文档库 最新最全的文档下载
当前位置:文档库 › 暴强Dijkstra算法求任意两点间最短路径(matlab程序)

暴强Dijkstra算法求任意两点间最短路径(matlab程序)

暴强Dijkstra算法求任意两点间最短路径(matlab程序)
暴强Dijkstra算法求任意两点间最短路径(matlab程序)

效果展示:

开头输入的是点的序列号(表示第几个点),显示的是最短路径的走法(同样以点的序列号显示,表示途径的第几个点)。

%编写m文件

function [distance,path]=dijkstra(A,s,e)

% [DISTANCE,PATH]=DIJKSTRA(A,S,E)

% returns the distance and path between the start node and the end node.

%

% A: adjcent matrix

% s: start node

% e: end node

% initialize

n=size(A,1); % node number

D=A(s,:); % distance vector

path=[]; % path vector

visit=ones(1,n); % node visibility

visit(s)=0; % source node is unvisible

parent=zeros(1,n); % parent node

% the shortest distance

for i=1:n-1 % BlueSet has n-1 nodes

temp=zeros(1,n);

count=0;

for j=1:n

if visit(j)

temp=[temp(1:count) D(j)];

else

temp=[temp(1:count) inf];

end

count=count+1;

end

[value,index]=min(temp);

j=index; visit(j)=0;

for k=1:n

if D(k)>D(j)+A(j,k)

D(k)=D(j)+A(j,k);

parent(k)=j;

end

end

end

distance=D(e);

% the shortest distance path

if parent(e)==0

return;

end

path=zeros(1,2*n); % path preallocation

t=e; path(1)=t; count=1;

while t~=s && t>0

p=parent(t);

path=[p path(1:count)];

t=p;

count=count+1;

end

if count>=2*n

error(['The path preallocation length is too short.',...

'Please redefine path preallocation parameter.']);

end

path(1)=s;

path=path(1:count);

%算法实现

clc; clear; close all;

%% 载入设置数据

lines = load(''); %点与点之间的距离矩阵

A=lines;

A(find(A>10))=inf; %对步长的限制,根据自己的要求决定!我们在此选择10. % A就是连接矩阵,其中对角线为0,表示本身

% 有连接关系的就对应线的长度

% 没有连接关系的就对应inf

%% 下面的是dijstra算法,有两种方式可以调用

s =input('输入起点'); % 起点(点的序号)

e =input('输入终点'); % 终点(点的序号)

[distance,path0] = dijkstra(A,s,e);

fprintf('\n Use Dijkstra the Min Distance is: %.5f \n', distance);

fprintf('\n Use Dijkstra the Min Distance path is: \n');

disp(path0);

A1 = A;

A1(isinf(A1)) = 0;

[d, p, pred] = graphshortestpath(sparse(A1), s, e);

fprintf('\n Use graphshortestpath the Min Distance is: %.5f \n', d);

fprintf('\n Use graphshortestpath the Min Distance path is: \n');

disp(p);

for i = 1 : length(path0)

if i == length(path0)

temp = [path0(1) path0(i)];

else

temp = [path0(i) path0(i+1)];

end

end

最短路径的Dijkstra算法及Matlab程序

两个指定顶点之间的最短路径 问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。 以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。 求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。 (i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。 (ii) 对每个i S v ∈(i i S V S \=),用 )}()(),({min uv w u l v l i S u +∈ 代替)(v l 。计算)}({min v l i S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||-

最短路dijkstra算法Matlab程序

function [c0,c,path0,path]=dijkstra(s,t,C,flag) % Use the Dijkstra's algorithm to find the shortest path from % s to t and can also find the shortest path between s and all % the other points. % Reference: Graph Theory with Applications by J. A. Bondy and % U. S. R. Murty. % Input -- s is the starting point and also is the point s. % -- t is the given terminal point and is the point t. % -- C \in R^{n \times n}is the cost matrix, where % C(i,j)>=0 is the cost from point i to point j. % If there is no direct connection between point i and % j, C(i,j)=inf. % -- flag: if flag=1, the function just reports the % shortest path between s and t; if flag~=1, the % function reports the shortest path between s and t, % and the shortest paths between s and other points. % Output -- c0 is the minimal cost from s to t. % -- path0 denotes the shortest path form s to t. % -- c \in R{1\times n} in which the element i is the % minimal cost from s to point i. % -- path \in R^{n \times n} in which the row i denotes % the shortest path from s to point i. % Copyright by MingHua Xu(徐明华), Changhzou University, 27 Jan. 2014. s=floor(s); t=floor(t); n=size(C,1); if s<1 || t < 1 || s > n || t > n error(' The starting point and the terminal point exceeds the valid range'); end if t==s disp('The starting point and the terminal point are the same points'); end label=ones(1,n)*inf; label(s)=0; S=[s]; Sbar=[1:s-1,s+1:n]; c0=0; path=zeros(n,n); path(:,1)=s; c=ones(1,n)*inf; parent=zeros(1,n); i=1; % number of points in point set S. while i label(S(k))+C(S(k),Sbar(j)) label(Sbar(j))=label(S(k))+C(S(k),Sbar(j)); parent(Sbar(j))=S(k); end end

