文档库 最新最全的文档下载
当前位置:文档库 › RT28熔断器

RT28熔断器

RT28熔断器
RT28熔断器

RT28型圆筒形帽熔断器适用于交流50Hz、额定电压至500V, 额定电流至63A的配电装置中作为过载

和短路保护之用。(此型熔断器不推荐用于电容柜中,若用于电容柜用建议用RT36-00替之)。 氖灯和电阻组成了熔断器底座熔断体熔断信号装置(代号“X”)。

RT28-32、RT28-63熔断体可分为“gG”型和“aM”型,gG型为全范围分断能力一般用途熔断体,“aM”型为部分范围分断电动机短路保护熔断体,“gG”与“aM”型熔断体均可与RT28系列或RT29系列底座配合使用。

符合标准:GB 13539、IEC 60269。RT 28 (N) □

□/□ □

熔断体额定电流

极数(极不标数)

2P、3P,单 信号装置(代号“X”)

熔断器额定电流

NEW(新型号外观)

设计序号

有填料封闭管式熔断器的代号

RT28系列

圆筒形帽熔断器79±1.5

79±1.5102±2.0102±2.0102±2.0102±2.0102±2.074±1.574±1.5100±1.2100±1.2100±1.2100±1.2100±1.255±1.055±1.072±1.072±1.072±1.072±1.072±1.060±1.560±1.580±2.080±2.080±2.080±2.080±2.00.075

0.18

0.18

0.18

0.18

0.18

RT28N-32RT28-63RT28-63X 10.3±0.210.3±0.214.3±0.514.3±0.514.3±0.514.3±0.514.3±0.538±0.638±0.65151515151RT28N-32

RT28N-32X

HG30-32HG30-32XNRT28-32

RT28-63

RT28-63X NRT28-63NRT28-12510×3814×51RT14-32RT29-63、R016RT28-63、、

RT14-20RT28-32、、

RT29-32 、 R0152,4,6,8,10,16,20,25,3210,16,20,25,32,40,50,633.1 熔断器支持件(底座)参数

2P 2P 2P 3P 1P 2P 3P 3263636363635005005005005005003.2 熔断体参数

额定电流(A)2,4,6,8,10,16,20,25,3210,16,20,25,32,40,50,63耗散功率(W)≤3≤5分断能力(kA)2020重量

(kg)

0.0090.022

尺码(G×K)10×3814×51型号RT28-32RT28-63国内外同类产品RT18-32、RT14-20、

RT19-32、R015RT18-63、RT14-32、

RT19-63、R0163.3 熔断器支持件(底座)与熔断体配置参数

额定电压(V)50050022×58RT14-63、RT29-125、

R017 25,32,40,50,63,80,100,125

1 适用范围

2 型号及含义

3 正常工作条件和安装条件

-1.0+0.6-1.0+0.6-1.0+0.6-1.0+0.6-1.0+0.6-1.035±1.035±1.052±1.278±1.826±0.652±1.278±1.8

6.1 订货时必须指明:

6.1.1 熔断体应指产品型号、额定电流、数量。

6.1.2 底座应指明型号规格、注明底座、极数、定货数量。

6.2 订货示例

订RT28-32 20A熔断体100只可写成RT28-32/20A、100只;

订RT28N-32 3极底座100只可写成RT28N-32/3P(底座)100只。尺码为10×38熔断体与熔断器支持件(底座)配合使用图尺码为14×51熔断体与熔断器支持件(底座)配合使用图尺码为22×58熔断体与熔断器支持件(底座)配合使用图

熔断器支持件(底座)与熔断体配用示意图

4 外形及安装尺寸

5 示意图

6 订货须知

RT14-32RT14-32RT28-63RT29-63

RT28-63

RT29-63φ14X51

φ14X51

φ14X51NRT28-63

RT14-20RT29-32

RT28-32RT14-20NRT28-32

RT29-32RT28N-32φ10X38φ10X38φ10X38RT29-125

RT29-125

RT14-63RT14-63φ22X58φ22X58

NRT28-125

35

B A F E

D

K

G

RT28-32

RT28-63

如何选择熔断器

(1)熔断器的安秒特性 熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。 图熔断器的安秒特性 每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。熔断电流与熔断时间之间的关系如表1-2所示。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 表1-2熔断电流与熔断时间之间的关系 (2)熔断器的选择 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。 熔体的额定电流可按以下方法选择: 1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。 2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取: IRN ≥(1.5~2.5)IN 式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。 3)保护多台长期工作的电机(供电干线) IRN ≥(1.5~2.5)IN max+ΣIN IN max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。 (3)熔断器的级间配合 为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。 常用的熔断器有管式熔断器R1系列、螺旋式熔断器RLl系列、填料封闭式熔断器RT0系列

