文档库 最新最全的文档下载
当前位置:文档库 › 纳米Fe_石蜡复合材料的微波介电谱拟合及极化机制_谢昌江

纳米Fe_石蜡复合材料的微波介电谱拟合及极化机制_谢昌江

纳米Fe_石蜡复合材料的微波介电谱拟合及极化机制_谢昌江
纳米Fe_石蜡复合材料的微波介电谱拟合及极化机制_谢昌江

介孔碳材料的合成及应用分析研究

介孔碳材料的合成及应用研究 李璐 (哈尔滨师范大学> =摘要> 综述了介孔碳材料的合成及应用.关键词: 介孔碳。合成。应用 0 引言 介孔碳是近年来发现的一类新型非硅介孔材料, 它是由有序介孔材料为模板制备的结构复制品. 由于其具有大的比表面( 可高达2500m2# g- 1 >和孔容(可达到2. 25 cm3 # g- 1 >,良好的导电性、对绝大多数化学反应的惰性等优越的性能, 且易通过煅烧除去, 与氧化物材料在很多方面具有互补性, 使其在催化、吸附、分离、储氢、电化学等方面得到应用而受到高度重视. 1 介孔碳材料的合成 介孔碳的制备通常采用硬模板法, 选择适当的碳源前驱物如葡萄糖、蔗糖乙炔、中间相沥青、呋喃甲醇[ 1]、苯酚/甲醛树脂[ 2]等, 通过浸渍或气相沉积等方法, 将其引入介孔氧化硅的孔道中, 在酸催化下使前驱物热分解碳化, 并沉积在模板介孔材料的孔道内, 用NaOH或HF溶掉SiO2 模板,即可得到介孔碳. 以下介绍几种介孔碳材料的合成方法及性质.

1. 1 CMK- 1 Ryoo首次用MCM- 48为模板 合成了介孔碳材料(CMK- 1>. 由于MCM- 48具有两套不相连通的 孔道组成, 这些孔道将变成碳材料的固体部分, 而MCM- 48中氧 化硅部分则会变成碳材料的孔道. 因此CMK- 1 并不是MCM- 48 真 正的复制品, 而是其反转品. 在脱除MCM- 48 的氧化硅过程中, 其结晶学对称性下降[ 3] , 后 续的研究表明与所用的碳前驱物有关, 其中一个具有I41 /a对称性[ 4] .1. 2 CMK- 3 使用SBA- 15 合成六方的介 孔碳( CMK 3>, 由于二维孔道的SBA- 15孔壁上有微孔, 因 图1 孔道不相连的的模板(MCM- 41或1234K 下 焙烧的SBA - 15> 制备的无序碳材料( A>。孔道相 连的模板( 1173K温度以下焙烧的SBA - 15> 制备 的有序介孔碳材料CMK- 3( B>

