文档库 最新最全的文档下载
当前位置:文档库 › 晶体生长复习题

晶体生长复习题

晶体生长复习题

1. 说明界面稳定性的含义,并简述温度梯度对界面稳定性的影响?

2. 简述在晶体生长中枝晶是如何形成的?

3. 说明组分过冷的概念,并简述浓度梯度对界面稳定性的影响?

4. 说明固-液界面的两种微观结构,并解释邻位面的台阶化,台阶的扭折化的本质?

5. 说明成核和均匀成核的概念,并从能量的角度解释为何存在晶核的临界半径?

6. 在平界面的情况下,两相平衡的条件是什么?在弯曲界面的情况下气两相平衡的条件有何不同?

7. 谈谈你对温度梯度、浓度梯度和界面能与界面稳定性的关系的理解。由组分

过冷的公式 0(1)L o mC k G v Dk -<出发,谈谈可采取哪些措施来避免组分过冷的出

现。其中:G 是固液界面前熔体中的温度梯度,v 是生长速率,m 是液相线的斜率,CL 是溶液中溶质的平均浓度,ko 是溶质的平衡分凝系数,D 是溶质在溶液中的扩散系数。在直拉法生长晶体时,晶体旋转对温度梯度有何影响?列举组分过冷的害处?

8. 薄膜生长有几种生长模式?

9. 简述晶体生长的基元过程?

10. 从能量的角度解释形核过程中为何存在晶核的临界半径?

11. 简述单晶体、多晶体和非晶体在结构上的区别?

12. 请分别介绍一下邻位面的生长机制、光滑界面的生长机制、粗糙界面的生长机制?它们的生长方式有何特点?

13. 谈谈相图在晶体生长中的重要作用?

14. 由杰克逊界面理论,界面的微观结构与哪些因数有关?

15. 试推导球状晶核的形成能和临界半径。试简单解释存在临界半径的物理原因

16. 谈谈你对界面曲率对平衡参量的影响的理解。(界面平衡参量指:凝固点,饱和汽压,饱和浓度。)试给出一个简单的物理解释。

17. 溶质分凝对晶体生长和晶体质量有何影响?溶质分凝的物理原因是什么?

18. 平衡分凝系数的定义与表达式?

19. 根据边界层理论,在边界层内,热量传输和质量传输主要靠什么进行?

20. 晶体生长是属于哪一级相变?该类相变有哪些特点?

晶体生长的机理

第五章 一、什么是成核相变、基本条件 成核相变:在亚稳相中形成小体积新相的相变过程。 条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。 相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。 气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。 二、均匀成核、非均匀成核 不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。 三、均匀成核的临界晶核半径与临界晶核型成功 临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。 ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。 临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。 熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2 四、非均匀成核(体系中各处成核几率不相等的成核过程) 表面张力与接触角的关系:σLB = σSB + σLS cosθ ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

晶体生长理论1

晶体生长理论 特征 表面的光滑与否是和晶体结构、材料特征、晶面取向以及温度等因素有关。P.哈特曼提出的周期键理论在于根据晶面中周期性键链数来确定其光滑的程度。更属物理的理论则是建立在晶面的统计力学基础上。K.A.杰克孙的理论阐明相变熵与表面光滑性的关系;伯顿与卡布雷拉的理论指出在一定的临界温度,表面可能发生光滑-粗糙转变。近年来对这些问题有更加深入的理论探讨,而且,晶面的计算机模拟直观地再现了过去的理论设想,并且推广到非平衡的状态。晶体生长的输运理论及形态稳定性晶体生长在空间上是不连续的过程,结晶只发生在固体-流体界面上。在流体和固体内部都存在热量和质量输运过程。这一类型的输运问题通常可以采用宏观物理学的方法来处理,即化为边界条件下偏微分方程的求解。当然这种边值问题是有其特殊性的,即随着晶体的长大,边界在移动。早在1891年J.斯忒藩首先处理了极区冰层长厚的问题,所以这类问题被称为斯忒藩问题。斯忒藩问题的外部边界条件应模拟生长系统的实际情况。能求出解析解的仅限于少数简单的几何形状的情况。在流体相中传热和传质可以通过对流来实现,因而流体中的热传导与溶质扩散往往局限于固液界面处的边界层中。这样,就可以将流体力学的边界层理论引用到相应的斯忒藩问题之中。但晶体生长的流体效应亦有其复杂的一面,特别是牵涉到流动的失稳和非稳态流动等问题。要进行确切的理论计算极其困难,因而往往求助于模拟性的实验或晶体生长层的剖析。 重要问题 在晶体生长形态学中还有一个重要问题,就是形态的稳定性:具体来说,就是生长界面是否能够持续地保持下去。有些界面虽然能够满足斯忒藩问题的解,但实际上却并不出现,因为这种界面对于干扰是不稳定的。设想某一平界面在某瞬时受到干扰,使界面局部突出。它随时间的演变将有两种可能性:一是干扰的振幅逐渐衰减,最终界面恢复原状,表明原界面是稳定的;另一种情况是干扰振幅逐渐增大,则表明原来的平界面是不稳定的,可能转化为凹凸不平的胞状界面,或甚至于发展为枝晶(den-drites)。对于纯的材料,正的温度梯度(熔体温度高于凝固点)使界面稳定,而负的温度梯度(熔体温度低于凝固点)则导致界面失稳。通常生长晶体总是在正的温度梯度条件下进行的,但也经常观测到平界面的失稳。50年代中B.查尔默斯提出溶质引起的组分过冷的效应来解释。到60年代初W.W.马林斯与R.F.塞克卡用自洽的动力学方法来处理界面稳定性问题,导出更正确的稳定性判据,并可以追踪界面失稳和初期的演变过程。界面稳定性理论也被推广应用于共晶合金的凝固、枝晶生长以及光滑界面失稳等问题,目前还在继续发展之中。

