =

==

0.141m 2

x A =

≈ (2)22211111()28424

p E kx kA kA E =

=== 3

4

k k E E E E =-=

图8-1

9.机械振动单元练习(二)答案

10. B 11. B 12. C

13. 2ππ/3k +,2710m -?,2π4π/3k +,2110m -? 14. π/2

15. (1)0.5s ,1.5s ;(2)0s ,1s, 2s 。

16.

解:(1)由已知的运动方程可知:0.10m A =,2π/3?=,3πω=,

2π/2/3s T ω==

(2)-1max 0.94m s A ω=≈?v ,2-2

max 8.88m s a A ω=≈?

17.

解:振动系统的角频率为110s ω-=

=

由动量守恒定律得振动的初速度即子弹和木块的共同运动初速度的值0v 为

1102

0.8m s m m -=

=?+1v

v m

又因初始位移00x =,则振动系统的振幅为

0.08m A ω

==

=v

如图由旋转矢量法可知0π/2?=-,则简谐运动方程为

0.08cos(10π/2)(m)x t =-

18.

解:如图由旋转矢量法可知,合振动振幅为

0.10m A ==

合振动初相为

图9-1

1221sin π/3sin π/6

πarctan

cos π/6cos π/3

A A A A ?+=--

πarctan 2.341113=-≈

10. 解:如图由旋转矢量法可知0π/3a ?=-,02π/3b ?=。可见它们是反相的,因此合振动振幅为:

121cm A A A =-=

合振动初相为:0π/3a ??==- 同样由旋转矢量法可知

55π/6t ωω==

2π/12s T ω==

图9-3

10.机械波单元练习(一)答案

19. B 20. C 21. B 22. 1.67m

23. 0cos[()]x l

y A t u

ω?-=-

+ 24. 6,30

25.

解:(1)由波动方程可知振幅0.05m A =,角频率20πω=,/3πu ω=,

则波速1

6.67m s u -=?,频率/2π10Hz νω==,波长2π

2/3m u λω

==。

(2)max π 3.14m/s A ω==≈v 26.

解:(1)由图可知振幅0.1m A =,波长4m λ=,波速1

100m s u -=?

则2π2π/50πu

T ωλ

==

=。

又O 点初始时刻位于平衡位置且向y 轴正向运动,则由旋转矢量法可得

π/2?=-,因此波动方程为

0.1cos[50π(/100)π/2](m)y t x =--

(2)P 处质点的振动方程为

0.1cos(50π3π/2)(m)y t =-

27.

解:由图可知振幅0.1m A =,波长100m λ=,则角频率

2π2ππu

T ωλ

=

==。 由P 点的运动方向可知波向x 轴负方向传播。又由图可知原点O 初始时刻位于A /2处,且向y 轴负方向运动,则由旋转矢量法可得0π/3?=。则波动方程为

0.1cos[π(/50)π/3](m)y t x =++

10.解:(1)以A 点为坐标原点的波动方程为

2310cos[3π(/30)](m) y t x -=?-

(2)π

2

B A AB

AB

u

ω??λ

=-=-

=-

则以B 点为坐标原点的波动方程为

2310cos[3π(/30)π/2](m)y t x -=?--

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理A活页作业.docx

练习 1质点运动学(一) 班级学号姓名成 绩. 1. 一质点在平面上运动,已知质点位置矢量的表示式为r at 2 i bt 2 j (其中a、b为常量), 则该质点作 (A) 匀速直线运动.(B) 变速直线运动. (C) 抛物线运动.(D)一般曲线运动.[] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为,某一时间内的平均 速度为 v ,平均速率为v,它们之间的关系必定有: (A) v v, v v() v v, v v B (C) v v, v v() v v, v v[] D 3.一质点沿直线运动 ,其运动学方程为 x = 6 t -t 2(SI),则在 t 由 0至 4s 的时间间隔内,质点 的位移大小为 ___________,在 t 由 0 到 4s 的时间间隔内质点走过的路程为_______________.4.一质点作直线运动,其坐标 x 与时间 t 的关系曲线如图所示.则该质点在第秒瞬时速度为零;在第秒至第秒间速度与加速度同方向. x (m) 5 t (s) O 1 2 3 4 5 6 5. 有一质点沿 x 轴作直线运动, t 时刻的坐标为 x = t 2–2 t 3(SI) .试求: (1)第 2 秒内的平均速度; (2)第 2 秒末的瞬时速度; (3)第 2 秒内的路程.