聚乳酸纳米复合材料的制备及性能

聚乳酸纳米复合材料的制备及性能 本文讨论了聚乳酸(PLA)的改性方法一复合改性。主要论述了三种复合类型:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 标签:聚乳酸;复合材料;生物降解 聚乳酸(PLA)是生物降解塑料中最优异的产品之一,它生物相容性好,无毒无刺激。但其固有缺陷如脆性大、耐热性差、成本高等限制了它的广泛应用。因此聚乳酸改性成为研究焦点。纳米复合改性因操作简单,效果立竿见影而成为聚乳酸改性领域的主要研究方向。 1 聚乳酸纳米复合材料 目前制备的聚乳酸纳米复合材料主要有3类:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 1.1 聚乳酸/刚性纳米粒子复合材料 用来增强聚乳酸的刚性纳米粒子主要包括SiO2、CaCO3、TiO2等。Li等研究了纳米SiO2对PLA复合材料性能的影响。结果表明改性后PLA复合材料具有高的储能模量和降解速率。周凯等通过熔融共混制备了PLA/CaCO3复合材料,发现CaCO3使PLA的断裂从脆性转变为韧性,复合材料的耐热性和结晶性都得到提高。莊韦等通过原位聚合法制备PLA/TiO2纳米复合材料,结果表明复合材料的玻璃化转变温度和热分解温度提高;拉伸强度、弹性模量、断裂伸长率增大。环氧基笼型倍半硅氧烷(POSS)也可以改性聚乳酸。于静等制备了PLA/POSS 复合材料,发现POSS可以提高PLA的结晶速率、力学性能和降解速率。 1.2 聚乳酸/层状硅酸盐纳米复合材料 层状硅酸盐具有片层结构,片层之间可以容纳聚合物分子。 沈斌等制备了PLA/MMT纳米复合材料,结果表明复合材料力学性能得到改善,结晶度提高。马鹏程等用有机改性蒙脱土(OMMT)制备PLA复合材料,结果表明形成插层还是剥离结构取决于OMMT含量。3%OMMT可以提高PLA 的力学性能和热性能;OMMT增加了PLA熔体强度,在挤出发泡时充当成核剂,降低发泡剂气体向熔体外部的扩散。滑石粉(Talc)也是常见的片层填料。吴越等制备PLA/Talc复合材料,结果表明Talc粒子提高了复合材料的拉伸强度、冲击强度,热稳定性。 1.3 聚乳酸/碳纳米管复合材料

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

聚合物纳米复合材料

聚合物纳米复合材料的研究进展 摘要 关键字 Abstract 1.引言 纳米材料是指材料的显微组织中至少有一相的一维尺寸在1-100nm以内的材料。由于平均粒径小,表面原子多,比表面积大,表面能高,因而呈现出独特的小尺寸效应、表面效应、量子隧道等特性,具有许多材料所没有的性能。介于其超凡特性,纳米材料越来越得到广泛的关注。不少学者认为纳米材料将是21世纪最有前途的材料之一,尤其是聚合物纳米材料。本文就聚合物纳米复合材料的分类、制备、改性、应用及问题和未来展望展开叙述。 2.聚合物纳米复合材料定义与分类 2.1定义 聚合物纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,纳米单元可以是金属、无机物和高分子等。 2.2分类 根据组分不同,可分为: a)聚合物/聚合物纳米复合材料:由两种或两种以上的聚合物混在一起而其中有一纳米尺寸的聚合物分散于其它聚合物单体所构成的 复合材料。如第三代环氧树脂粘接剂,它是将预聚合的球状交联 橡胶粒子分散于环氧树脂中固化而成的。 b)聚合物/层状纳米无机物复合材料:是将层状的无机物以纳米尺度分散于聚合物中而形成的。通常采用插层法制备。目前用的最多 的是蒙脱土,蒙脱土是以片状晶体而构成的。 c)聚合物/无机纳米复合粒子复合材料:是将纳米级无机粒子填充到聚合物当中去的。由于小尺寸效应使材料具有光、电、声、磁等 功能,赋予材料良好的综合性能。 3.聚合物纳米复合材料制备 3.1插层复合法 插层复合法是目前制备聚合物纳米复合材料的主要方法。根据复合过程,插层复合法可分为两类,1)插层聚合法:原理是将聚合物单体分散,插层进入层状硅酸盐片层中,然后再原位聚合,利用聚合时放出的大量的热量克服硅酸盐片层间的库仑力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合;2)熔体插层法:原理是将插层无机物与高聚物插入层状无机的层间,该方法优

纳米材料导论期末复习重点

名词解释: 1、纳米:纳米是长度单位,10-9米,10埃。 2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm )或由他们作为基本单元构成的材料。 3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm )。 4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。 5、布朗运动:悬浮微粒不停地做无规则运动的现象。 6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应。 7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。 8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。 9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。 10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。 11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状 。 12、HAII-Petch 公式: σ--强度; H --硬度;d --晶粒尺寸;K --常数 13、纳米复合材料:指分散相尺度至少有一维小于100nm 的复合材料。 14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。 15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。 大题: 1、纳米粒子的基本特性? (1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。 (2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性) (3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。 (4)宏观量子隧道效应:宏观物理量具有的隧道效应。 2、纳米陶瓷具有较好韧性的原因? (1)纳米陶瓷材料有纳米相,具有纳米材料相关的性能,而纳米材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移,从而表现出优良的韧性,因而纳米陶瓷也具有较好的韧性; (2)纳米级弥散相阻止晶粒长大,起到细晶强化作用,使强度、硬度、韧性都得到提高; (3)纳米级粒子的穿晶断裂,并由硬粒子对裂纹尖端的反射作用而产生韧化。 3、制备纳米粒子的物理方法? d K +0y σσ=d K H H +0y =