最短路径算法_matlab程序[1]

算法描述: 输入图G,源点v0,输出源点到各点的最短距离D 中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合 1.初始化v1,D 2.计算v0到v1各点的最短距离,保存到D for each i in v0;D(j)=min[D(j),G(v0(1),i)+G(i,j)] ,where j in v1 3.将D中最小的那一项加入到v0,并且从v1删除这一项。 4.转到2,直到v0包含所有顶点。 %dijsk最短路径算法 clear,clc G=[ inf inf 10 inf 30 100; inf inf 5 inf inf inf; inf 5 inf 50 inf inf; inf inf inf inf inf 10; inf inf inf 20 inf 60; inf inf inf inf inf inf; ]; %邻接矩阵 N=size(G,1); %顶点数 v0=1; %源点 v1=ones(1,N); %除去原点后的集合 v1(v0)=0; %计算和源点最近的点 D=G(v0,:); while 1 D2=D; for i=1:N if v1(i)==0 D2(i)=inf; end end D2 [Dmin id]=min(D2); if isinf(Dmin),error,end v0=[v0 id] %将最近的点加入v0集合,并从v1集合中删除 v1(id)=0; if size(v0,2)==N,break;end %计算v0(1)到v1各点的最近距离 fprintf('计算v0(1)到v1各点的最近距离\n');v0,v1 id=0; for j=1:N %计算到j的最近距离 if v1(j)

MATLAB实验报告-遗传算法解最短路径以及函数最小值问题

硕士生考查课程考试试卷 考试科目:MATLAB教程 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:20 年月日午时至时

《MATLAB教程》试题: A、利用MATLAB设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。 a c d e f h i k 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 B、设计遗传算法求解f(x)极小值,具体表达式如下: 要求必须使用m函数方式设计程序。 C、利用MATLAB编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D、结合自己的研究方向选择合适的问题,利用MATLAB进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分) 1 2 3 4 5 6 8 9 10 11 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为: 0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。 问题要求求出任意两点间的最短路径,Floyd算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i到j的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。二、实验原理与数学模型(20分) 实现原理为遗传算法原理: 按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 数学模型如下: 设图由非空点集合和边集合组成,其中 又设的值为,故可表示为一个三元组 则求最短路径的数学模型可以描述为:

dijkstra算法的matlab实现

学号: 课程设计 题目Dijkstra算法的MATLAB实现 学院信息工程学院 专业通信工程 班级 姓名 指导教师 2012 年 1 月9 日 课程设计任务书 学生姓名:专业班级:通信 0901班 指导教师:工作单位:信息工程学院 题目: Dijkstra算法的MATLAB实现 初始条件: (1)MATLAB应用软件的基本知识以及基本操作技能 (2)高等数学、线性代数等基础数学中的运算知识 (3)数据结构里面关于Dijkstra算法的基本原理和思想 要求完成的主要任务: 必做题:采用MATLAB选用适当的函数或矩阵进行如下计算 (1)极限的计算、微分的计算、积分的计算、级数的计算、求解代数方程、求解常微分方程; (2)矩阵的最大值、最小值、均值、方差、转置、逆、行列式、特征值的计算、矩阵的相乘、右除、左除、幂运算;

(3)多项式加减乘除运算、多项式求导、求根和求值运算、多项式的部分分式展开、多项式的拟合、插值运算。 选做题:Dijkstra算法的MATLAB实现 时间安排: 第一周,安排任务地点:鉴主17楼实验室 第1-17,周仿真设计地点:鉴主13楼计算机实验室 第18周,完成答辩,提交报告地点:鉴主17楼实验室 指导教师签名:年月日 系主任(或责任教师)签名:年月