6.什么是矢径矢径和对初始位置的位移矢量之间有何关系怎样选取坐标原点才能够使两者一致 练习 2质点动力学(一) 班级学号姓名成 绩. 1.质量分别为 m1和 m2的两滑块 A 和 B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为,系统在水平拉力 F 作用下匀速 F 运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,B A 二者的加速度 a A和 a B分别为 x (A) a A=0 , a B=0.(B) a A>0 , a B<0. (C) a A<0 , a B>0.(D) a A<0 , a B=0. [] 2.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则 到达顶点的情况是 (A)甲先到达.(B)乙先到达. (C)同时到达.(D)谁先到达不能确定.[] 3.分别画出下面二种情况下,物体 A 的受力图. (1)物体 A 放在木板 B 上,被一起抛出作斜上抛运动, A 始终位于 B 的上面,不计空气阻力; A v B A B (1)C(2)

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

大学物理活页作业答案全套(供参考)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r (2))(22SI j t i dt r d v )(2SI j dt v d a 8.解: 9.解:(1)设太阳光线对地转动的角速度为ω (2)当旗杆与投影等长时,4/ t 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y 已知y =y o ,v =v o 则2 020 2 121ky v C 2.质点运动学单元练习(二)答案 1.D 2.A 3. B

4.C 5.14 s m t dt ds v ;2 4 s m dt dv a t ;22 2 8 s m t R v a n ; 6.s rad o /0 .2 ;s rad /0 .4 ;2 /8 .0s rad r a t ; 7.解:(1)由速度和加速度的定义 )(22SI j i t dt r d v ;)(2SI i dt v d a (2)由切向加速度和法向加速度的定义 (3) )(1 22/322 SI t a v n 8.解:火箭竖直向上的速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得 9.解:s m u v /6.3430tan 10.解: l h v u ;u h l v 3.牛顿定律单元练习答案 1.C 2.C 3.A 4.kg Mg T 5.36721 ;2/98.02.0s m M T a 5.x k v x 2 2 ;x x x v k dt dx k dt dv v 222

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

大学物理A活页作业任务

练习1 质点运动学(一) 班级 学号 姓名 成绩 . 1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 2 2 (其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为 ,某一时间内的平均速 度为v ,平均速率为v ,它们之间的关系必定有: (A )v v v,v (B )v v v,v (C )v v v,v (D )v v v,v [ ] 3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点 的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________. 4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时 速度为零;在第 秒至第 秒间速度与加速度同方向.

5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求: (1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程. 6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致? 练习2 质点动力学(一) 班级 学号 姓名 成绩 . 1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 (A) a A =0 , a B =0. (B) a A >0 , a B <0. (C) a A <0 , a B >0. (D) a A <0 , a B =0. [ ] 2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是

《大学物理》习题和答案

《大学物理》习题和答案 第9章热力学基础 1,选择题 2。对于物体的热力学过程,下面的陈述是正确的,即 [(A)的内能变化只取决于前两个和后两个状态。与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关 (C),如果单位体积所含热量越多,其温度越高 (D)上述说法是不正确的 8。理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程 Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程 9。热力学第一定律表明 [] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量 (C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于1 13。一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?

V1(D)p2v 2?P1V1 20。两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体, 通过等静压从相同状态升压到两倍于原始压力。在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。这两个气缸充满相同的理想气体,并具有相同的初始状态。在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。后一种情况吸收更多热量(d)热量吸收量无法确定 25。这两个气缸充满相同的理想气体,并具有相同的初始状态。等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。在后一种情况下,完成的工作量很大(d)完成的工作量无法确定 27。理想的单原子分子气体在273 K和1atm下占据22.4升的体积。将这种气体绝热压缩到16.8升需要做多少功? [](a)330j(b)680j(c)719j(d)223j 28。一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。在以上三个过程中,

大学物理作业(一)答案

大学物理作业(一)答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

班级___ ___学号____ ____姓名____ _____成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -== (SI 制),则(1) t =1s 时质点的位置矢量 2i j +,速度 22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -___ ___,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A 点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(SI 制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为 ,法向加速度为 . 二. 选择: 1. 以下说法错误的是:( ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A)0v (B)θcos 0v (C) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为(不计空气 阻力): ( D )

大学物理A活页作业

班级 学号 姓名 成绩 . 1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为 ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A )v v v,v (B )v v v,v (C )v v v,v (D )v v v,v [ ] 3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点 的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________. 4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时 速度为零;在第 秒至第 秒间速度与加速度同方向. 5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求: (1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程. 6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致?