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

介孔碳材料载体钯催化剂用于燃料电池

介孔碳材料载体钯催化剂用于燃料电池 2016-07-03 12:53来源:内江洛伯尔材料科技有限公司作者:研发部 钯催化剂微观结 构 甲醇燃料电池(DMFC)通常用铂基催化剂作阳极催化剂,但其对甲醇氧化的电催 化活性较低,而且易被甲醇氧化的中间物种所毒化; 特别是甲醇很易透过Nafion膜, 在阴极产生混合电位,既浪费了燃料,又降低了燃料的利用效率、阴极催化剂效率和电池的工作电压. 研究发现,用甲酸作燃料得到的直接甲酸燃料电池(DFAFC)具有很多优点.如甲酸无毒,不易燃,储存和运输安全;甲酸阴离子与Nafion膜中的磺酸基团间 有排斥作用,因此甲酸对Nafion膜的渗透率远小于甲醇;甲酸作燃料时浓度可以高 达20mol/L,而甲醇的浓度只有2mol/L.虽然甲酸的能量密度仅是甲醇的1/3,但DFAFC的功率密度仍高于DMFC.由于甲酸氧化的活化能小于甲醇氧化的活化能, 因 此DFAFC的性能要好于DMFC.在DFAFC中,Pd是一种对甲酸电氧化有较好催化性能的阳极催化剂.由于钯黑易聚结,利用率较低,因此人们更关注其负载型催化剂. 有序介孔碳不仅具有较高的比表面积和较大的孔体积、较少的或者没有微孔,而且有序介孔碳具有规则的孔道结构及可控的孔径,如果将贵金属纳米粒子负载到孔道内,不仅可以控制金属纳米粒子的尺寸,而且可以得到高分散的介孔碳负载贵金属催化剂.由于介孔碳的限域作用,在合成介孔碳负载贵金属催化剂时,不需 要加入表面活性剂,因此具有很高的催化活性和稳定性.三维有序结构的介孔碳已经被证明在燃料电池中有利于反应物和产物的质子传输.因此介孔碳材料应用在催化 剂载体以及燃料电池方面具有理论和实际研究价值. Nazar等利用硫引入贵金属法制备了一系列介孔碳负载贵金属催化剂; 陈书如等通过控制碳/硫比例,将熔融单质硫扩散负载到碳骨架小介孔中,保留有序 介孔,形成多孔有序介孔碳/硫纳米复合材料.

纳米复合材料

SHANGHAI UNIVERSITY 课程论文 COURSE PAPER 简述纳米复合材料 学院:材料科学与工程学院 专业: 电子科学与技术 学号: 1 2 1 2 1 7 6 5 姓名: 陆 申 阳 课程: 材料科学导论C 日期: 2014年5月10日

简述纳米复合材料 12121765 陆申阳 摘要:纳米复合材料日新月异的发展为我们的生活带来了诸多方法便。本文简要的介绍了纳米复合材料的名称来源、种类、结构组成、功能特点及其在现代生活中的应用情况。纳米复合材料作为新兴材料,在材料中占有较大的比例,在各方面的应用也十分广泛。 1引言 由于复合材料的力学性能比较突出,综合性能优良,使得复合材料广泛应用于航空航天、国防、交通、体育、工业设备等领域。其中纳米复合材料是最具有吸引力的部分,世界发达国家的新材料发展战略都把纳米复合材料放在重要位置。纳米复合材料作为一类新材料,它拥有自己引人注目的一系列特点。而现代生活与纳米复合材料的练习也越来越紧密。 2总论 2.1复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。 复合材料各组分之间“取长补短”、“协同作用”,极大地弥补了单一材料的缺点,产生单一材料不具备的新性能。复合材料具有较强的可设计性。可以根据对产品形状的需求,将复合材料设计成不同的形状,避免多次加工,减少工序;也可以根据需要的产品性能对其性能进行设计,通过改变基体的性能、含量,增强材料的性能、含量、分布情况,以及他们之间的界面结合情况,来实现对复合材料性能的设计。

