文档库 最新最全的文档下载
当前位置:文档库 › 空间光学遥感器主镜柔性支撑的参数化设计_胡佳宁

空间光学遥感器主镜柔性支撑的参数化设计_胡佳宁

空间光学遥感器主镜柔性支撑的参数化设计_胡佳宁
空间光学遥感器主镜柔性支撑的参数化设计_胡佳宁

航空航天飞行器设计

武汉大学《航空航天技术概论》作业2 题目:新型神飞器的设计制做 学院:物理科学与技术学院 专业:物理学 姓名:胡万景 学号:2012335550114 2013年7月30日

本人在现代的航天器基础上利用最新的科研探索方向,从神飞器的名字、要完成的使命、如何设计、功能设计和设计控制、应用前景及任务等几个方面来构想一架现实为未来相结合的神飞器。 神飞器名字:永不落雪域神飞器 要完成的使命:探测宇宙星系、发展现代科学技术、解释科学谜团、携带人们实现太空之旅、军情探窥、为人类探测地球之外的能源 如何设计:“永不落雪域神飞器”将采用非传统的设计,从空气动力学角度来说,可以将它描述为一种升力体结构,在神器身后部设计自动化控制面版,包括全动式水平尾翼和双垂直尾翼与方向舵,这种飞翼可以自动收缩,而且为扁平的。该设计将成为未来全球最大超速巡航的神飞航天一体器,既可以用于航天事业又可以用于作战神器。由于高速巡航的需要和航天的探索,为了减小阻力而将前缘设计得很尖而且扁平,同时控制面也相应很薄很轻巧。神飞器前身下部的外形设计为超冲压核动力发动机进气道,提供外部压缩斜面,同时后身下部的外形设计为单膨胀喷管面。机体上表面采用无缓和的曲率,机身前装备大块的扁压舱,要使飞行器的重心足够靠前,提供近似中心的纵向和横向的稳定性。飞行器的机身桁梁和隔板由钢、钛、铝等纳米材料制成,其上覆盖有钢、铝陶瓷纳米盖。这些材料是由神飞器的硬度、随时可变形需求确定的,而尾舱选用镍钛合金,这是为了热防护的需要。出于飞行器平衡的需要,前舱采用了钨化纳米材料制实心块。机体的热防护采用碳耐高温陶瓷。前缘、上、下表面覆盖强化氧化铝纳米防热瓷瓦。钢铝纳米陶瓷金属盖设计为多个相对简单、低成本的刻面形状,这样会使得外型设计线加工到热防护系统防热陶瓷中,而于防热陶瓷的设计为外表面的机是在陶瓷安装到机身上。为此,表面涂纳米量子隐身漆,从而避免了被其他探测系统发现、热烘烤、抗干扰、防辐射、防腐蚀等性质极强的结构。对于低飞行器来说,水平表面只采用碳纳米材料防热;而对于高速神行器来说,水平和垂直表面都采用碳纳米材料防护。发动机着采用散热性好的珀合金材料,其整流罩和侧壁采用了主动式液氮冷却系统。从整体上说,这个神飞器是一个超级扁的飞行一体机,可以收缩变幻,可以变形。 功能设计和设计控制: 1.。神飞器的发动机:我们不使用传统的固态、液态、或者混合态发动机作为动力来提高效果,而现行的发动机有些国家利用太阳帆,利用太阳的能量,可是太阳能转化速度比较慢,所以传统的化学能和太阳能飞行器不适合进行长时间的飞行。为了我们的飞行器成为世界永不落神飞器,我们将在这个飞行器上装载核聚变动力器,让它成为核动力火箭。这将提供更快的速度和强大的能量源来源,而且消耗不尽,所以我们的神飞器会永远挂在空中而不降落,这也可以解决登陆其他行星时所遇到的各种能源来源问题。核聚变神飞器将大大缩短深空飞行的时间,可以为我们人类充分探索和利用太阳系资源开辟道路,这样的话我们能在一个月之内前往其他星系,那将是多么美妙的情景,也可以减少宇航员暴露在宇宙射线下的风险,人类如果需要进入深空,并有效的配合减速发动机的减速,就可以减少人们在空间飞行中受到的辐射,为人类缩短较短的太空旅程减少节省食物和水,这样我们的太空之旅每个人都可以实现。 宇宙飞船推进技术,我们只有在科幻小说中才听说过的“曲速推进”发动机,物质和反物质动力系统等,而现在我们这款神飞器完全可以实现。除了核动力发动机外,可控核聚变反应堆,使用核裂变技术的发动力系统是我们这个飞行器成为永不落飞行器唯一途径,我们在飞行器上安装四台核动力涡轮发动机,这些核