目录 摘要................................................................................................................................. I Abstract ......................................................................................................................... II 1 MATLAB的基本运算 .. 0 1.1 基础微积分计算 0 1.1.1 极限的基本运算 0 1.1.2 微分的计算 0 1.1.3 积分的计算 (1) 1.1.4 级数的运算 (1) 1.1.5 求解代数微分方程 (1) 1.1.6 求解常微分方程 (2) 1.2 矩阵的基本运算 (2) 1.2.1 矩阵的最大最小值 (2) 1.2.2 矩阵的均值方差 (3) 1.2.3 矩阵的转置和逆 (3) 1.2.4 矩阵的行列式 (3) 1.2.5 矩阵特征值的计算 (3) 1.2.6 矩阵的相乘 (4) 1.2.7 矩阵的右除和左除 (4) 1.2.8 矩阵的幂运算 (4) 1.3 多项式的基本运算 (4) 1.3.1 多项式的四则运算 (4) 1.3.2 多项式的求导、求根、求值运算 (5) 1.3.3 多项式的部分分式展开 (5) 1.3.4 多项式的拟合 (5) 1.3.5 多项式的插值运算 (6) 2关于Dijkstra的问题描述 (6) 2.1问题的提出 (6) 2.2 Dijkstra算法的算法思想 (7) 2.3 Dijkstra算法的算法原理 (7) 3 Dijkstra算法的设计分析 (8) 3.1 Dijkstra算法部分的设计分析 (8) 3.2 程序主体的设计分析 (9) 4程序源代码与算法思想 (10) 4.1 文件isIn.m的源代码 (10) 4.2 文件default_dat.m的源代码 (11) 4.3 文件input_dat.m的源代码 (11) 4.4 文件menu.m的源代码 (11) 4.5 文件dijkstra.m的源代码 (13) 5 测试报告 (16) 6 心得体会 (17) 7 参考文献 (18)

基于遗传算法的最短路径问题及其MATLAB实现

TRANSPOWORLD 2009 No.12 (Jun) 104前言 在现实生活中,我们经常遇到最短路问题,例如寻找两点之间总长度最短或者费用最低的路径。在运输、物流、设施选址以及人员调度问题中,最短路径是很常见的问题。解决最短路问题的方法有很多,例如迪杰斯特拉算法、福特算法。在这里我们介绍基于遗传算法的最短路径问题的解决方案。 模型 遗传算法基本模型 遗传算法是模仿生物进化过程,针对复杂问题开发出来的非常有效的方 基于遗传算法的最短路径问题及其MATLAB 实现 文/张书源 郭 聪 法。根据生物进化过程中的选择机制,在问题的解空间中进行选择,实现“物竞天择,适者生存”。在遗传算法中,一条染色体代表问题的一个可行解,该染色体的适应值即为对应于该可行解的函数值。一般来说,遗传算法包括以下几个主要组成部分。编码 即将问题的解表示成一个编码串(染色体),每一染色体对应问题的一 个解。遗传过程 对染色体进行操作,以产生新的染色体,通常有不同染色体之间的交叉 操作以及一条染色体的变异操作。评价与选择 对每条染色体计算其适应值,用以评价染色体的优劣,从而从父代和子代中选择较优的染色体,进入下一代的繁殖。 初试种群的创建方法 其作为问题可行解的集合。初始种群中染色体个数称为种群规模。 遗传算法的流程图如图1所示。算法过程如下: 第一步初始化种群p(t);第二步对种群进行评价; 第三步利用交叉和变异重组p(t)以产生c(t) 第四步评价c(t),从p(t)和c(t)选择出p(t+1),令t=t+1;若达到繁殖代数,转第五步;否则,回第四步; 第五步返回结果。 问题描述 在图2所示的算例中,我们要找到从节点①到节点⑨的最短路径。基于优先权的编码方式 例如,一条可能的染色体如表1。路径生长 路径生长即为根据一条染色体来得到其对应的一条路。在表1的例子中,路径生长的过程如下: 初试路径上只有节点①; 与①相连且不在当前路径上的节点有②和③,其中节点③的权较大,为6,将节点③加入当前路径,当前路径变为:①—③; 与③相连且不在当前路径上的节 点有④和⑤,其中节点⑤的权较大,为 图2 C OLUMNS 特别企划

dijkstra算法原理及MATLAB代码

Dijkstra算法是寻找最短路径的一种搜索算法,由荷兰科学家提出。 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v 到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2)算法步骤: a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点, 即:U={其余顶点},若v与U中顶点u有边,则正常有权值,若u不是v的出边邻接点,则权值为∞。 b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k 的最短路径长度)。 c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经 过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 d.重复步骤b和c直到所有顶点都包含在S中。 算法描述:通过为每个节点保留目前为止所找到的从s到e的最短路径。为了记录最佳路径轨迹,记录路径上每个节点的前趋,通过回溯法找出最短路径轨迹。