晶体生长第七章 晶体生长动力学

第七章 晶体生长动力学 生长驱动力与生长速率的关系(动力学规律或界面动力学规律),先解决生长机制问题。 §1 邻位面生长——台阶动力学 邻位面生长——奇异面上的台阶运动问题 1. 界面分子的势能 1→2 : 2Φ1+8Φ2; 1→3 : 4Φ1+12Φ2; 1→4 : 6Φ1+12Φ2 分子最稳定位置(相变潜热) 单分子相变潜热: l sf =W s +W k ① 流体分子 ⑴ 吸附分子 ⑵ 台阶分子⑶ 扭折 ⑷ 邻位面上不同位置的吸附分子[3] 界面上不同位置的势能曲线 体扩散 面扩散 线扩散

② 流体分子 ⑴ 吸附分子 ⑵ 扭折 ⑷ ③ 流体分子 ⑴ 扭折 ⑷ 2.面扩散 W s =2Φ1+8Φ2 吸附分子→流体需克服的势垒 sf s l 20 1 22≈Φ≈ε 面扩散激活能 υ∥ 吸附分子在界面振动频率 吸附分子在晶面发生漂移的机率为:)/ex p(kT s ε-,面 扩散系数为:D s D s =[υ∥ )/ex p(kT s ε-] 吸附分子平均寿命:τs, s τ1 脱附频率 )/ex p(/1kT W s s -=⊥υτ ) /ex p(1 kT W s s ⊥ = υτ Xs: 吸附分子在界面停留的平均寿命τs 内,由于无规则漂移而在给定方向的迁移(分子无规则漂移的方均根偏差) s s s D X τ=2 (爱因斯坦公式) kT W X s s s 2/]exp[2 1 ε-=∴ 由于对一般的晶面: sf s s l W 45.0≈-ε υ∥=υ⊥ 体扩散 面扩散 体扩散

]/22.0exp[2 1 kT l X sf s ≈∴ Xs 决定了晶体生长的途径。 3. 台阶动力学——面扩散控制 台阶的运动受面扩散控制 界面某格点出现吸附分子的机率:00 N N s s =α 界面N 0,格点Ns 有吸附分子: )/ex p(0 kT W k s -=α (对单原子或简单原子,可忽略取向效应) 若:Xs >> X 0 则到达界面便可到达台阶,扭折 平衡时,脱附分子(单独时间从界面脱附)数为:s s τα1 ? 平衡时,吸附分子数为:s s τα1 ? 0/p p =α 饱和比,在此情况下,吸附分子为: s s ταα1 ? ? Xs >> X 0 则吸附分子均能到达台阶 设台阶长度为a,则单位时间到达台阶的分子数为: a X s s s ???ταα1 20 考虑脱附分子数: a X s s s ???τα1 20

晶体生长方法(新)