空间光学遥感仪器的十项主要技术指标浅析

空间光学遥感仪器的十项主要技术指标浅析 空间光学是利用航天飞机、卫星、飞船、空间实验室、空间站等空间飞行器,利用光学手段对目标进行遥感观测和探测的科学技术领域。主要手段是把光波作为信息的载体收集、储存、传递、处理和辨认目标信息的光学遥感技术。 空间光学的优势有很多,一是对地观测优势,空间光学可以对地球环绕观测地球的每一个角落,可以对地表成非常清晰的像,对于大气观测,灾害预报,环境监测,资源探测等方面有很大的优势。二是太空没有国界的限制,地表100公里以上的区域还是一片各方都可以涉足的无主之地。三是对外观测,过去人们曾经建过很多地面望远镜,但是地面望远镜受到大气扰动的影响,达不到望远镜的衍射极限分辨率。空间望远镜处于真空环境下,受到大气扰动小,更有利于达到望远镜的衍射极限分辨率。 空间光学遥感仪器的主要技术指标有以下几项: 1)空间分辨率 空间分辨率是指遥感图像上能够详细区分的最小单元的尺寸或者大小,是用来表征影响分辨地面目标细节的指标。空间分辨率所表示的尺寸、大小,在图像上是离散的、独立的,它反映了图像的空间详细程度。空间分辨率越高,其识别物体的能力越强。 目前的空间遥感仪器基本上都是采用CCD或者CMOS作为探测器收集信息的,如果地面分辨率为1m,意味着CCD的一个像元对应地面宽度是1m。 空间分辨率示意图(资料来源:上帝之眼) 2)调制传递函数MTF 从信息角度来看,光学系统作为一个信息系统,输出的信息相对于输入的信息肯定会丢失一部分。我们常常使用对比度来表征这种信息,即MTF=(输出图像的对比度)/(输入图像的对比度),由于输出图像的对比度总是小于输入图像,所以MTF总是处于0-1之间。再根据不同的空间频率,即可获得系统的MTF图。

空间遥感短波红外成像光谱仪的光学系统设计

第31卷第12期2009年12月 红外技术 InfraredTechnology Vbl.31NO.12 Dec.2009空间遥感短波红外成像光谱仪的光学系统设计 王欣,杨波,丁学专,刘银年,王建宇 (中国科学院上海技术物理研究所,上海200083) 摘要:设计了一种短波红外成像光谱仪的光学系统。它采用离轴透镜来校正大视场像差,避免了采用大12径同心透镜,降低了大12径透镜获取难度和加工要求,同时校正了狭缝弯曲和畸变;采用两个离轴非球面反射镜作为准直和会聚光学元件,补偿了与波长相关的狭缝弯曲,并减小了残余像差;采用一个色散棱镜来修正非线性色散,满足了光谱分辨率要求,在棱镜背面镀反射膜,简化了结构,减轻了重量。最后给出了各个通道的光谱非线性和光谱弯曲结果。 关键词:短波红外成像光谱仪;离轴校正透镜;色散棱镜;光谱非线性;光谱弯曲 中图分类号:TN216文献标识码:A文章编号:1001—8891(2009)12-0687—04 TheOpticalDesignofShortwaveInfraredImagingSpectrometerinSpaceWANGXin,YANGBo,DINGXue—zhuan,LIUYin—nian,WANGJian—yu (ShanghaiInstituteofTechnical&Physics,theChineseAcademyofSciences,Shanghai200083,China)Abstract:Thispapergivesabriefintroductionabouttheopticalstructureoftheshortwaveinfraredimagingspectrometerusedinspace.Thissystemadoptsanoff-axisleninordertoadjustlargefield aberration.Thissystemavoidslargediameterconcenterlensandtheproductiondifficultyisdecreased.Twooff-axisasphericmirrorswhichcompensatespectralcurveareusedtocollimateandfocusbeam.Oneprismcorrectsnonlineardispersionandmeetstherequestofspectralresolution.Reflectioncoatingismadeintherearsurface.ThesystemissimplifiedandhasalightWeight.Finallytheresultofspectralnonlinearandcurvedataisshowed.Keywords:shortwaveinfraredimagingspectrometer;off-axiscorrectionlen;dispersionprism;spectralnonlinear;spectralcurve 引言1短波红外成像光谱仪的光学结构设计 成像光谱仪能够同时获取观测目标的空间几何信息和光谱信息,具有独特的信息获取和特征识别能力。它作为一种重要的对地观测手段,在国民经济、科学研究诸多领域有着广泛的应用前景,另外还具备战略战术侦察能力…。 在设计整个成像光谱仪中,光学系统设计决定仪器的最后性能12l。短波红外光谱仪的光学系统由准直光学系统、色散元件、成像光学系统三个部分组成。相对OASISTM和其它棱镜分光结构【4J,色散元件选择采用一个棱镜分光,满足了光谱非线性的要求,在棱镜背面镀反射膜,取消了利特罗反射镜;离轴校正透镜的采用,调节了光谱仪的畸变,避免了OASIS采用大口径透镜同时穿插在准直光束和色散光束中15J,减小了大口径透镜的制造难度。 短波红外光潜仪的光学系统与离轴三反望远镜相结合,可以完成在1.40视场下,对l~2.5¨m(即短波红外波段)色散后的64个波段分谱段成像。系统的主要指标如下: 光谱范闹:1~2.5Um; 物方数值孔径:0.2; 色散范围:1.92InlTl; 平均光谱分辨率:23.4am; 光谱弯曲:<1个像元(像元尺寸为30um); 变焦比:0.8; 入射狭缝尺寸:19×0.038mm; 畸变:小于5%o; 光学效率:>0.45。 1.1色散元件的选择 收稿日期:2009-09—151修订日期:2009—11-24. 作者简介:王欣(1977一)。女,陕西杨凌人,博上研究q三,上要从事航天遥感红外成像光学系统方面的研究工作。 基金项目:国家863项目 687万方数据