小型熔断器基本知识

目 录 一、熔断器的基本功能 (1) 二、熔断器的工作原理 (1) 三、小型熔断器的发展历史 (2) 1、小型熔断器的四代产品 (2) 2、车用熔断器(Automotive) (4) 3、工业熔断器(Industrial) (4) 四、小型熔断器的认证 (4) 1、小型熔断器的主要应用领域 (5) 2、过电流保护的多种产品 (5) 五、小型熔断器的发展趋势 (6) 六、小型熔断器的环保要求 (6)

小型熔断器的基本知识 作者:郑索平 全国熔断器标准化技术委员会委员 一、熔断器的基本功能 熔断器串联在电子电路中,一般要求其电阻要小(功耗要小),当电路正常工作时,它只相当于一根导线,能够长时间稳定的导通电路;由于电源或外部干扰而发生电流波动时,呀也应能承受一定范围的过载;只有当电路中出现较大的过载电流(故障或短路)时,熔断器才会动作,通过断开电流来保护电路的安全。 在熔断器分断电路的过程中,由于电路电压的存在,在熔体断开的间隙会发生电弧,高质量的熔断器应该尽可能地避免这种飞弧;在熔断器分断电路后,又应该能耐受加在两端的电路电压。熔断器作为一个安全元件必须同时具备电性能和安全性两方面的基本功能。 二、熔断器的工作原理 熔断器通电时因电流转换的热量会使熔体的温度上升,在负载正常工作电流或允许的过载电流时,电流所产生的热量和通过熔体,壳体和周围环境所幅射、对流、传导等方式散发的热量能逐步达到平衡;如果散热速度跟不上发热速度时,这些热量就会在熔体上逐步积蓄,使熔体温度上升,一旦温度达到和超过熔体材料的熔点时就会使它液化或汽化,从而断开电流,对电路和人身起到安全保护的作用。 由于某种原因, 电路中电流变得过高 (高于电路中某一元件在一定时间内所能承受的电流)时, 熔体就会熔化或部份汽化, 从而切断电流. 在切断电流的过程中, 通常会形成电弧, 产生几千度的高温, 持续很短时间, 被高温熔化的金属微粒向周围喷射. 熔断器总熔断时间(动作时间)是预飞弧时间和飞弧时间之和. 预飞弧时间(熔化时间): 从电流大到足够使熔丝熔化的起始瞬时到电弧开始形成的瞬间所间隔的时间, 熔丝可达很高的温度, 预飞弧时间占了大部份的比率;在预飞弧时间里所产生的高温, 不应对周围元件造成损害。

熔断器种类及选择

对熔断器的选择要求是: 在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。 选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。 例如,用于保护照明和电动机的熔断器,一般是考虑它们的过载保护,这时,希望熔断器的熔化系数适当小些。所以容量较小的照明线路和电动机宜采用熔体为铅锌合金的RC1A系列熔断器,而大容量的照明线路和电动机,除过载保护外,还应考虑短路时分断短路电流的能力。若短路电流较小时,可采用熔体为锡质的RCIA系列或熔体为锌质的RM10系列熔断器。用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。当短路电流较大时,宜采用具有高分断能力的RL1系列熔断器。当短路电流相当大时,宜采用有限流作用的RT0系列熔断器。 熔断器的额定电压要大于或等于电路的额定电压 熔断器的额定电流要依据负载情况而选择。 ①电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。 ②电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。

熔断器型号规格用途对照大全 第一位:产品字母代号(R-熔断器) 第二位:使用环境(N-户内,W-户外) 第三位:设计序号(1,2,3……) 第四位:额定电压(KV) 第五位:结构特点(H-带有限流电阻,Z-带重合闸,T-带热脱扣器) 第六位:额定电流(A) 1;熔断器型号:QX374-RN2 用于1000v以下电力设备保护 2;PW10户外跌落式熔断器 产品名称:PW10户外跌落式熔断器 产品型号:RW10-100 RW10-200 10KV-15KV 产品概述:PW10户外跌落式熔断器采用IEC60282、GB15166标准!适用于交流50Hz,额定电压为10KV ∽35KV户外架空配电系统上,作为线路或电力变压器的过载和短路保护用。