晶体生长方法 1) 提拉法(Czochralski,Cz ) 晶体提拉法的创始人是J. Czochralski ,他的 论文发表于1918年。提拉法是熔体生长中最常 用的一种方法,许多重要的实用晶体就是用这 种方法制备的。近年来,这种方法又得到了几 项重大改进,如采用液封的方式(液封提拉法, LEC ),如图1,能够顺利地生长某些易挥发的化 合物(GaP 等);采用导模的方式(导模提拉法) 生长特定形状的晶体(如管状宝石和带状硅单 晶等)。 所谓提拉法,是指在合理的温场下,将装 在籽晶杆上的籽晶下端,下到熔体的原料中, 籽晶杆在旋转马达及提升机构的作用下,一边 旋转一边缓慢地向上提拉,经过缩颈、扩肩、 转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。 提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 图1 提拉法晶体生长装置结构示意图

2)热交换法(Heat Exchange Method, HEM) 热交换法是由D. Viechnicki和 F. Schmid于1974年发明的一种长晶方法。 其原理是:定向凝固结晶法,晶体生长 驱动力来自固液界面上的温度梯度。特 点:(1) 热交换法晶体生长中,采用钼 坩埚,石墨加热体,氩气为保护气体, 熔体中的温度梯度和晶体中的温度梯 度分别由发热体和热交换器(靠He作 为热交换介质)来控制,因此可独立地 控制固体和熔体中的温度梯度;(2) 固 液界面浸没于熔体表面,整个晶体生长 过程中,坩埚、晶体、热交换器都处于 静止状态,处于稳定温度场中,而且熔 体中的温度梯度与重力场方向相反,熔 体既不产生自然对流也没有强迫对流; (3) HEM法最大优点是在晶体生长结束 后,通过调节氦气流量与炉子加热功率, 实现原位退火,避免了因冷却速度而产 生的热应力;(4) HEM可用于生长具有 图2HEM晶体生长装置结构示意图 特定形状要求的晶体。 由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。

晶体生长复习资料

第二章几种典型的晶体生长方法 1.什么是晶体生长的技术要求及选择晶体生长的基本原则? 物质在一定温度、压力、浓度、介质、pH等条件下由气相、液相、固相转化,形成特定线度尺寸、满足一定技术要求的晶体的过程称为晶体生长。 晶体生长的技术要求: 合理的驱动力场分布; 驱动力场的稳定、可控; 各生长技术参数的良好匹配; 精确配料和必要、合理的热处理; 力求避免各种形式的污染; 选择何种生长技术,取决于晶体的物理、化学性质和应用要求。一般原则为: ?满足相图的基本要求; ?有利于快速生长出具有较高实用价值、符合一定技术要求的晶体; ?有利于提高晶体的完整性,严格控制晶体中的杂质和缺陷; ?有利于提高晶体的利用率、降低成本。生长大尺寸的晶体始终是晶体生长工作者追求的重要目标; ?有利于晶体的后加工和器件化; ?有利于晶体生长的重复性和产业化。 2.熟悉各种晶体生长方法的工艺、特点、局限性。 熔体法生长:提拉法坩埚下降法焰熔法区熔法冷坩埚熔壳法 溶液法生长:低温(水)溶液法高温溶液法水热与溶剂热法 气相法生长:物理气相沉积(PVD)化学气相沉积(CVD) 溶液法的基本原理是将原料(溶质)溶解在溶剂中,采取适当的措施造成溶液的过饱和状态,使晶体在其中生长。包括有水溶液法、水热法与助熔剂法等。水溶液法一般是在常压和较低温度(100℃以下)下进行。 降温法基本原理:利用物质大的溶解度和较大的正溶解度温度系数,在晶体生长过程中逐渐降低温度,使析出的溶质不断在晶体上生长。 关键:晶体生长过程中掌握适合的降温速度,使溶液始终处在亚稳态区内并维持适宜的过饱和度。 要求:物质溶解度温度系数不低于1.5g/kg℃;生长温度一般在50~60℃,降温区间15~25℃为宜。蒸发法基本原理:将溶剂不断蒸发,通过控制蒸发量来控制溶液过饱和度,使溶液始终保持在一定过饱和状态,从而使晶体不断生长。 特点:比较适合于溶解度较大而溶解度温度系数很小或者是具有负温度系数的物质。与流动法一样也是在恒温条件下进行的,适用于高温(>60℃)晶体生长。 高温溶液法 将晶体的原成分在常压高温下溶解于低熔点助熔剂溶液内,形成均匀的饱和溶液;然后通过缓慢降温或其他方法,形成过饱和溶液而使晶体析出。 助熔剂法的特点及不足: 设备简单,适应性强,特别适用于新材料的探索和研究; 生长温度低,特别适宜生长难熔化合物、在熔点处极易挥发、变价或相变的材料,以及非同成分熔融化合物; 只要采取适当的措施,可生长比熔体法生长的晶体热应力更小、更均匀和完整; 生长速度慢,生长周期较长,晶体尺寸较小; 助熔剂往往带有腐蚀性或毒性; 由于采用的助熔剂往往是多种组分的,各组分间的相互干扰和污染是很难避免的。遇到的主要问题是: 如何有效地控制成核数目和成核位置; 如何提高溶质的扩散速度和晶体的生长速度; 如何提高溶质的溶解度和加大晶体的生长尺寸; 如何控制晶体的成分和掺质的均匀性。 水热法 基本原理:使用特殊设计的装置,人为地创造一个高温高压环境,由于高温高压下水的解离常数增大、黏度大大降低、水分子和离子的活动性增加,可使那些在通常条件下不溶或难溶于水的物质溶解度、水解程度极大提高,从而快速反应合成新的产物。 可分为温差法、等温法和降温法等。 特点: 适于生长熔点很高,具有包晶反应或非同成分熔化而在常温常压下又不溶于各种溶剂或溶解后即分解,且不能再结晶的晶体材料。 反应温度相对较低,可以制备其他方法难以制备的物质低温同质异构体。 可以制备其他方法难以制备的具有多型性的相变材料。 生长区基本处于恒温和等浓度状态,温度梯度小,晶体热应力小。