高光谱遥感的发展与应用_张达

第11卷 第3期2 013年6月光学与光电技术 OPTICS &OPTOELECTRONIC  TECHNOLOGYVol.11,No.3  June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12- 13作者简介 张达(1981-) ,男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。E-mail:zhangda@ciomp .ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001) ,吉林省科技发展计划(201101079 )资助项目文章编号:1672-3392(2013)03-0067- 07高光谱遥感的发展与应用 张 达 郑玉权 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上, 概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A 1 引 言 遥感技术是20世纪60年代发展起来的对地 观测综合性技术[1] ,随着20世纪80年代成像光谱 技术的出现, 光学遥感进入了高光谱遥感阶段。从20世纪90年代开始, 高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。 高光谱遥感技术作为对地观测技术的重大突破[ 2] ,其发展潜力巨大。 高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。本文主要阐述高光谱遥感的特点、优势以及在航空及航天领域的发展情况,概括了高光谱遥感在植被生态、大气环境、地质矿产, 海洋军事等领域的应用情况。2 高光谱遥感特点与优势 高光谱遥感是高光谱分辨率遥感(Hypersp ec-tral Remote Sensing) 的简称[3] ,它是在电磁波谱的紫外、可见光、近红外、中红外和热红外波段范围 内,获取许多非常窄且光谱连续的影像数据的技 术,是在传统的二维遥感的基础上增加了光谱维,形成的一种独特的三维遥感。对大量的地球表面物质的光谱测量表明, 不同的物体会表现出不同的光谱反射和辐射特征,这种特征引起吸收峰和反射峰的波长宽度在5~50nm左右,其物理内涵是不同的分子、 原子和离子的晶格振动,引起不同波长的光谱发射和吸收,从而产生了不同的光谱特征。运用具有高光谱分辨率的仪器,通过获取图像上任何一个像元或像元组合所反映的地球表面物质的光谱特性, 经过后续数据处理,就能达到快速区分和识别地球表面物质的目的[ 4] 。高光谱遥感的成像光谱仪具有光谱分辨率高(5~10nm),光谱范围宽(0.4μm~2.5μm) 的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息, 所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱 维信息的有机融合[ 5] 。高光谱遥感在光谱分辨率方面的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像, 从而达到直接识别地球表面物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了

航天飞机概述与建模

航天飞机概述与建模 一、航天飞机的发展 航天飞机(Space Shuttle,又称为太空梭或太空穿梭机)是可重复使用的、往返于太空和地面之间的航天器,结合了飞机与航天器的特点。作为一种可重复使用的天地往返运输器,航天飞机是现代火箭、飞机、飞船三者结合的产物。它能像火箭一样垂直起飞,像飞船一样绕地球飞行,像飞机一样水平着陆。。航天飞机为人类自由进出太空提供了很好的工具,它大大降低航天活动的费用,是航天史上的一个重要里程碑。 1981年以前,美国的载人航天是通过“水星”、“双子星座”、“阿波罗”和“天空实验室”计划进行的。用火箭发射载人航天器一次,就要消耗一枚巨大的火箭。一些卫星发射后也无法回收。为了解决这个问题,美国在“阿波罗”登月计划后,就着手研制一种经济的、可以重复使用的航天器——航天飞机。这种航天器既能象火箭那样冲向太空,也能象飞船那样在轨道上运行,还能象飞机那样在大气里滑行并自行安全返回地球。 美国自1972年开始投巨资进行研究,历时9年,花费约100亿美元。整个工程是由美国政府机构、工业企业和高等院校的庞大队伍合作,并靠国外一些组织的协助,运用科学的管理方法,按照严格的分工和进度分阶段组织实施的。1981年4月12日,第一架航天飞机“哥伦比亚”号首次发射飞上太空,两天后安全返回。 第一架轨道飞行器“企业号”于1976 年9月17日出厂。1977年2月开始进行进场着陆试验。试验分三组进行。第一组试验5次,检验用波音747飞机驮飞时的稳定、颤振等特性,轨道飞行器中不载人;第二组作载人飞行试验,共3次,由飞行员检查轨道飞行器爷系统的性能;第三组试验5次,飞行中轨道飞行器与波音747飞机分离,滑翔飞行返回发射场,试验于1977年11月完成。之后,1978年3月“企业号”被运往马歇尔航天飞行中心与外贮箱和固体火箭组装进行发射状态的地面振动试验,1979年4月“企业号”运往肯尼迪发射场,在39A综合发射中心与固体助推器和外贮箱组合进行合练。1981年4月开始飞行试验,原计划试飞6次,但实际在第4次飞行时已携带国防部卫星执行任务。到1994年底共发射66次,成功率98.48%。

光学遥感常用基础知识_V1.0_20110314

光学遥感常用基础知识 1. 遥感与摄影测量概述 遥感Remote Sensing 遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感的分类 (1)按遥感平台分 地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等。 航空遥感:传感器设置于航空器上,主要是飞机、气球等。 航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等。光学和雷达都属于航天遥感范畴。 航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测。 (2)按传感器的探测波段分 紫外遥感:探测波段在0.05~0.38μm之间。 可见光遥感:探测波段在0.38~0.76μm之间。因受太阳光照条件的极大限制,加之红外摄影和多波段遥感的相继出现,可见光遥感已把工作波段外延至近红外区(约0. 9μm)。在成像方式上也从单一的摄影成像发展为包括黑白摄影、红外摄影、彩色摄影、彩色红外摄影及多波段摄影和多波段扫描,其探测能力得到极大提高。因此我们常见的光学遥感属于可见光遥感范畴。 红外遥感:探测波段在0.76~1000μm之间。 微波遥感:探测波段在1mm~10m之间。雷达属于微波遥感范畴。 多波段遥感:指探测波段在可见光波段和红外波段范围内,再分为若干窄波段来探测目标。 (3)按传感器类型分 主动遥感:主动遥感由探测器主动发射一定电磁波能量并接收目标的后向散射信号。我们常用的雷达属于主动遥感范畴。 被动遥感:被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。我们常用的光学属于被动遥感范畴。 (4)按记录方式分 成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像。 非成像遥感:传感器接收的目标电磁辐射信号不能形成图像。 (5)按应用领域分 可分为环境遥感、大气遥感、资源遥感、海洋遥感、地质遥感、农业遥感、林业遥感等等。 遥感平台Platform 搭载传感器的工具。