熔断器的原理、特性和选择

关于电力熔断器 熔断器是低压配电系统和电力拖动系统中起过载和短路保护作用的电器。使用时,熔体串接 于被保护的电路中,当流过熔断器的电流大于规定值时,以其自身产生的热量使熔体熔断, 从而自动切断电路,实现过载和短路保护。 熔断器串接于被保护电路中,电流通过熔体时产生的热量与电流平方和电流通过的时 间成正比。电流越大,则熔体熔断时间越短,这种特性称为熔断器的保护特性或安秒特性。 熔断器的电流和时间特性数值关系,如下表 在配电、电力拖动系统中,熔断器的正确选择,直接关系到设备正常生产的安全和效率, 减少事,故切实保护电器设备安全线路安全,熔断器的正确设计尤为重要,一般都应当注意 以下几个原则: (1)根据实际,正确选择熔断器类型。根据负载的保护特性、短路电流大小、使用场合 4、安装条件以及各类熔断器的适用范围来选择熔断器类型,做到因地制宜。 (2)熔断器额的电压的选择。就是其额定电压应等于或者大于线路的工作电压才行。 (3)熔体与熔断器额定电流的确定。 熔体额定电流的确定: ①对于电阻性负载,熔体的额定电流等于或者略大于电路的工作电流。 ②对于电容器设备的容性负载,熔体的额定电流应当大于电容器额定电流的1.6倍才 行。 ③对于电动机负载,要考虑启动电流冲击的影响,计算方法如下: 对于单台电动机:Inr ≥(1.5~2.5)Inm 其中,Inr —熔体额定电流; Inm —电动机额定电流。 对于多台电动机:Inr ≥(1.5~2.5)Inmmax + ∑Inm 其中,Inmmax —容量最大一台电动机额定电流; ∑Inm 其余各个电动机额定电流之和。 熔断器额定电流的确定:熔断器的额定电流应当等于或者大于熔体的额定电流。 (4)额定分断能力的选择: 熔断器的额定分断能力必须大于或者等于所在电路中可能出现的最大短路电流值。 (5)系统中熔断器上下级分断能力的正确配合: 为适应线路,确保生产,保护电气设备,达到保护的要求,应当注意熔断器上下级 之间的正确配合,一般要求每两个级熔体额定电流的比值不小于1.6:1 的比例。 熔断器 电流 1.25-1.30In 1.6In 2In 2.5In 3In 4In 8In 熔断时 间 ∞ 1h 40S 8S 4.5S 2.5S 1S

熔断器选择原则

熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路. (2)I N熔断器≥IN 线路. (3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。 熔断器在工矿企业的生产过程中和日常生活中主要用于保护低压电器设备,由于使用于不同的电气设备,其容量、大小的选择原则差别很大,在实践中必须严格按照规程规定选择配置。否则,将失去其应有的保护作用。

SF6全绝缘环网柜及负荷开关——熔断器特点通用版

安全管理编号:YTO-FS-PD419 SF6全绝缘环网柜及负荷开关——熔 断器特点通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

SF6全绝缘环网柜及负荷开关—— 熔断器特点通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 SF6全绝缘环网柜或多回路配电柜的技术特点 SF6全绝缘环网柜或多回路配电柜的技术特点主要表现在以下几个方面: (1)模块化设计,各单元模块可任意组合和扩展而无需充放气,便于方案组合及高压计量的设计,适应范围广。SF6全绝缘断路器进出线柜(真空或SF6灭弧)、负荷开关进出线柜、母联柜、计量柜、负荷开关一熔断器组合电器柜,以及TV柜(带开关或不带开关),组合方案可为单单元、两单元、三单元、四单元等紧凑组合,为SF6全绝缘环网柜或多回路配电柜提供了广阔的应用前景。 (2)柜体采用铠装结构,母线室与开关室之间,开关室与电缆室之间均有金属隔板,全绝缘结构的一次部分防护等级可达IP67。

熔断器的选择规范

电流1.2-2倍。 追问: 能说详细点吗 回答: 熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN ≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路.

快速熔断器的选择及应用

快速熔断器的选择及应用 整流变电是氯碱行业中的重要环节,而快速熔断器在半导体电力整流变电保护中的配置至关重要,一旦设备定型后,快速熔断器的选用会直接影响直流供电的质量和用电的效率等整流变电参数。 电力半导体器件热容量小,在故障状态下必须要有快速熔断器保护,而快速熔断器具有与半导体器件类似的热特性,是一种良好的保护器件。本文涉及的是封闭式有填料式快速熔断器,在运行中没有外部现象。 1 快速熔断器的配置 快速熔断器在半导体电力整流器保护中的配置一般分2类。 1.1 变流臂内部并联支路配置保护式 此类型主要用于大功率和超大功率整流器的保护。当变流臂中某一支路器件因某种原因损坏时(每一支路根据设备功率不同,一般并联几对快速熔断器和半导体整流元件串联而成,图1仅标出1对快速熔断器与半导体整流元件),导致与之串联的快速熔断器保护分断后,一般情况下仅1个器件出故障,并不影响整个整流器的正常运行。目前,唐山三友集团冀东化工有限公司的半导体电力整流器保护中的配置就属于变流臂内部并联支路配置保护式,运行效果很好,如图1所示。

1.2 分相配置总体保护式 此类型主要用于中、小功率整流器的保护。当某一变流臂中的器件因某种原因损坏时,导致该相快速熔断器保护分断后,整流器的保护将自动切断供电电源,停止向整流器供电,氯碱行业不常用该配置,如图2所示。 2 快速熔断器的选用 也称电压电流法。线路变流变压器的线电压应低于快速熔断器的额定电压。经电力半导体器件与快速熔断器串联短路实验验证,以半导体额定电流乘以系数,做为所选用的快速熔断器的额定电流。因快速熔断器的额定电流是有效值,而半导体器件的额定电流是平均值,针对上述第一类配置方案(图1),对第一代产品RS0、RS3系列(我国快速熔断器的发展史可分为4个阶段,第一代是全国联合设计的RS0、RS3系列,参数为480A、750V以下,分断能力为50kA,是一种体积较大、价格低廉、电寿命短的初级产品,目前尚有相当装机量)而言,该系数可按整流管为1.4、晶体管1.2、快速晶体管为1来选配,如ZP1000配1400A快速熔断器。针对上述第二类配置方案(图2),则可依据阀电流Iv以及变流装置的负载特性选择快速熔断器,再按整流器可能产生的最大故障电流,来选择有足够分断能力的快速熔断器,如50kA或 100kA,其中50kA为合格品,100kA为一级品。