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

介孔碳材料

介孔碳材料:合成及修饰 关键词:嵌段共聚物,介孔碳材料,自组装,模板合成 许多应用领域对多孔材料的兴趣是由于他们的高比表面积和理化性质。传统的合成只能随机产生多孔材料,对超过孔径分布几乎是无法控制的,更不用说细观结构了。最新的突破是其它多孔材料的制备工艺,这将导致具有极高比表面积和有序介孔结构的介孔材料制备方法的发展。随着催化剂的发展,分离介质和先进的电子材料被用在许多科学学科。目前合成方法可归类为硬模板法和软模板法。这两种方法都是用来审查碳材料表面功能化取得的进展。 1.简介 多孔碳材料是无处不在和不可或缺的,应用于许多的现在科学领域。多孔碳材料被广泛用作制备电池电极、燃料电池、超级电容。作为分离过程和储气的吸附剂,应用于许多重要的催化过程。介孔碳材料的用途在不同的应用中有着直接的联系,不仅仅关系到其优良的物理和化学性能,如导电、热导率、化学稳定性和低密度,而且关系到其广泛的可用性。近年来碳技术已经取得了很大进展,同时也通过开发和引进新的合成技术改变现有的制备方法。多孔碳材料根据其孔径可分为微孔(孔径<2nm);中孔(2nm<孔径<50nm);大孔(孔径>50nm)。传统的多孔碳材料,例如活性炭和碳分子筛,被热解和物理或是被有机体化学活化合成的。有机体包括在高温下的煤、风、果壳、聚合物[1-3]。这些碳材料通常在中孔和微孔范围内有广泛的孔径分布。活性碳和碳分子筛已大批量生产并被广泛用于吸附、分离和催化方面。 微孔碳材料综述的主要进展包括(a)合成碳材料(表面积高达3000m2g-1)[4,5]使用的氢氧化钾,(b)带有卤素气体的碳选择性反应可控制碳材料产生的微孔大小[6]。后一种方法使用碳化物为碳源,并且卤素气体选择性的除去金属离子。这种化学蚀刻法产生一个具有很窄的粒度分布的微孔。这些碳材料产生的微孔能提供高比表面积、大孔容、吸附气体和液体。尽管微孔材料被广泛应用在吸附分离和催化上,生产使用的方法遭到限制。活性炭微孔材料的缺点(a)由于空间限制规定小孔径使分子运输速度缓慢,(b)低电导率的产生是由于表面官能团的缺陷产生的,(c)多孔结构被高温或石墨化破坏。 为了克服上述这些限制努力寻求其他的合成方法,方法如下:(a)通过物理或组合物理/化学方法的高度活化,[1,7-9](b)碳前躯体碳化是热固性组成成分之一,也是热不稳定性成分,[10,11](c)催化剂辅助活化碳前驱体与金属(氧化物)或有机金属化合物,[9,12-14](d)碳化气凝胶或冷冻,[15,16](e)通过浸渍硬模板复制合成介孔碳,碳化和模板拆除。[17,18](f)自组装通过缩合和碳化使用软模板[19-21]。方法a之d只会导致介孔碳材料有广泛孔径分布(PSD)和可观微孔[9,22]。因此,这些方法都缺乏吸引力。 值得重新审查的是方法e和方法f,这两种方法与有良好控制孔径的介孔碳材料的合成有关联。方法e涉及预合成的有机或无机模板的使用,也被称为硬模板合成方法。这些模板主要是作为介孔碳的模具材料,并且没有明显的化学作用采取前体之间发生模板和碳化[23]。相应的多孔结构是由有明确定义的纳米结构模板预定的。反过来,方法f涉及软模板,通过生成有机分子自组装纳米结构。相应的孔径结构确定合成条件,如混合比、溶剂和温度。虽然该术语"软模板"尚未正式确定,软模板法在本次审查是指自组装模板。软模板法不同于有机自组装硬模板法,分子或基团被操纵在分子能级和被组织成纳米空间氢键或疏水/亲