自由曲面在空间光学的应用

自由曲面在空间光学中的应用 在当今的生活中,自由曲面(Free-form )扮演着越来越重要的角色。如汽车车身、飞机机翼和轮船船体的曲线和曲面都是自由曲面。到底什么是自由曲面?简单来讲,在工业上我们认为就是不能用初等解析函数完全清楚的表达全部形状,需要构造新的函数来进行研究;在光学系统中,光学自由曲面没有严格确切的定义,通常是指无法用球面或者非球面系数来 表示的光学曲面,主要是指非旋转对称的曲面或者只能用参数向量来表示的曲面。在我们的日常生活中,打印机、复印机以及彩色CRT中都会用到光学自由曲面。鉴于光学自由曲面 在我们的生活中扮演着越来越重要的角色,所以,以下就自由曲面在空间光学方面的情况进 行了调研。 一、自由曲面简介 光学自由曲面没有严格确切的定义,通常指无法用球面或者非球面系数来表示的光学曲 面,主要是指非旋转对称的曲面或者只能用参数向量来表示的曲面。光学自由曲面已经渗透 到我们生活中的各个角落,如能改善人类视觉质量的渐进多焦点眼镜,就是自由曲面技术在 眼用光学镜片中的成功应用。 自由曲面光学镜片主要有两种:一是自然形成的曲面;二是人工形成的曲面。人工形成 的自由曲面又分为一次成型和加工成型两种形式。 二、自由曲面运用的原因 空间遥感光学系统是在离地200km (低轨卫星)以上的轨道对地面目标或空间目标进行光学信息获取,具有遥感成像距离远的特点。如何在几百公里遥感距离下获得较高分辨率的同时保证较宽的成像幅宽是推动空间遥感光学不断发展的源动力。 光学系统的入瞳直径是决定空间相机地面像元分辨率的主要因素之一,在一定F/#的 前提下,入瞳直径越大,空间相机地面像元分辨率越高。但入瞳直径的增加,意味着所有与 孔径相关的像差增加。受空间环境中力学、热学、压力等因素的制约,当入瞳直径增大到一 定程度(通常200 mm以上),光学系统一般采用反射式或折反射式方案。为了简化光学系统形式,仅采用球面镜是无法平衡由于入瞳直径增加而剧增的像差,然而通过运用自由曲面 的应用,可以解决像差增大的问题。由于自由曲面光学元件具有非对称结构形式,能够提供

遥感卫星传感器参数

SPOT卫星 SPOT卫星是法国空间研究中心(CNES)研制的一种地球观测卫星系统。―SPOT‖系法文Systeme Probatoire d’Observation dela Tarre的缩写,意即地球观测系统。 目录 1卫星简介 2卫星参数 2.1 轨道参数 2.2 观测仪器 2.3 数据参数 2.4 谱段参数 2.5 数据应用范围 3传感器特点 4发展历程 4.1 SPOT-1 4.2 SPOT-4 4.3 SPOT-5 1卫星简介 Spot系列卫星是法国空间研究中心,(CNES)研制的一种地球观测卫星系统,至今已发射Spot卫星1-6号,1986年已来,Spot已经接受、存档超过7百万幅全球卫星数据,提供了准确、丰富、可靠、动态的地理信息源,满足了制图、农业、林业、土地利用、水利、国防、环境、地质勘探等多个应用领域不断变化的需要。[1] 2卫星参数

轨道参数 Spot卫星采用高度为830km,轨道倾角为98.7度的太阳同步准回归轨道,通过赤道时刻为地方时上午10:30,回归天数(重复周期)为26d。由于采用倾斜观测,所以实际上可以对同一地区用4~5d的时间进行观测。 观测仪器 Spot1,2,3上搭载的传感器HRV采用CCD(charge coupled device )S作为探测元件来获取地面目标物体的图像。HRV具有多光谱XS具和PA两种模式,其余全色波段具有10m的空间分辨率,多光谱具有20m的空间分辨率。Spot4上搭载的是HRVIR传感器和一台植被仪。pot5上搭载包括两个高分辨几何装置(HRG)和一个高分辨率立体成像装置(HRS)传感器。[1] 数据参数 Spot的一景数据对应地面60km×60km的范围,在倾斜观测时横向最大可达91Km,各景位置根据GRS(spot grid reference systerm)由列号K和行号J的交点(节点)来确定。各节点以两台HRV传感器同时观测的位置基础来确定,奇数的K对应于HRV1,偶数的K 对应于HRV2。倾斜观测时,由于景的中心和星下点的节点不一致,所以把实际的景中心归并到最近的节点上。[1] 谱段参数 1)绿谱段(500~590nm):该谱段位于植被叶绿素光谱反射曲线最大值的波长附近,同时位于水体最小衰减值的长波一边,这样就能探测水的混浊度和10~20m的水深。 2)红谱段(610—680nm):这一谱段与陆地卫星的MSS的第5通道相同(专题制图仪TM仍然保留了这一谱段),它可用来提供作物识别、裸露土壤和岩石表面的情况。 3)近红外谱段(790—890nm):能够很好的穿透大气层。在该谱段,植被表现的特别明亮,水体表现的非常黑。尽管硅的光谱灵敏度可以延伸到1100urn,但设计时为了避免大气中水汽的影响,并没有把近红外谱段延伸到990nm。同时,红和近红外谱段的综合应用对植被和生物的研究是相当有利的。 该系统的多谱段图像配准精度相当高,通常采用二向色棱镜进行光谱分离,粗制多谱段图像的配准精度误差小于0.3个象元。[2]