电力拖动教案熔断器

课题二熔断器 一、教案 【学习概要】 1、低压熔断器的概念、结构、技术参数。 2、常用低压熔断器的种类、特点、用途、型号、规格、文字与图形符号。 3、低压熔断器的选用方法,常见故障及处理方法。 【内容解析】 1、低压熔断器的概念、结构、技术参数 1.1、熔断器的概念 低压熔断器是低压配电网络和电力拖动系统 中主要用作短路保护的电器,通常简称熔断器。使用时串联在被保护的电路中,当电路发生短路故障,通过熔断器的电流达到或超过某一规定值时,以其自身产生的热量使熔体熔断,从而自动分断电路,起到保护作用。 1.2、熔断器的结构 熔断器 熔断器主要由熔体、安装熔体的熔管和熔座三部分组成。如图所示。 熔体是熔断器的主要组成部分,常做成丝状、片状、或栅。熔体的材料通常有两种,一种是由铅、铅锡合金或锌等低熔点材料制成,多用于小电流电路;另一种是由银、铜等较高熔点的金属制成,多用于大电流电路。 熔管是熔体的保护外壳,用耐热绝缘材料制成,在熔体熔断时兼有灭弧作用。 熔座是熔断器的底座,作用是固定熔管和外接引线。 1.3、熔断器的主要技术参数

(1)额定电压 熔断器的额定电压是指能保证熔断器长期正常工作的电压。若熔断器的实际工作电压大于其额定电压,熔体熔断时可能会发生电弧不能熄灭的危险。 (2)额定电流 熔断器的额定电流是指保证熔断器能长期正常工作的电流,是由熔断器各部分长期工作时的允许温升决定的。它与熔体的额定电流是两个不同的概念。熔体的额定电流是指在规定的工作条件下,长时间通过熔体而熔体不熔断的最大电流值。通常一个额定电流等级的熔断器可以配用若干个额定电流等级的熔体,但熔体的额定电流不能大于熔断器的额定电流值。 (3)分断能力 在规定的使用和性能条件下,熔断器在规定电压下能分断的预期分断电流值。常用极限分断电流值来表示。(预期分断电流值是指熔断器被一个阻抗可以忽略的导体所代替时电路内可能流过的电流) (4)时间—电流特性 在规定工作条件下,表征流过熔体的电流与熔体熔断时间关系的函数曲线,也称保护特性或熔断特性。如图2—2所示。 I R 为熔断电流与不熔断电流的分界线,与此相应的电流叫做最小熔化电流。当通过熔体的电流等于I R 时,熔体能够达到其稳定温度,并且熔断;当通过熔体电流小于I R 时,则无法使得熔体熔断。 熔断器的时间-电流特性 根据对熔断器的要求,熔体在额定电流I NN 下绝对不应熔断,所以最小熔化电流I R 必须大于额定电流I NN 。一般熔断器的熔断电流I S 与熔断时间t 的关系见表1—1。 I R

保险丝的选择和使用

保险丝的选择和使用 熔断器是动力和照明线路的一种保护器件,当发生短路或过大电流故障时,能迅速切断电源,保护线路和电气设施的安全(但不能准确保护过负荷)。 一、熔断器的分类 熔断器分为高压和低压两大类。用于3kV-35kV的为高压熔断器;用于交流220V 、380V 和直流220V 、440v 的为低压熔断器。 高压熔断器又分为户内式和户外式两种,型号说明如下: 例如RN1-3 / 150 -200 即为户内式。额定电压3kV、额定电流150A 、断开容量为200MVA。 户内式有RN1、RN2、RN3 、RN5 、RN6 等,户外式有RW3 、RW4 、RW10 等,直流电机车用有RNZ 、RNZ1等。 低压熔断器常见有插入式、管式、螺旋式三大类。又可分为开启式、半封闭式和封闭式三种。 开启式不单独使用,常与闸刀开关组合使用;半封闭管式的一端或两端开启,熔体熔化粒子喷出有一定方向,使用请注意安全;封闭式常见有插入式、无填料管式、有填料管式和有填料螺旋式。低压熔断器字母含义如下:

R-熔断器; C-插入式; L -螺旋式; M-密闭管式; S-快速;T-有填料管式。如RC1、RC1A 为插人式; RM-无填料管式; RT0、RL1、RLS分别为有填料管式和有填料螺旋式。 二、熔断器的选择原则 1.按照线路要求和安装条件选择熔断器的型号。容量小的电路选择半封闭式或无填料封闭式;短路电流大的选择有填料封闭式;半导体元件保护选择快速熔断器。 2.按照线路电压选择熔断器的额定电压。 3.根据负载特性选择熔断器的额定电流。 4.选择各级熔体需相互配合,后一级要比前一级小,总闸和各分支线路上电流不一样,选择熔丝也不一样。如线路发生短路,15 A 和25A 熔件会同时熔断,保护特性就失去了选择性。因此只有总闸和分支保持2-3 级差别,才不会出现这类现象。如一台变压器低压侧出口为RT0 1000 / 800 、电机为RT0 400 / 250 或RT0 400 / 350 ,上下级间额定电流之比分别为3.2 和2.3 故选择性好,即支路发生短路,支路保险熔断不影响总闸供电。 5.熔体不能选择太小。如选择过小,易出现一相保险丝熔断后,造成电机单相运转而烧坏;据统计60%烧坏的电机均系保险配置不合适造成的。

熔断器安秒特性

熔断器安秒特性 熔断器安秒特性熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性。每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 熔断器的选择主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分 断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器熔体的额定电流可按以下方法选择:1、保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。2、保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取:IRN ? (1.5,2.5)IN式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至 3,3.5,具体应根据实际情况而定。3、保护多台长期工作的电机(供电干线)IRN ? (1.5,2.5)IN max+ΣININ

熔断器的特性分类及选型

熔断器根据分断电流范围还可分为一般用途熔断器,后备熔断器和全范围熔断器。一般用途熔断器的分断电流范围指从过载电流大于额定电流1.6~2倍起,到最大分断电流的范围。这种熔断器主要用于保护电力变压器和一般电气设备。后备熔断器的分断电流范围指从过载电流大于额定电流4~7倍起至最大分断电流的范围。这种熔断器常与接触器串联使用,在过载电流小于额定电流4~7倍的范围时,由接触器来实现分断保护。主要用于保护电动机。 随着工业发展的需要,还制造出适于各种不同要求的特殊熔断器,如电子熔断器、热熔断器和自复熔断器等。熔断器一种简单而有效的保护电器。在电路中主要起短路保护作用。熔断器主要由熔体和安装熔体的绝缘管(绝缘座)组成。使用时,熔体串接于被保护的电路中,当电路发生短路故障时,熔体被瞬时熔断而分断电路,起到保护作用。熔断器的作用是:当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏电路中的某些重要器件或贵重器件,也有可能烧毁电路甚至造成火灾。若电路中正确地安置了熔断器,那么,熔断器就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护电路安全运行的作用。最早的保险丝于一百多年前由爱迪生发明,由于当时的工业技术不发达白炽灯很贵重,所以,最初是将它用来保护价格昂贵的白炽灯的。 熔体额定电流的选择 由于各种电气设备都具有一定的过载能力,允许在一定条件下较长时间运行;而当负载超过允许值时,就要求保护熔体在一定时间内熔断。还有一些设备起动电流很大,但起动时间很短,所以要求这些设备的保护特性要适应设备运行的需要,要求熔断器在电机起动时不熔断,在短路电流作用下和超过允许过负荷电流时,能可靠熔断,起到保护作用。熔体额定电流选择偏大,负载在短路或长期过负荷时不能及时熔断;选择过小,可能在正常负载电流作用下就会熔断,影响正常运行,为保证设备正常运行,必须根据负载性质合理地选择熔体额定电流。 (1) 照明电路熔体额定电流≥被保护电路上所有照明电器工作电流之和。 (2) 电动机:①单台直接起动电动机熔体额定电流=(1.5~2.5)×电动机额定电流。 ②多台直接起动电动机总保护熔体额定电流=(1.5~2.5)×各台电动机电流之和。 ③降压起动电动机熔体额定电流=(1.5~2)×电动机额定电流。 ④绕线式电动机熔体额定电流=(1.2~ 1.5)×电动机额定电流。 (3) 配电变压器低压侧熔体额定电流=(1.0~1.5)×变压器低压侧额定电流。 (4) 并联电容器组熔体额定电流=(1.43~1.55)×电容器组额定电流。 (5) 电焊机熔体额定电流= (1.5~2.5)×负荷电流。 (6) 电子整流元件熔体额定电流≥1.57×整流元件额定电流。说明:熔体额定电流的数值范围是为了适应熔体的标准件额定值。