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

磁性碳纳米复合材料新型吸附剂处理污水重金属技术及进展

第33卷第2期2016年6月 上海第二工业大学学报 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY V ol.33No.2 Jun.2016 文章编号:1001-4543(2016)02-0081-07 磁性碳纳米复合材料新型吸附剂处理污水重金属技术及进展 郭占虎1,闫星如1,关杰2 (1.田纳西大学诺克斯维尔分校化学与生物分子工程系,美国田纳西州37996; 2.上海第二工业大学环境与材料工程学院,上海201209) 摘要:快速工业化导致排放的污水含有越来越多的重金属(铬,镉,汞,钽,铅,和砷)。其中,Cr(VI)是一种常见的水污染物,具有很强的毒性和移动性。因此,迫切需要寻求经济、有效和可持续使用的处理Cr(VI)的方法。磁性碳纳米复合材料(Magnetic Carbon Nanocomposites,MCNCs)有较大的比表面积,可增强重金属去除效率,同时材料的磁性有利于回收纳米材料。然而,用MCNCs去除污水中重金属的相关技术至今很少有人研究,文中介绍了MCNCs 去除重金属的基本原理,并以两种不同的MCNCs为例,介绍了相关研究的最新进展。 关键词:磁性;纳米复合材料;污水;重金属 中图分类号:TB383文献标志码:A 0引言 随着现代工业的快速发展,地表水的环境问题已经成为国际热点话题。现代工业排放的污水中所含重金属越来越多,比如铬,镉,汞,钽,铅和砷[1]。其中,Cr(VI)是一种常见的剧毒污染物,由于其在水溶液中具有较大溶解性,所以具有很强的移动性,对环境和人类生存的影响巨大[2]。美国环境保护局规定,铬离子在饮用水中的最大限额为100μg/L[3]。世界卫生组织要求饮用水中铬离子含量最高为50μg/L[3]。目前开发的、用以解决重金属问题的技术,包括氰化法、化学沉淀、化学还原法、离子交换法和反渗透法[4-8]。但是,这些方法均存在较为明显的缺陷:氰化法在使用过程中可产生剧毒中间体及其他有机氯化合物,将引起二次污染,导致更多的环境问题;化学沉淀法虽较为简单,但会有大量的沉淀污泥产生,处理低浓度重金属和后续污泥均需增加投入,成本较高[9];离子交换法对于处理含有离子和非离子性的杂质有限制,且操作成本高;反渗透法虽可以有效地降低金属离子浓度,但pH范围和操作成本都限制了其应用。近期研究发现,采用吸附法具有明显优势,其成本较低并且高效[10-11]。相比于沉淀法和电化学法,污水中重金属浓度较低时,吸附法可以比较有效地将其除去。 常用的吸附剂有矿物黏土、生物吸附剂和金属氧化物,然而由于表面疏水性和对金属离子结合力较弱,这些吸附剂的去重金属能力并不理想。近年来,有学者报道碳材料,如活性炭、石墨烯和碳纳米管,具有较好的去重金属离子的能力[12-14],但是这类材料具有低效且不易分离的明显缺陷。活性炭具有较高比表面积,是净化污水吸附剂中的一种,但是当污染物质量分数低至10?9时,活性炭无法再减少污染物的浓度[15-16]。同时,是否易于分离也是吸附剂应用的重要指标。分离碳材料一般采用离心分离法,它要求较高转速,导致应用成本增加。本课题组的研究工作发现,磁性碳纳米复合材料(Magnetic Carbon Nanocomposites,MCNCs)有较大的比表面积,可增大重金属的去除效率,同时所具有的磁性有利于回收纳米材料。 本文将通过两个相关的研究实例介绍MCNCs 去除污水中重金属的基本原理、性能表征及研究展望。以期有助于人们对MCNCs去除污水中重金属应用的理解和认识。 收稿日期:2016-03-07 通信作者:郭占虎(1973–),男,山西运城人,副教授,博士,主要研究方向为多功能复合材料。 电子邮箱nanomaterials2000@https://www.wendangku.net/doc/6a11511147.html,。 基金项目:上海高校特聘教授(东方学者)岗位计划(No.1410000195)、美国自然科学基金(CMMI13-14486)资助