光学遥感

高分辨率遥感卫星的发展综述 ——514104001459鞠乔俊摘要:遥感卫星在近十年内得到了飞速的发展,无论在国民经济建设、减灾防灾与地图测绘,以及军事测绘与情报收集等方面都具有十分广阔的应用前景。目前,高分辨率遥感数据已经成为国家基础性、战略性资源,广泛应用于精确制图、城市规划、土地利用、资源管理、环境监测和地理信息服务等领域。本文对高分辨率成像卫星发展,当前国内外的发展进行了分析研究,对其军事应用与民用现状进行了分析,最后对高分辨率成像卫星及其应用的未来发展做了展望。 关键字:高分辨率遥感卫星发展 1引言 遥感(Remote sensing)是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。而遥感器用于探测或感测不同波段电磁波谱的发射、反射特性。遥感卫星的问世,使人类研究地球、认识地球的观点从地面、低空扩展到太空,从而可以对地球进行连续、快速、综合和大面积的详细观测,更全面、更清晰、更深刻地了解地球及其周围环境,对国计民生产生巨大的促进作用。遥感卫星也叫对地观测卫星,有光学成像卫星和雷达成像卫星2种,前者携带可见光、红外和多光谱等遥感器,最大优点是分辨率高;后者携带合成孔径雷达等遥感器,最大优点是可以全天候工作。自1999年美国太空成像公司发射世界首颗商业高分辨率遥感卫星IKONOS以来,一度披着神秘面纱的高分辨率卫星影像日益为普通百姓所熟悉,而且正在成为人们生活的一部分。目前,几乎任何人或国家都可以购买世界任何地区的商业高分辨率卫星影像,只要点击鼠标,就能在网上浏览所在城市的高分辨率卫星影像。 高分辨率遥感卫星所带来的巨大军事与经济效益,引起全球民用与军事应用领域的高度重视,出现了各国竞相研究开发高分辨率遥感卫星及其应用技术的热潮,在短短的7年内有了飞速的发展,出现了技术不断扩散的发展趋势。高分辨率遥感卫星的不断发展及技术的扩散,既为我们提供了新的机遇,同时也提出了严峻的挑战。新的机遇是可利用的高分辨率卫星影像资源得到了极大的丰富,面

高精度卫星光学遥感器辐射定标技术_郑小兵

收稿日期:2011-04-24 基金项目:国家863计划(2008AA121203)资助。 高精度卫星光学遥感器辐射定标技术 郑小兵1,2 (1中国科学院通用光学定标和表征技术重点实验室,合肥230031) (2中国科学院安徽光学精密机械研究所光学遥感中心,合肥230031) 摘要随着长期气候变化等观测新需求和高分辨对地观测等新手段的发展,空间光学仪器面临进一步提高辐射定标精度的要求。文章从空间光学仪器定标精度的制约因素和全过程定标的实现等方面,分析了国际相关领域的技术进展,并就新型定标技术的研究和应用提出建议与展望。 关键词辐射定标光学遥感卫星 中图分类号:V443+.5 文献标识码:A 文章编号:1009-8518(2011)05-0036-08High-Accuracy Radiometric Calibration of Satellite Optical Remote Sensors Zheng Xiaobing (1Key Laboratory of Optical Calibration and Characterization,Chinese Academy of Sciences ,Hefei 230031,China ) (2Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences ,Hefei 230031,China ) Abstract Climate change monitoring and high resolution earth observation demand higher accuracy of abso -lute calibration for space optical sensors.This paper briefly discusses the progress and constrained factors of cur -rent radiometric calibration techniques.New calibration approaches and instrumentations such as hyperspectral and spectrally tunable reference light sources,and global calibration site network are introduced,and their ap -plications are suggested. Key words Radiometric calibration Optical remote sensing Satellite 1引言 光学辐射定标主要研究光辐射传感器的输出与已知的、用SI 单位表述的输入光辐射之间的定量关系,包括各种光辐射效应的定量化、光辐射的精确测量及其不确定度评估,光辐射传感器的综合特性表征,以及光辐射传感器的工作条件对其性能影响的评估等方面的内容。 光辐射是光学遥感信息的基本载体。各种平台上光学传感器的几何和光谱分辩能力都与其光辐射的准确测量能力直接相关。辐射定标在空间对地观测观测过程中所发挥的主要作用表现为: 1)实现各类光学传感器从预研-工程研制-在轨运行的全过程定标,保证传感器的精度能够满足应用需求; 2)统一不同平台、不同传感器的辐射量化标准,使不同时间、空间条件下获得的遥感信息可以比对、转换和融合; 3)通过动态监测,校正传感器的性能衰变,修正大气、照明条件、环境变化等对测量结果的影响,保证测第32卷第5期 2011年10月 航天返回与遥感SPACECRAFT RECOVERY &REMOTE SENSING 36