常用电气设备熔断器选择

熔断器的额定电流选择 由于各种电气设备都具有一定的过载能力,允许在一定条件下较长时间运行;而当负载超过允许值时,就要求保护熔体在一定时间内熔断。还有一些设备起动电流很大,但起动时间很短,所以要求这些设备的保护特性要适应设备运行的需要,要求熔断器在电机起动时不熔断,在短路电流作用下和超过允许过负荷电流时,能可靠熔断,起到保护作用。熔体额定电流选择偏大,负载在短路或长期过负荷时不能及时熔断;选择过小,可能在正常负载电流作用下就会熔断,影响正常运行,为保证设备正常运行,必须根据负载性质合理地选择熔体额定电流。 (1) 照明电路 熔体额定电流≥被保护电路上所有照明电器工作电流之和。 (2) 电动机: ①单台直接起动电动机 熔体额定电流=(1.5~2.5)×电动机额定电流。 ②多台直接起动电动机 总保护熔体额定电流=(1.5~2.5)×各台电动机电流之和。 ③降压起动电动机 熔体额定电流=(1.5~2)×电动机额定电流。 ④绕线式电动机 熔体额定电流=(1.2~1.5)×电动机额定电流。 (3) 配电变压器低压侧 熔体额定电流=(1.0~1.5)×变压器低压侧额定电流。 (4) 并联电容器组 熔体额定电流=(1.3~1.8)×电容器组额定电流。 (5) 电焊机 熔体额定电流=(1.5~2.5)×负荷电流。 (6) 电子整流元件 熔体额定电流≥1.57×整流元件额定电流。 说明:熔体额定电流的数值范围是为了适应熔体的标准件额定值。

在3~66kV的电站和变电所常用的高压熔断器有两大类:一类是户内高压限流熔断器, 额定电压等级分3、6、10、20、35、66kV,常用的型号有RN 1、RN 3、RN 5、XRNM 1、XRN T 1、XRN T 2、XRN T3 型, 主要用于保护电力线路、电力变压器和电力电容器等设备的过载和短路;RN2和RN 4型额定电流均为0.5~10A , 为保护电压互感器的专用熔断器。另一类是户外高压喷射式熔断器,此类熔断器在熔体熔断产生电弧时,电弧烧损反白纸产气吹拉长电弧,弧感抗改变相位, 正好电流过零时产生零休,才能开断电路,限流作用不明显。常用的为跌落式熔断器,型号有RW 3、RW 4、RW 7、RW 9、RW 10、RW 11、RW 12、RW 13和PRW系列型等, 其作用除与RN 1 型相同外, 在一定条件下还可以分断和关合空载架空线路、空载变压器和小负荷电流。户外瓷套式限流熔断器RW 10- 35/0.5~50-2000MVA 型中RW10-35/0.5~1-2000MVA为保护35kV电压互感器专用的户外产品。所以根据熔断器的型式和不同的保护对象来选择。 2.2 按工作电压选择 (1) 一般条件: U e≥Uwe 式中: U e——熔断器额定电压 Uwe——安装处电网额定电压 即熔断器的额定电压(kV ) 应不小于熔断器安装处电网额定电压(kV )。 (2) 对于限流型熔断器: 以石英砂作为熔断器填充物的限流型熔断器只能按Ue=Uwe的条件选择, 这种情况下此类熔断器熔断产生的最大过电压倍数限制在规定的2.5 倍相电压之内, 此值并未超过同一电压等级电器的绝缘水平。如果熔断器使用在工作电压低于其额定电压的电网中, 过电压倍数造成威胁可能增大3.5~4。 2.3 按工作电流及保护特性选择 (1) 一般条件: I e≥Ije≥Ig·zd 式中: I e——熔断器熔管的额定电流,A I je——熔断器熔体的额定电流,A I g·zd——回路最大持续工作电流,A 此条件为选择熔断器额定电流的总体要求, 其中熔体额定电流的选择最为重要, 它的选择与其熔断特性有关, 应能满足保护的可靠性、选择性和灵敏度要求。 (2) 具体情况: ①保护配电设备(即35kV 及以下电力变压器) : Ije= K Ie 式中