过程如下: 在网上搜索一些版本的Matlab实现方法,感觉都有些毛病。经过修改,得到比较好的效果。[cpp]view plain copy 1.function [ distance path] = Dijk( W,st,e ) 2.%DIJK Summary of this function goes here 3.% W 权值矩阵 st 搜索的起点 e 搜索的终点 4.n=length(W);%节点数 5. D = W(st,:); 6.visit= ones(1:n); visit(st)=0; 7.parent = zeros(1,n);%记录每个节点的上一个节点 8. 9.path =[]; 10. 11.for i=1:n-1

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现 李志辉 刘争平 (西南交通大学土木工程学院 成都 610031) 摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。 关键词:最短路径法 射线追踪 MATLAB 数值模拟 利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。 被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。 1 最短路径法射线追踪方法原理 最短路径法的基础是Fermat 原理及图论中的最短路径理论。其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。网络中,速度场分布在离散的节点上。相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。 图1 离散化模型(星点表示震源或次级震源,空心点为对应计算网格点) 根据Fermat 原理逐步计算最小走时及射线方向。设Ω为已知走时点q 的集合,p 为与其相邻的未知走时点,tq 分别和p 点的最小走时,tqp 为q 至p 最小走时。r 为p 的次级源位置,则 )}(min :{qp q P t t t q r q +==Ω ∈ 根据Huygens 原理,q 只需遍历Q 的边界(即波前点),当所有波前邻点的最小走时都求出时,这些点又成为新的波前点。应用网络理论中的最短路径算法,可以同时求出从震源点传至所有节点之间的连线近似地震射线路径。 2 最短路径法射线追踪基本算法步骤 把网格上的所有节点分成集合p 和q ,p 为已知最小旅行时的结点总数集合,q 为未知最小旅行时的节点的集合。若节点总数为n ,经过n 次迭代后可为求出所有节点的最小旅行时。过程如下: 1) 初始时 q 集合包含所有节点,除震源s 的旅行时已知为ts =0外,其余所有节点的旅行时均为ti =(i 属于Q 但不 等于s )。P 集合为空集。 2) 在Q 中找一个旅行时最小的节点i ,它的旅行时为ti ; 3) 确定与节点i 相连的所有节点的集合V ; 4) 求节点j (j 属于V 且j 不属于P )与节点i 连线的旅行时dtij ; 5) 求节点j ()的新旅行时tj (取原有旅行时tj 与tj +dtij 的最小值); 6) 将i 点从Q 集合转到P 集合; 7) 若P 集合中的节点个数小于总节点数N ,转2,否则结束旅行时追踪; 8) 从接收点开始倒推出各道从源点道接收点的射线路径,只要每个节点记下使它形成最小旅行时的前一个节点号,

Dijkstra算法

最短路径—Dijkstra算法 Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。 问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。(单源最短路径) 2.算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S 中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2)算法步骤: a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边, 则正常有权值,若u不是v的出边邻接点,则权值为∞。 b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短, 则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 d.重复步骤b和c直到所有顶点都包含在S中。 GPSR路由协议:(车载自组织网络中自适应路由协议研究_李诗雨) 2>基于地理位置的路由 随着科技的发展,现在的车辆通常都会具有全球定位系统,利用这个系统, 车辆可以随时随地查找出自己的地理坐标。于是越来越多的学者开始利用这些定 位系统来制定新的路由,如Greedy Perimeter Stateless Routing(GPSR)}ZO}。GPSR 是影响最广和应用范围最大的一个路由协议。它脱离了传统路由协议需要维护一 个全局静态路由,需要时刻去查看该路由的有效性的方式,而开始将更多的注意 力放到车辆四周的临近车辆,只依赖它们进行短距离的路由计算。在GPSR协议 中[[21],网络节点都可以通过GPS等方法获取自身的地理位置,源节点在发送数据 时会在报文里加入目的节点的GPS坐标,在后面每一跳节点都会查找自己的邻居 车辆,在其中找到一个距离目的节点在地理位置上最近的节点作为下一跳节点。

matlab 蚁群算法 机器人路径优化问题

用ACO 算法求解机器人路径优化问题 4.1 问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

蚁群算法最短路径通用Matlab程序(附图)