11 航天飞行器模型设计 教学设计 (2)

11 航天飞行器模型设计 1教学目标 知识与能力:了解航天飞行器的历史、作用、结构和造型要素。 过程与方法:自主、探究,掌握设计、制作航天飞行器模型的基本方法。 情感态度与价值观:培养学生的环保意识和对人类发展前景的关注、探索宇宙的勇气、热爱航天事业的情怀。 2学情分析 我校作为航天航空科普教育特色学校,又是中国航空之父冯如的故乡,学校非常重视科技,经常举行航模科技活动,所以学生对航天飞行器模型相当感兴趣,特别是男生兴趣更大,女生虽然没有男生兴趣强烈,可以从外观、色彩、装饰等方面多进行启发引导鼓励学生不拘原型,发挥个性,大胆创新。 3重点难点 重点:设计制作航天飞行模型的方法。 难点:怎样激发学生的创新精神和技术意识。 4教学过程 活动1【导入】航天梦想 1、看图片,猜一猜: 多媒体观看冯如与他研制的飞机的图片,激发学生的民族自豪感,并引出本课的课题。 2、通过“全球疯狂科学家十大早期飞行器设计”,了解人类的飞行的梦想和早期飞行工具。 活动2【讲授】航天创举 介绍我国重大航天创举,如“神舟”系列太空飞船等的意义和启示。 活动3【活动】学生活动 学生展示介绍自己在课前搜集的飞行器或航天飞机的图文资料,学习航天飞机的相关知识。 活动4【讲授】知识介绍 (1)航天器又称空间飞行器、太空飞行器。按照天体力学的规律在太空运行,执行探索、开发、利用太空和天体等特定任务的各类飞行器。世界上第一个航

天器是苏联1957年10月 4日发射的“人造地球卫星1号”,第一个载人航天器是苏联航天员加林乘坐的东方号飞船 (2)航天飞机是火箭、航天器、飞机三位一体的科学组合,是一种有翼、可重复使用的航天器,由辅助的运载的火箭发射脱离大气层。本节课的航天飞行器:主要介绍载人飞行器,包括航天飞机和航天飞船。 (3)航天飞机的结构和基本原理。 活动5【讲授】图片欣赏 欣赏现在的航天飞行器,以及未来的飞行梦想和飞行工具,认识航天科技的发展和进步,感受科技的重要性。 活动6【活动】学生活动 请学生写出制作航天飞机模型的材料和工具,看谁写得多,并评价激励。。 活动7【活动】实例示范 用幻灯片播放航模手工制作的步骤,通过实例介绍方法启发的创作思路。 活动8【讲授】启发创作 欣赏各种具有启发性的手工制作的飞行器的图片、模型或科幻作品 活动9【作业】实践活动 设计并画出一幅或一组航天器、航天飞机,或用废弃物品制作一件航天飞机模型。

航天遥感专业英语(中英文对照)

航天遥感专业英语(中英文对照) 遥感remote sensing 资源与环境遥感remote sensing of natural resources and environment 主动式遥感active remote sensing 被动式遥感passive remote sensing 多谱段遥感multispectral remote sensing 多时相遥感multitemporal remote sensing 红外遥感infrared remote sensing 微波遥感microwave remote sensing 太阳辐射波谱solar radiation spectrum 大气窗atmospheric window 大气透过率atmospheric transmissivity 大气噪声atmospheric noise 大气传输特性characteristic of atmospheric transmission 波谱特征曲线spectrum character curve 波谱响应曲线spectrum response curve 波谱特征空间spectrum feature space 波谱集群spectrum cluster 红外波谱infrared spectrum 反射波谱reflectance spectrum 电磁波谱electro-magnetic spectrum 功率谱power spectrum 地物波谱特性object spectrum characteristic 热辐射thermal radiation 微波辐射microwave radiation 数据获取data acquisition 数据传输data transmission 数据处理data processing 地面接收站ground receiving station 数字磁带digital tape 模拟磁带analog tape

《航天飞行器模型设计》教案

《航天飞行器模型设计》教案 教学目标: 1、认知目标: 了解现代飞机的基本构成,通过收集、欣赏、研究新型飞机的图片资料,讨论未来飞机的发展与变化,让学生进行有目的的创意设计,提高他们的创新水平。 2、操作目标: 在设计未来飞机的过程中,学生运用已掌握的美术技能将自己的创意表达出来。 3、情感目标: 通过设计飞机,让学生体验成功快乐,激发学生的学习兴趣和探究精神。 教学重点: 了解飞机的发展简史以及飞机的构成,讨论未来飞机的发展趋势,启发学生的想像力与创造力。 教学难点: 教会学生设计飞机的方法,并能够灵活运用,在绘画过程中将自己想像与设计的内容表现出来。 教学准备: 师:相关图片、电影片段、玩具、教师用纸、学生用纸、废旧材料制作的飞机等。 生:绘画工具、课前阅读查找一些有关飞机的资料 教学过程: (一)游戏:考考你 1、全班分为四组,玩游戏“考考你”。 师问:20世纪是科学技术空前辉煌的世纪,人类创造了历史上最为巨大的科学成就和物质财富。这些成就深刻地改变了世界的面貌,极大地推动了社会的发展,你知道二十世纪给人类生活带来巨大变化的科技发明有哪些吗? 四组学生边讨论边由组长把答案写在答题板上,比一比哪一组写的多。 (飞机、计算机、电视……) 2、师述:下面让我们一起回顾二十世纪最著名的科技发明吧! 教师播放电脑图片:二十世纪改变人类生活的重大科技发明——飞机、计算机、电