有序介孔碳材CMK-3哪个厂家好 哪个有序介孔碳材CMK-3厂家好

有序介孔碳材CMK-3哪个厂家好 有序介孔碳材CMK-3哪个厂家好?这还是大家更加关心的问题。有序介孔碳作为一类新型材料,具有均一的孔径分布、大的比表面积和孔容、有序的孔道结构等独特的结构特点,同时还具有优良的机械和热稳定性,并且对绝大多数化学反应显出惰性,在催化、吸附、分离、储氢、电化学等方面具有很好的应用前景。那么,有序介孔碳材CMK-3哪个厂家好?这里推荐先丰纳米公司。下面就简单的介绍有序介孔碳材CMK-3制作方法。 一般来说,有序介孔碳材料的制备方法有两种。 一是硬模板法 1、合成有序的硬模板,如介孔氧化硅等 2、灌注碳源前驱体到硬模板的孔道中 3、碳化形成复合材料 4、去除硬模板得到有序介孔碳。 这种方法程序非常繁琐、成本非常高,很难用以实现介孔碳材料的规模化合成。 二是软模板法 即超分子自组装法。利用溶剂挥发诱导自组装(EISA)成功地合成了介孔碳材料。该过程简单、可重复性好;然而该方法需要大量的溶剂,既污染环境又浪费原料。此外该方法需要大面积的容器来挥发,占据大量的空间,也限制了该方法的规模化生产。

如果想要了解更多关于有序介孔碳材CMK-3的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

PLATiO2纳米复合材料的制备与性能研究

目录 引言 (1) 第二章文献综述 (2) 2.1 聚乳酸的性质 (2) 2.2 聚乳酸材料的应用 (4) 2.3 聚乳酸的改性 (6) 2.4 聚乳酸的改性研究现状 (8) 2.5 聚乳酸合成方法 (9) 2.6 纳米复合材料的制备 (12) 2.7 PLA聚合物的发展前景与展望 (15) 第三章实验部分 (17) 3.1 引言 (17) 3.2 实验部分 (17) 第四章结果与讨论 (21) 4.1 反应条件对杂化材料的影响 (21) 4.2 PLA/TiO2纳米复合材料的结构与性能表征 (22) 结论 (34) 参考文献 (35)

引言 随着不可再生资源的日益减少,人们越来越关注环保与可持续发展的问题,全世界都在通过努力开发新型高分子材料来避免或减少对环境的损害。PLA 由于以下几点而被人们所关注:其原料是具有可再生性的乳酸,生产过程中污染小,可以自然的完全降解,只生成二氧化碳和水,对环境没有污染,克服了高分子材料的最大缺点,所以被人们称为绿色塑料。除此之外,聚乳酸还具有优良的生物相容性,可吸收性等,可以被广泛应用在医药卫生、包装材料等领域。 PLA虽然具有较好的机械强度和热成型性,但由于还存在一些不足,所以难以应用于实际:①纯PLA软化点为65℃,耐热温度太低,制品易发生变形或粘连,严重限制产品的应用范围。②市售聚乳酸产品脆性较大。③与通用塑料相比,售价较高,难以被市场接受。这些缺点促使人们对PLA材料的改性进行更深入研究。而纳米二氧化钛复合材料既能在发挥纳米二氧化钛自身的小尺寸效应、表面效应以及粒子的协同效应的同时,又同时能发挥高分子材料本身的优点,使复合材料具有良好的机械性能、光学性能、电磁性能等,得到了人们的重视。制备PLA/纳米二氧化钛复合材料是寄望于能结合二者各自的优点,得到更加实用的复合材料。目前的PLA 复合材料大部分是将填料与聚乳酸在一定条件下复合而成。此方法由于填料与聚乳酸间的结合力差,导致填料分散不均匀易团聚,还可能降低聚乳酸的分子量。且制备工艺比较繁琐,周期较长。 有鉴于此,本文通过制备PLA/TiO2纳米复合材料,希望能提高PLA的力学性能,机械性能等,降低其成本,使其拥有更大的应用空间。