熔断器概述

一、熔断器的概念: 熔断器其实就是一种短路保护器,广泛用于配电系统和控制系统,主要进行短路保护或严重过载保护。 熔断器是以金属导体作为熔体而分断电路的电器,它串联于电路中,当过载或短路电流通过熔体时,熔体自身将发热而熔断,从而对电力系统、各种电工设备及家用电器起到保护作用。 熔断器具有反时延特性,当过载电流小时,熔断时间长;过载电流大时,熔断时间短。因此,在一定过载电流范围内至电流恢复正常,熔断器不会熔断,可以继续使用。熔断器主要由熔体、外壳和支座3 部分组成,其中熔体是控制熔断特性的关键元件。 二、熔断器的作用: 当电路发生故障成异常时,伴随着电流不断升高,并且升高的电流有可能损坏电路中某些器件或贵重器件,也有可能烧毁电路甚至火灾或重大事故。若电路中正确地选配安置了熔断器,那么,熔断器就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护电路安全运行的作用。最早期的熔断器于一百多年前由爱迪生发明,由于当时的工业不发达白炽灯很贵重,所以,最初是将它用来保护昂贵的白炽灯。 三、熔断器的构造: 熔断器由绝缘底座(支持件)、触头、熔体等组成。熔体是熔断器的主要工作部分,熔体相当于串联在电路中的一段特殊的导线,当电路发生短路或过载时,电流过大,熔断器因过热而熔化,从而切断电路。熔体常做成丝状、栅状或片状。熔体材料具有相对熔点低,特性稳定、易熔断的特点。一般采用铅锡合金、纯铜片、镀银铜片、铝、锌、银等金属;常见熔断器触头通常有两个,是熔体与电联接的重要部件,它必须有良好的导电性,不应产生明显的安装接触电阻; 四、熔断器的选择: 由于各种电气设备都有一定的过载能力,允许在一定条件下较长时间运行;而当负载超过允许值时,就要求保护熔体在一定时间内熔断。还有一些设备起动电流很大,但起动时间很短,所以要求这些设备的保护特性要适应设备运行需要,要求熔断器在电机起动时不熔断,在短路电流作用下和超过允许过负荷电流时,能可靠熔断,起到保护作用。熔断体额定电流选择偏大,负载在短路或长期过负荷时不能及时熔断;选择过小,可能在正常电流作用下就会熔断,影响正常运行,为保证设备正常运行,必须根据负载性质合理地选择熔体额定电流。 以下行为参考选择数据: 1、照明电路熔体额定电流≥被保护电路上所有照明电器工作电流之和。 2、电动机: (1)单台直接起动电动机熔体额定电流=(1.5~2.5)×电动机额定电流. (2)多台直接起动电动机总的保护熔体额定电流=(1.5~2.5)×各台电动机电额定流之和。 (3)降压起动电动机熔体额定电流=(1.5~2)×电动机额定电流.。 (4)绕线式电动机熔体额定电流=(1.2~1.5)×电动机额定电流。 3、配电变压器低压则熔体额定电流=(1.0~1.5)×变压器低压则额定电流.。 4、并联电容器组熔体额定电流=(1.3~1.8)×电容器组额定电流.。 5、电焊机熔体额定电流=(1.5~2.5)×负荷电流。 6、电子整流元件快速熔断体额定电流≥1.57×整流元件额定电流.

熔断器的选择

熔断器的选择 1.熔断器的安秒特性 熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 实际保险的标称值为额定电流,在电流达到额定值的2倍式,30-40秒保险丝就会熔断。 2.熔断器的选择 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。 选择方法 选择熔丝的方法是对于照明等冲击电流很小的负载,熔体的额定电流IRD 等于或稍大于电路的实际工作电流I。 IRD≥I或IRD=(1.1~1.5)I

对于启动电流较大的负载,如电动机,熔体的额定电流IRD等于或稍大于电路的实际工作电流I的1.5~2.5倍。 IRD≥(1.5~2.5)I 如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。 选择多台电动机的供电干线总保险可以按下式计算; IRD=(1.5~2.5)IMQ+ΣIe(n-1)) 式中;IMQ-是设备中最大的一台电动机的额定电流; Ie(n-1)-是设备中除了最大的一台电动机以外的其它所有电动机的额定电流的总和。 在配电系统中,各级熔断器应相互匹配,一般上一级熔体的额定电流要比下一级熔体的额定电流大2~3倍。 3.熔断器概念及种类 熔断器是一种用易熔元件断开电路的过电流保护器件,当过电流通过易熔元件时,就将其加热并熔断。根据这个定义,可以认为,熔断器响应电流,并对系统过电流提供保护。 所有熔断器应能通过连续额定电流;额定电流为100A及以下的熔断器,当熔体连续通过200%~240%额定有效电流时,在5min内熔断;额定电流为100A 以上的熔断器,当熔体持续通过220%~264%额定有效电流时,在10min内熔断。 (1)限流电力熔断器 当线路中可能达到的短路电流超过下一级设备过电流能力或普通熔断器或标准断路器等的断流容量时,可采用限流熔断器。 交流限流熔断器是一种在其额定断流范围内和限流范围内能安全断开所有有效电流值的熔断器。在额定电压下,将清除故障时间限制在等于或小于第一周

熔断器选择

照明电路熔体额定电流的选择:照明电路中的熔断器熔体一般采用铅--锑或铅--锡合金.对于照明配电支路,熔体的额定电流应大于或等于该支路实际的最大负载电流.但应小于支路中最细导线的安全电流. 照明电路的总熔体的额定电流应按下式进行选择: 总熔体额定电流(安)=(0.9-1)×电度表额定电流(安) 总熔体一般装在电度表出线上,熔体额定电流不应大于单相电度表的额定电流但必须大于电路中全部用电器用电时工作电流之和. 电动机电路中熔体额定电流的选择: (1)当电路中只有一台电动机时:熔体额定电流(安)≥(1.5-2.5)×电动机的额定电流(安).当电动机额定容量小,轻载或有降压启动设备时,倍数可选取小些;重载或直接启动时,倍数可取大些. (2)当一条电路中有几台电动机时:总熔体额定电流(安)≥(1.5-2.5)×容量最大一台电动机的额定电流(安)+其余几台电动机的额定电流之和(安). 对于直流电动机和利用降压启动的绕线式交流电动机,其熔断器熔体的额定电流应按下式进行选择: 熔体的额定电流(安)=(1.2-1.5)×电动机额定电流(安)配电变压器的高,低压侧熔体额定电流的选择: (1)对容量在100千伏安及以下的配电变压器,其高压侧熔体额定电流应按变压器高压侧额定电流的2-3倍选取; (2)对容量在100千伏安以上的配电变压器,其高压侧熔体额定电流应按变压器高压侧额定电流的1.5-2倍选取; (3)低压侧熔体额定电流可按变压器低压侧额定电流的1.2倍选取. 硅整流的快速熔断器熔体额定电流可按下式选择: I≤0.8Ie 式中I---快速熔体额定电流,安; Ie---硅整流器额定工作电流,安. 熔断器在使用中应注意的事项: (1)应正确选择熔体,保证其工作的选择性;