视……。 教师评出获胜一组,给予表扬。 3、师述:今天这节美术课我们一起来学习新课《我设计的飞机》。 教师板书课题:15 我设计的飞机 (二)简述飞机发展史 1、师播放图片并讲述:二十世纪最重大的发明之一,是飞机的诞生。人类自古以来就梦想着能像鸟一样在太空中飞翔。而2000多年前中国人发明的风筝,虽然不能把人带上太空,但它确实可以称为飞机的鼻祖。 本世纪初在美国的莱特兄弟制造出了世界上第一架动力飞机,为世界的飞机发展史上做出了重大的贡献。 本世纪30年代后期,德国设计师奥安制成了He-178喷气式飞机。 1939年美国工程师西科斯基研制成功世界上第一架实用型直升机。这架直升机成为现代直升机的鼻祖。 第二次世界大战结束初期美国开始把大量的运输机改装成为客机。 飞机的发明也使航空运输业得到了空前发展,特别是超音速飞机诞生以后,空中运输更加兴旺。 在人类向地球深处进军时,飞机也被广泛应用于地质勘探和现代战争中。 自从飞机发明以后,飞机日益成为现代文明不可缺少的运载工具。世界上第一次环球旅行是16世纪完成的。当时,葡萄牙人麦哲伦率领一支船队从西班牙出发,足足用了 3年时间,才环绕地球一周。1979年,英国人普斯贝特只用14个小时零6分钟,就飞行环绕地球一周。在不到一天的时间里,就可以飞到地球的各个角落,这对于生活在20世纪以前的人类来说,难道不是一个人间奇迹吗?好了,说了这么多的飞机的趣闻,现在我们做一个小游戏! (三)拼拼飞机模型,了解飞机结构 1、请学生代表用玩具拼装飞机模型,拼完后说一说它有哪几部分组成? 2、教师播放电脑图片,师生共同讨论飞机的外部构造─—机身、机翼、机尾、起落装置等组成。 (四)欣赏讨论 1、教师播放现代新型飞机图片,学生欣赏。 2、师生共同讨论从第一架动力飞机到最新型的飞机经历了哪些的变化?它们的造型和功能

DIY制作航天飞机模型的方法和意义

摘要:diy手工制作活动通过对空间图形的直观图或视图的观察、分析和想像,在头脑里建立起空间图形的表象,并通过制作过程将这一表象变成具体的实物模型,这对于发展人的空间智能和实际操作能力都具有十分现实的意义。航天飞机模型的制作大致分为准备工具和材料、设计图纸、制作部件、拼装等几个步骤,采用的原材料大多为可以二次利用的废弃物品。通过自己动手设计图纸、搜集材料、制作拼接,不仅能够将书本上的知识运用于实践,还能够培养青少年学生的想象力、意志力、实际操作能力,亲身体会劳动和创造的快乐,培养热爱科学、追求卓越的自信心。 关键词:航天飞机模型制作 中图分类号:g305 文献标识码:a 文章编号:1672-3791(2015)01(c)-0000-00 在科学技术日益发达的今天,制作精良、技术含量高的玩具玲琅满目。流水线式的工业化生产在为现代人提供了丰富多彩的玩具的同时,也很大程度上让孩子们甚至成年人变得懒于动手自己制作玩具了。成品的玩具尽管在玩具商店随处可以买到,但是这也使得越来越多的孩子失去了自己动手制作玩具的机会。自己亲手制作玩具不仅可以将身边的日常生活废弃物品变废为宝,更重要的是通过diy制作活动,可以锻炼自己的动手能力、开放想象能力,同时,diy制作的过程也是将自己所学的书本知识运用于实践的过程。通过自己的劳动完成一件自己想象中的玩具模型时,能让你亲身体会劳动和创造的快乐,培养热爱科学、追求卓越的自信心。 下文将以制作航天飞机模型为例,向您展示diy制作的魅力。制作航天飞机模型的大致步骤是: 一、准备制作材料和工具。 制作材料大都是日常当中的废弃物品。包括:废旧包装用硬纸板(要求有一定的弹性,且不能太厚)、用过的牛奶吸管、钉书针、胶水、透明胶带。 制作用的工具:剪刀、直尺、圆规、铅笔。 二、设计图纸,量好每个部件的具体尺寸,做好标注。 三、制作航天飞机的最重要部分――轨道飞行器。在硬纸板上按照设计图纸上标注的尺寸画出裁剪线,然后用剪刀将多余部分剪掉,做轨道飞行器的主体部分时,圆柱体的制作拼接可以用胶水和钉书针结合,这样既结实又严密。 四、制作火箭助推器。两个助推器的主体部分的圆柱体制作方法和轨道器相同,火箭助推器的尖顶可以用柔韧度高些的薄纸板制作,然后用透明胶带将尖顶和火箭的主体粘接在一起。 五、制作外挂燃料箱。用硬纸板制作外挂燃料箱的最大挑战是箱体两端的圆弧状,我是采用多处裁剪掉小锐角三角形的方法进行处理的,只要肯下功夫,效果还是蛮不错的。 六、细小部件的制作。细小部件包括火箭助推器底部和轨道运行器底部的喷火口,这几个喇叭形的喷射口的制作应用较为柔软的纸板以便于弯曲成直径较小的喇叭口状,并且要把握好喷火口和主体部分的比例。另外,如果制作材料的质地允许的话,还可以在轨道运行器的中段制作一个可以开启的舱门,这样就更为逼真了。 七、组装拼接。两个助推火箭和轨道器之间可以用若干个钉书针弯曲成小挂钩连接,这样可以拼拆自如。当然,如果你想让自己的作品更具有视觉感染力的话,也可以用彩色笔涂色装饰,并写上文字图案标识等。只要能达到你想要的效果,你可以充分发挥想像力,使用各种方法,甚至可以建立一个发射塔来搭配你的航天飞机。 根据脑科学的研究,人的大脑两半球既有各自特定的机能,又是互相协同工作的。手工制作活动中,十指动作的协调配合,使大脑获得积极有效的刺激,这些积极的刺激有利于大脑皮层机能的发育与完善。通过观看图书上的航天飞机照片和网络视频里的航天飞机视频来