蚁群算法最短路径通用Matlab程序(附图) function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.wendangku.net/doc/6510701372.html, % All rights reserved %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5

利用MATLAB实现Dijkstra算法

利用计算机语言编程实现D算法 一:实验目的 本实验课程主要目的是让学生够熟练掌握图论中的D算法。 二:实验方法 选择MATLAB语言编程实现D算法。 三:实验要求 1.输入必要参数,包括:节点个数、节点间路径长度、给定节点; 2.输出给定节点到其它各节点的最短路径、径长; 3.节点间路径长度用矩阵形式表示。 四:实验内容 无向图共有7个节点,如下图所示。 v1 45 7 计算机输入的节点间路径长度为7×7矩阵: 1234567 1 2 3 4 5 6 7 0123 106 2054 304 5407 6408 780?? ∞∞∞?? ∞∞∞∞?? ??∞∞∞??∞∞∞∞?? ??∞∞∞ ??∞∞∞ ????∞∞∞∞ ??v v v v v v v v v v v v v v 若 1 v为指定节点,则1v到其它各节点的最短路径及径长的计算机计算结果为: 提示:不相邻的两个节点间∞可以用相对较大的数代替(如输入100表示∞)

五:实验原理 1. D 算法原理 已知图G=(V,E),将其节点集分为两组:置定节点集p G 和未置定节点集 p G G -。其中p G 内的所有置定节点,是指定点s v 到这些节点的路径为最短(即已完成最短路径的计算)的节点。而p G G -内的节点是未置定节点,即s v 到未置定节点距离是暂时的,随着算法的下一步将进行不断调整,使其成为最短径。在调整各未置定节点的最短径时,是将p G 中的节点作为转接点。具体地说,就是将p G 中的节点作为转接点,计算(s v ,j v )的径长(j p v G G ∈-),若该次计算的径长小于上次的值,则更新径长,否则,径长不变。计算后取其中径长最短者,之后将j v 划归到p G 中。当(p G G -)最终成为空集,同时p G G =,即求得s v 到所有其他节点的最短路径。 j w 表示s v 与其他节点的距离。 在p G 中,i w 表示上一次划分到p G 中的节点i v 到s v 得最短路径。在 p G G -中,表示s v 到j v (j p v G G ∈-)仅经过p G 中的节点作为转接点所求得的该次的最短路径的长度。 如果s v 与j v 不直接相连,且无置定节点作为转接点,则令j w =∞。 2. D 算法实现流程 D 算法流程如下图所示。

最短路径matlab计算机仿真

计算机仿真期末作业 姓名:吴隐奎 班级:04601 学号:041751 日期:2007-6-15 题目:Floyd 算法实现和分析 内容:用MATLAB 仿真工具实现Floyd 算法,求任意两端间的最短路径。 要求:尽可能用M 函数分别实现算法的关键部分,用M 脚本来进行算法结果验证;分别用以下两个图(用初始距离矩阵表示)进行算法验证: 图一:(0)0 100 100 1.2 9.2 100 0.5100 0 100 5 100 3.1 2100 100 0 100 100 4 1.51.2 5 100 0 6.7 100 1009.2 100 100 6.7 0 15.6 100100 3.1 4 100 15.6 0 1000.5 2 1.5 100 100 100 0]W ??????????=???????????? 图二:(0) 0 0.5 2 1.5 100 100 1000.5 0 100 100 1.2 9.2 1002 100 0 100 5 100 3.11.5 100 100 0 100 100 4100 1.2 5 100 0 6.7 100100 9.2 100 100 6.7 0 15.6100 100 3.1 4 100 15.6 0W ??????????=???????????? 算法:给定图G 及其边(,)i j 的权,(1,1)i j w i n j n ≤≤≤ ≤ F0:初始化距离矩阵(0)W 和路由矩阵(0)R 。其中: (0)0ij ij ij ij w e E w e E i j ∈??=∞???=? 若(有边) 若(无边) 若(对角线元素) (0)(0)w 0,ij ij j r ?≠∞=?? 若 其它 F1:已求得(-1)k W 和(-1)k R ,依据下面的迭代求()k W 和()k R ()(1)(1)(-1),,,,min(,)k k k k i j i j i k k j w w w w --=+