熔断器的如何选择熔断器:

熔断器的如何选择熔断器: (1)熔断器的安秒特性熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小 熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。熔断电流与熔断时间之间的关系如表1-2所示。从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。(2)熔断器的选择主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高

分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器熔体的额定电流可按以下方法选择:1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取:IRN ≥ (1.5~2.5)IN式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。3)保护多台长期工作的电机(供电干线)IRN ≥ (1.5~2.5)IN max+ΣININ max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。(3)熔断器的级间配合为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。常用的熔断器有管式熔断器R1系列、螺旋式熔断器RLl系列、填料封闭式熔断器RT0系列及快速熔断器RSO、RS3系列等。

F_C回路中高压限流熔断器参数的选择及动热稳定验算

F—C回路中高压限流 熔断器参数的选择及动热稳定验算武汉钢铁(集团)公司(武汉430080) 张铁军 梁修礼 李毓豪 刘巧珍 【摘 要】 介绍F—C回路中高压限流熔断器参数的计算方法,并验算其动、热稳定。 1 影响F—C回路中高压限流熔断器参数的因素 F—C回路主要由高压限流熔断器(简称高压熔断器)和高压真空接触器组成。前者的作用是回路发生短路故障时以熔断其内部熔片切断故障电流,达到保护系统、回路设备及器件的目的;后者的作用是实现生产工艺对被控对象的操作要求,当回路出现过载电流时,由配套的PT、CT及继电保护装置等配合真空接触器分断过载电流,此时高压熔断器不动作。当系统处于启动状态时,依靠调整继电保护的整定值及合理选择高压熔断器动作电流参数来避开启动电流。 应引起重视的是,对于启动时间长及电机在一定时间内连续启动次数过多的负载会因为熔片温升过高造成熔断。如连续出现过载电流或堵转的话,高压熔断器内的熔片温度升高,会使其应力发生变化而造成熔断。所以选择高压熔断器时须注意以下几点并注重参数配合即可满足安全运行要求。 1.1 外部因素及环境对高压限流熔断器参数的影 响 1.1.1 安装场所对参数的影响 (1)把高压熔断器安装在一个三相密封的箱内,这时熔断器额定电流必须减少15%使用,当额定电流小于20A时可不考虑降容; (2)把高压熔断器单支封闭在一个绝缘树脂浇注的筒内,这时高压熔断器额定电流应降低25%使用,才能保证不使高压熔断器过热而损坏,对于额定电流小于20A时仍可不考虑降容; (3)对于三相安装在封闭的柜体中,由于三相高压熔断器温升之间的相互干扰,熔断器额定电流一般应降容10%使用即可,额定电流小于20A时仍可不考虑降容; (4)有时为了增大高压熔断器电流等级,常采用2只并联使用。这时同样要考虑温度影响,一般降容10~20%使用。 1.1.2 环境温度对参数的影响 按IEC标准规定,高压熔断器可在环境温度-25~+40℃之间的范围内正常工作,当温度低于-25℃时,高压熔断器的机械性能受到影响,而当温度高于+40℃时,每升高1℃,高压熔断器额定电流应降低1%使用。 1.2 真空接触器与高压熔断器特性配合要求及满 足安全运行的基本条件 (1)真空接触器本身的机械特性要好,可靠性高,动热稳定参数符合系统要求; (2)高压熔断器的I2t特性与真空接触器动稳定特性相匹配; (3)高压熔断器的撞击器动作特性与真空接触器动作特性相匹配; (4)与之配套的继电保护系统应可靠。 2 保护电动机用高压限流熔断器  参数选择及计算 2.1 高压熔断器参数选择原则〔1〕 对于高压电动机保护,通常是由几种电器共同完成的,高压熔断器是一种很重要的保护电器,根据IEC644,我们推荐使用下列一组曲线来保护电动机,如图1所示。图上表示了保护装置与被保护装置电动机的曲线之间的关系图,它组成了一个典型的应用曲线。下面讨论各曲线之间的关系,并以此来指导设计。 (1)首先用高压熔断器安—秒特性曲线10s对应的电流值除以一个适当系数K所得到的电流坐标应位于电动机启动电流点A的右侧。

相关文档
相关文档 最新文档