介孔碳材料及负载金属催化剂表征

介孔碳材料及负载金属催化剂表征 摘要:介孔材料作为纳米材料的一个重要发展,已成为国际科技界普遍关注的新的研究热点.本文综述了以氧化铝、活性炭为载体负载镍基催化剂的研究方法。 1.前言 近几年来,介孔材料作为一种新兴的材料在光化学、催化及分离等领域具有十分重要的应用,是当今研究的热点之一。 按照国际纯粹与应用化学协会(IUPAC)的定义,孔径在2-50nm范围的多孔材料称为介孔(中孔)材料。按照化学组成,介孔材料可分为硅基和非硅基组成两大类,后者主要包括碳、过渡金属氧化物、磷酸盐和硫化物等,由于它们一般存在着可变价态,有可能为介孔材料开辟新的应用领域,展示出硅基介孔材料所不能及的应用前景[1]。按照介孔是否有序,介孔材料可分为无定形(无序)介孔材料和有序介孔材料[2]。前者如普通的SiO2气凝胶、微晶玻璃等,孔径范围较大,孔道形状不规则;后者是以表面活性剂形成的超分结构为模板,利用溶胶-凝胶工艺,通过有机物和无机物之间的界面定向导引作用组装成一类孔径约在1.5-30nm,孔径分布窄且有规则孔道结构的无机多孔材料,如M41S等。 介孔材料的特点在于其结构和性能介于无定形无机多孔材料(如无定形硅铝酸盐)和具有晶体结构的无机多孔材料(如沸石分子筛)之间,其主要特征[3]为:具有规则的孔道结构;孔径分布窄,且在1.5-10 nm之间可以调节;经过优化合成条件或后处理,可具有很好的热稳定性和一定的水热稳定性;颗粒具有规则外形,且可在微米尺度内保持高度的孔道有序性。 现阶段有多种方法可对介孔材料进行表征。差热/热重(DTA/TG)分析可用于表征物质表面吸附、脱附机理及晶型转变温度,并可鉴别中间体。X射线衍射分析(XRD)法是利用衍射的位置决定晶胞的形状和大小,以及晶格常数。透射电镜(TEM)是在极高、极大倍数下直接观察样品的形貌、结构、粒径大小,并能进行纳米级的晶体表面及化学组成分析。而气体吸附测试(Adsorption measurement)法则是通过向介孔材料中通人氮气等气体来测试其孔径[4]。对介孔材料中装载纳米微粒的表征,同样可以借助许多经典及现代测试手段获得。如利用X射线衍射及广延X射线精细结构能得到孔穴中纳米微粒的元素组成、离子间距及尺寸形