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到 j v 的权 ij w =∞ 。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈; ⑤ 1{}i S S v += ,1{}i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v - 是从1v 到n v 的最短路径,则121n v v v - 也必然是从1v 到1n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到 j v 的权 ij w ,若i v 到 j v 无边,则 realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

MATLAB解决最短路径问题代码

默认是Dijkstra 算法 是有权的, 我想如果把权都赋1的话, 就相当于没权的了 参数是带权的稀疏矩阵及结点 看看这两个例子(一个有向一个无向), 或许你能找到你想知道的 % Create a directed graph with 6 nodes and 11 edges W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; %这是权 DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W) %有权的有向图 h = view(biograph(DG,[],'ShowWeights','on')) %画图, 这个好玩 % Find shortest path from 1 to 6 [dist,path,pred] = graphshortestpath(DG,1,6) %找顶点1到6的最短路径 % Mark the nodes and edges of the shortest path set(h.Nodes(path),'Color',[1 0.4 0.4]) %上色 edges = getedgesbynodeid(h,get(h.Nodes(path),'ID')); set(edges,'LineColor',[1 0 0]) %上色 set(edges,'LineWidth',1.5) %上色 下面是无向图的例子 % % Solving the previous problem for an undirected graph % UG = tril(DG + DG') % h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on')) % % Find the shortest path between node 1 and 6 % [dist,path,pred] = graphshortestpath(UG,1,6,'directed',false) % % Mark the nodes and edges of the shortest path % set(h.Nodes(path),'Color',[1 0.4 0.4]) % fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID')); % revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID')); % edges = [fowEdges;revEdges]; % set(edges,'LineColor',[1 0 0]) % set(edges,'LineWidth',1.5) clc;close all; clear; load data; % global quyu; quyu = [2,3];%一片区域 z_jl = lxjl(jdxx,lxxh);%计算路线的距离 z = qyxz(jdxx,quyu,z_jl); % 根据节点信息,从z中将y区域的节点和路线选出所有点的信息 hzlx(z); %绘制Z的图像

最短路dijkstra算法Matlab程序调用举例

最短路dijkstra算法Matlab程序调用举例 2014/4/17 徐明华 设赋权图如下图所示 下述Matlab程序 % test dijkstra's algorithm % The test example is take from the following book % Graph Theory with Applications by J. A. Bondy and U. S. R. Murty. % Page 16. clc s=1; t=5; flag=1; W=ones(11,11)*inf; % for i=1:11 W(i,i)=0; end W(1,2)=2; W(2,1)=2; W(2,3)=1; W(3,2)=1; W(3,4)=2; W(4,3)=2; W(4,5)=9; W(5,4)=9; W(5,6)=4; W(6,5)=4; W(6,7)=1; W(7,6)=1; W(7,8)=9; W(8,7)=9; W(8,1)=1; W(1,8)=1; W(1,9)=8; W(9,1)=8; W(9,2)=6; W(2,9)=6;

W(9,8)=7; W(8,9)=7; W(9,7)=2; W(7,9)=2; W(9,10)=1;W(10,9)=1; W(9,3)=5; W(3,9)=5; W(10,7)=4; W(7,10)=4; W(10,11)=6; W(11,10)=6; W(10,3)=3; W(3,10)=3; W(11,7)=3; W(7,11)=3; W(11,6)=1; W(6,11)=1; W(11,4)=7; W(4,11)=7; W(11,5)=2; W(5,11)=2; W(11,3)=9; W(3,11)=9; [c0,c,path0,path]=dijkstra(s,t,W,flag); c0 path0 调用matlab函数dijkstra(具体见本文库文档:最短路dijkstra算法Matlab程序), 可得到顶点v1 到顶点v5的最短路径path0及最短路径的长度c0如下: c0 = 13 path0 = 1 2 3 10 9 7 6 11 5 如果将上述程序中的语句 flag=1; 替换为 flag=2; 并将 [c0,c,path0,path]=dijkstra(s,t,C,flag); c0 path0 替换为 [c0,c,path0,path]=dijkstra(s,t,C,flag); c path 运行程序可得到顶点v1到图中其他各顶点的最短路径所成矩阵path和各最短路径的长度所成向量c,其中path的第i行表示v1到第i个顶点的最短路径,c(i) 为v1到第i个顶点的最短路径的长度。具体运算结果如下: c = 0 2 3 5 13 10 9 1 7 6 11 path = 1 0 0 0 0 0 0 0 0 0 0

相关文档
相关文档 最新文档