班级 学号 姓名 成绩 . 1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面 间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 (A) a A =0 , a B =0. (B) a A >0 , a B <0. (C) a A <0 , a B >0. (D) a A <0 , a B =0. [ ] 2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同 一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则 到达顶点的情况是 (A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定. [ ] 3. 分别画出下面二种情况下,物体A 的受力图. (1) 物体A 放在木板B 上,被一起抛出作斜上抛运动,A 始终位于B 的上面,不计空气阻力; (2) 物体A 的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C 上.把物体B 轻轻地放在A 的斜面上,设A 、B 间和A 与桌面C 间的摩擦系数皆不为零,A 、B 系统静止. 4.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平. 剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________. 5. 如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m=m 0=0.1kg ,当他 们如图a 放置时,物体正好做匀速运动。(1)求物体A 与水平桌面的摩擦 系数;(2)若按图b 放置时,求系统的加速度及绳的张力。 A

大学物理作业(三)答案

大学物理作业(三)答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

班级___ ___学号____ ____姓名____ _____成绩______________ 一、填空题 1. 一旋转齿轮的角加速度=4at 3-3bt 2 ,式中a 、b 均为恒量,若齿轮具有初角速度为 0,则任意时刻t的角速度 ,转过的角度为 . 2. 质量为m ,半径为R 的均质圆盘,平放在水平桌面上,它与桌面的滑动摩擦系数为,试问圆盘绕中心轴转动所受摩擦力矩为 。 3. 一长为L 质量为m 的均质细杆,两端附着质量分别为m 1和m 2的小球,且m 1>m 2 ,两小球直径d 1 、d 2都远小于L ,此杆可绕通过中心并垂直于细杆的轴在竖直平面内转动,则它对该轴的转动惯量为 , 若将它由水平位置自静止释放,则它在开始时刻的角加速度为多大: 。 4. 质量为m ,半径为r 的均质圆盘,绕通过其中心且与盘垂直的固定轴以角速度ω匀速转动,则对其转轴来说,它的动量为____________,角动量为__________. 三、计算题: 1. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO ’转动,设大小圆柱的半径分别为R 和r ,质量分别为M 和m ,绕在两柱体上的细绳分别与物体m 1和物体m 2 相连,m 1和m 2则挂在圆柱体的两侧,如图所示,设 R =0.20m ,r =0.10m ,m =4kg ,M =10kg ,m 1=m 2=2kg ,求柱体转动时的角加速度及两侧绳中的张力. 解:设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图 b). 题2-26(a)图 题2-26(b)图 (1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ② r R O ’ O m 2 m 1

大学物理活页答案(马文蔚 版)高等教育出版社

10.机械波单元练习(一)答案 1. B 2. C 3. B 4. 1.67m 5. 0cos[()]x l y A t u ω?-=- + 6. 6,30 7. 解:(1)由波动方程可知振幅0.05m A =,角频率20πω=,/3πu ω=,则 波速16.67m s u -=?,频率/2π10Hz νω==,波长2π 2/3m u λω ==。 (2)max π 3.14m/s A ω==≈v 8. 解:(1)由图可知振幅 0.1m A =,波长4m λ=,波速1100m s u -=? 则2π2π/50πu T ω λ == =。 又O 点初始时刻位于平衡位置且向y 轴正向运动,则由旋转矢量法可得 π/2?=-,因此波动方程为 0.1cos[50π(/100)π/2](m)y t x =-- (2)P 处质点的振动方程为 0.1cos(50π3π/2)(m)y t =- 9. 解:由图可知振幅 0.1m A =,波长100m λ=,则角频率 2π2ππu T ωλ = ==。 由P 点的运动方向可知波向x 轴负方向传播。又由图可知原点O 初始时刻位于A /2处,且向y 轴负方向运动,则由旋转矢量法可得0π/3?=。则波动方程为

0.1cos[π(/50)π/3](m)y t x =++ 10.解:(1)以A 点为坐标原点的波动方程为 2310cos[3π(/30)](m) y t x -=?- (2)π 2π 2 B A AB AB u ω??λ =-=- =- 则以B 点为坐标原点的波动方程为 2310cos[3π(/30)π/2](m)y t x -=?-- 11.机械波单元练习(二)答案 1. C 2. B 3. C 4. /2λ,π 5. 550Hz ,458.3Hz 6. 0.08W/m 2 7. 解:两列波传到1 S 2S 连线和延长线上任一点P 的相位差 21 21 20102π π2π r r r r ???λ λ --?=--=-- 1S 左侧各点: 21 10 π2π π2π 6π4 r r ?λ -?=--=--=-,振动都加强; 2S 右侧各点: 21 10 π2π π2π 4π4 r r ?λ --?=--=--=,振动都加强;