硫/有序介孔碳复合材料的制备及其电化学性能

硅酸盐学报 · 572 ·2011年 硫/有序介孔碳复合材料的制备及其电化学性能 李永,董晓雯,赵宏滨,徐甲强 (上海大学理学院化学系,上海200444 ) 摘要:用模板法合成有序介孔碳材料(ordered mesoporous carbon,OMC),以该材料作为硫的载体,用低温熔融的方法制备了硫/有序介孔碳(S/OMC)复合材料。通过透射电子显微镜、比表面分析和X射线粉末衍射仪对材料进行表征。结果表明:OMC孔道有序,比表面积高达1600m2/g,硫在OMC 内分散性良好。对S/OMC又进行了恒流充放电、循环伏安和交流阻抗等电化学性能测试,显示S/OMC电化学可逆性较好,首次放电容量达1430 mA?h/g,60次循环时仍稳定在500mA?h/g。OMC内部有序的孔道和较大的表面微孔对电池性能的提高起到了重要的作用。 关键词:硫电极;软模板法;有序介孔碳;复合材料;阴极材料 中图分类号:TQ152 文献标志码:A 文章编号:0454–5648(2011)04–0572–05 Preparation and Electrochemical Properties of Sulfur/Ordered Mesoporous Carbon Composite LI Yong,DONG Xiaowen,ZHAO Hongbin,XU Jiaqiang (School of Science, Shanghai University, Shanghai 200444, China) Abstract: An ordered mesoporous carbon (OMC) material was synthesized via a template synthesis method. The composites of S/OMC with OMC as a matrix of sulfur were prepared by means of low temperature melting. The composites were investigated by transmission electron microscopy, Brunauer–Emmett–Teller method and X-ray powder diffraction. The results show that the channels of OMC is in an order, and the specific surface area of OMC is >1600m2/g. The sulfur could be efficiently dispersed in OMC. The composites of S/OMC were determined by galvanostatic charge/discharge, cyclic voltammograms and electrochemical impedance spectroscopy. It is indicated that the S/OMC has preferable electrochemical reversible, and the first discharge capacity reaches 1430 mA·h/g and stabilizes at 500mA·h/g after 60 cycles. It is essential for the improvement of the battery performance to possess the mas-sive micropores with the greater surface area existed in the OMC. Key words: sulfur electrode; soft-template method; ordered mesoporous carbon; composite material 随着石油危机的出现,全世界对能源消费需求的日益增加,以及便携式电子设备和电动汽车的快速发展及应用,对于高比能量、长循环寿命的锂离子电池的需求十分迫切。目前在已知的锂离子电池正极材料中,硫电极具有最高的理论比容量(1675 mA?h/g)。其与金属锂电极组成锂–硫电池的理论比能量高达2600W?h/kg。硫电极具有环境友好、价格低廉、资源丰富等优点,是一种很有应用前景的高比能量的正极材料[1]。然而,单质硫在常温下的电子导电率仅为5×10–30 S/cm[2]。如此低的电子导电率使锂–硫电池中阴极活性材料的利用率很低。此外,锂–硫电池在充放电过程中会形成多硫化锂,该化合物会溶于有机电解液,并会在阴阳电极之间穿梭,其中一部分穿梭的多硫化锂能转变成硫化锂并沉积在阳极上[3],造成电池内部阻抗增加、电池容量减小以及循环性能的急剧下降。 针对硫电极以上的缺点,许多研究者开发研究溶胶电解液[4]、固体电解质[5]和常温的离子液体[6],尽管这些研究在一定程度上达到了缓解多硫化合物穿梭反应的目的,但是同时又由于离子的缓慢移动造成了电池能量密度的降低。为了减轻由于多硫化物的穿梭对阳极的影响,还有许多研究集中在保护 收稿日期:2011–01–07。修改稿收到日期:2011–01–27。 基金项目:上海大学研究生创新基金(SHUCX 102021)、上海博士后基金(10R21412900)、中国博士后基金(20100470677)资助项目。第一作者:李永(1982—),男,硕士研究生。 通信作者:徐甲强(1963—),男,教授。Received date:2011–01–07. Approved date: 2011–01–27. First author: LI Yong (1982–), male, graduate student for master degree. E-mail: 08720101@https://www.wendangku.net/doc/6a11511147.html, Correspondent author: XU Jiangqiang (1963–), male, professor. E-mail: xujiaqiang@https://www.wendangku.net/doc/6a11511147.html, 第39卷第4期2011年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 4 April,2011

相关文档
相关文档 最新文档