遥感平台与传感器

遥感平台与传感器 时间:2010-04-09 21:17来源:未知作者:admin 点击: 109次 遥感是从远离地面的不同工作平台上通过传感器,对地球表面的电磁波(辐射)信息进行探测,并经信息的传输、处理和判读分析,对地球的资源与环境进行 探测和监测的综合性技术。常见的遥感平台有:气球、飞机、火箭、人造地球 卫星、宇宙飞船、航天飞机、高塔等 遥感是从远离地面的不同工作平台上通过传感器,对地球表面的电磁波(辐射)信息进行探测,并经信息的传输、处理和判读分析,对地球的资源与环境进行 探测和监测的综合性技术。常见的遥感平台有:气球、飞机、火箭、人造地球 卫星、宇宙飞船、航天飞机、高塔等。 遥感平台是指装载遥感器的运载工具,按高度,大体可分为地面平台,空中平 台和太空平台三大类。地面平台包括三角架、遥感塔、遥感车(船)、建筑物 的顶部等,主要用于在近距离测量地物波谱和摄取供试验研究用的地物细节影像;空中平台包括在大气层内飞行的各类飞机、飞艇、气球等,其中飞机是最 有用、而且是最常用的空中遥感平台;太空平台包括大气层外的飞行器,如各 种太空飞行器和探火箭。在环境与资源遥感应用中,所用的航天遥感资料主要 来自于人造卫星。在不同高度的遥感平台上,可以获得不同面积,不同分辨率 的遥感图像数据,在遥感应用中,这三类平台可以互为补充、相互配合使用。 表可应用的遥感平台

800m以下遥感平台还有: 常用的传感器: 航空摄影机(航摄仪) 全景摄影机 多光谱摄影机 多光谱扫描仪(Multi Spectral Scanner,MSS) 专题制图仪(Thematic Mapper,TM) 反束光导摄像管(RBV) HRV(High Resolution Visible range instruments)扫描仪合成孔径侧视雷达(Side-Looking Airborne

常见遥感卫星及传感器汇总介绍

常见遥感卫星及传感器汇总介绍

卫星名称国家型号分辨率传感器波段(um) 宽度 landsat 美国NASA的陆地 卫星计划 landsat1-3(4) 78m mss mss4 0.5-0.6绿色 185km mss5 0.6-0.7红色 mss6 0.7-0.8近红 外 mss7 0.8-1.1近红 外 landsat4-5(7) 78m mss mss1 0.5-0.6绿色 185km mss2 0.6-0.7红色 mss3 0.7-0.8近红 外 mss4 0.8-1.1近红 外 30m tm 1 0.45-0.52蓝绿 2 0.52-0.60 绿色 3 0.63-0.69 红色 4 0.76-0.90近红外 5 1.55-1.75中红外 120m 6 10.40-12.50热红外 30m 7 2.08-2.35中红外 landsat7(8) 30m Etm+ 1 0.45-0.515 蓝绿 185*70 2 0.525-0.605绿色 3 0.63-0.690 红色 4 0.75-0.90 近红外 5 1.55-1.75 中红外

60m 6 10.40-12.50 热红外 30m 7 2.09-2.35 中红外 15m 8 0.52-0.90 微米全色 spot 法国空间研究中心 (CNES) 第一代:spot1.2.3 (4) 10m CCDS(SPOT1) P 0.50-0.73 全色 60km 20m B1 0.50-0.59绿色 CCD B2 0. 61-0.68红色 B3 0.78-0.89 近红 外 第二代spot4(5) 10M HRVIR(?) M 0.61-0.68 全色 60km 20M B1 0.50-0.59绿色 B2 0.61-0.68 红色 B3 0.78-0.89 近红 外 B4 1.58-1.75 短波红 外 第二代spot5(5) 10M HRG B1 0.49-0.61绿色 60km B2 0.61-0.68红色 B3 0.78-0.89近红外 20M HRS B4 1.58-1.75短波红 外 5M/2.5M P:0.49-0.69全色 quickbird 美国DigitalGlobe 公司quickbird(4) 全色 0.45-0.90推扫式扫描成像方式0.45-0.52 蓝 16.5km(条 带

相关文档
相关文档 最新文档