大学物理作业(一)答案

班级______学号________姓名_________成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -==(S I制),则(1)t =1s 时质点的位置矢量2i j +,速度22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -______,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(S I制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为_ _ ____,法向加速度为 _____. 二. 选择: 1. 以下说法错误的是:(ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A )0v (B)θcos 0v (C ) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为( 不计空气

大学物理A活页作业答案

练习1 质点运动学(一)参考答案 1. B ; 2. D; 3. 8m, 10m. 4. 3, 3 6; 5. 解:(1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 6. 答:矢径r 是从坐标原点至质点所在位置的有向线段. 而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为 0r r r -=? 0r 为初始时刻的矢径, r 为末时刻的矢径,△r 为位移矢量. 若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r , 即r 既是矢径也是位移矢量.

练习2 质点动力学(一)参考答案 1.D 2.C 3. 4. l/cos 2θ 5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。 解:(1) m M m )(m 0 0+= +===μμ联立方程得: g m M N N T T g (2) (1) (2) BA A A P B

g M m m m M T g M m m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到 利用)()(0''0'0)1(μ 6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律 t m K d d v v =- ∴ ? ?=-=-v v v v v v d d , d d 0t t m K t m K ∴ m Kt /0e -=v v (2) 求最大深度 解法一: t x d d = v t x m Kt d e d /0-=v t x m Kt t x d e d /0 00 -? ? =v ∴ )e 1()/(/0m Kt K m x --=v K m x /0max v = 解法二: x m t x x m t m K d d )d d )(d d (d d v v v v v ===- ∴ v d K m dx -= v v d d 0 m a x ? ?-=K m x x ∴ K m x /0max v =

大学物理习题与作业答案

大学物理习题与作业答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

理想气体 状 态方程 5-1一容器内储有氧气,其压强为105 Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol = ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρ , kg 1033.510 44.230.126 25 2-?=?= = ∴n m O ρ (4)m 1045.31044.2119 325 3 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有 RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-==

上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将10-2kg 的氢气装在10-3m 2的容器中,压强为105Pa ,则氢分子的平均平动动能为多少 解:RT M m pV mol = ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少 解:kT N t 2 3=∑ε,其中N 为总分子数。kT V N nkT p = = ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少欲使分子的平均 平动动能等于1eV ,气体的温度需多高(1eV=10-19J ) 解:C 0?时,J 1065.52731038.12 32321230--=?=???==kT t ε C 100?时,J 1072.73731038.12 3 232123100--=?=???== kT t ε J 106.1eV 119-?= ,∴分子具有1eV 平均动能时,气体温度为 能量均分、理想气体内能

同济大学普通物理活页作业答案(苍松教学)

第一章 质点运动学 班号 学号 姓名 日期 一、 选择题 1. 一个质点在Oxy 平面上运动,已知质点的运动方程为j t i t r 2 2 52-=(SI ),则该质点作 (A )匀速直线运动; (B )变速直线运动; (C )抛物线运动; (D )一般曲线运动。 ( B ) 2.一个质点作曲线运动,r 表示位置矢量,s 表示路程,τ表示曲线的切线方向。下列几个表达式中,正确的表达式为C (A ) a t =d d v ; (B )v =t r d d ; (C ) v =t s d d ; (D )τa =t d d v 。 ( C ) 3.沿直线运动的物体,其速度的大小与时间成反比,则其加速度的大小与速度大小的关系是 (A )与速度大小成正比; (B )与速度大小的平方成正比; (C )与速度大小成反比; (D )与速度大小的平方成反比。 ( B ) 4.下列哪一种说法是正确的 (A) 在圆周运动中,加速度的方向一定指向圆心; (B) 匀速率圆周运动的速度和加速度都恒定不变; (C) 物体作曲线运动时,速度的方向一定在运动轨道的切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零; (D) 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零。 ( D ) 5. 如图所示,路灯距离地面高度为H ,行人身高为h ,如果人以匀速v 背向路灯行走,则人头的影子移动的速度为 (A) v H h H -; (B )v h H H -; (C ) v H h ; (D ) v h H 。 ( B ) 6.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为 t v ,那么它运动的时间是 (A) g t 0v v -; (B) g t 20 v v -; H h v 选择题5图

大学物理活页作业答案(上册)

1 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-==??sin cos 2 t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω

s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 32 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C --= )(22 22y y k v v o o -+=

相关文档
相关文档 最新文档