晶体生长复习题.doc

1. 简述温度的物理意义。 2. How many atoms of argon at a pressure of one atmosphere are incident on a square centimeter of surface at room temperature in one microsecond? 3. 简要解释晶体的扩散机理有哪两种?1000%时铜在单晶硅中的扩散系数D为10_4cm2/s,而B和P等的扩散系数约为10"14cm2/s,在集成电路制作过程中,如果我们采用1000Q C高温处理,在单晶硅上使B扩散10nm的距离,请估计铜的扩散距离为多少mm? 4. 谈谈你对扩散系数的理解(气体,液体,晶体与非晶的扩散系数有什么不同?扩散系数的大小受哪些因素影响?)请写出扩散方程:Fick第一定律和第二定律的一维表达式。并请写出一维稳态条件下Fick第二定律的表达式及其解。 5. 直径为1nm的金粒子在1000°C,含金1Q/O的玻璃衬底上成核,沉淀粒子基本上是纯金,金在玻璃中的平衡浓度1000°C时为0.1。/。,假设粒子生长是由扩散控制的,1000°C时金在玻璃中的扩散系数为10_w cm2s_1。用球形粒子沉淀的稳态扩散近似计算1小时后金粒子的大小。 6. A Czochralski silicon crystal that is about one meter in length is grown in eight hours, so that a crystal can be grown by a worker in one shift. For a diffusion coefficient in the liquid D=5X l0'5cm2s'1, what is the thickness of the diffusion boundary layer? 7. 晶体熔体生长的温度梯度一般为100°C/cm。保持这样的温度梯度主要通过增加热传导的方式。对于铝,热流量为130W/cm2,氧化铝为20W/cm2, 硅为94 W/cm2,生长直径为12-inch的硅单晶,总热流量为50kW。如果:分凝系数/< = 0.1,液相线斜率m = 1 deg/%C,扩散系数D = 5x10~5 crrP/sec,温度梯度0 = 100°C/cm f 提拉速率v = 1 mm/min = 1/600 cm/sec,请问,不产生组分过冷的临界组分浓度为多少? 8. 位错生长理论模型与Kossel理论模型比较,主要解决了什么问题?根据位错理论模型,过饱和度与晶体生长速率的关系如何? 9. 在熔体中生长晶体,晶体生长速率和过冷度通常是线性关系,采用Czochralski 方法在其熔体中的生长单晶硅的速率约为5x10'5m/sec,体系的过冷度一般为 0.01°C,试求硅单晶生长的动力学系数。 10. 晶体生长动力学主要研究晶体生长的微观过程及其对晶体生长速率的影响。请简要讨论影响晶体生长速率的微观过程有哪些? 11. 如果晶体生长速率由晶体界面动力学过程控制,晶体生长速率与哪些因素有关?写出晶体生长速率的表达式。 12. 什么是stepan Problems?定性描述我们采取什么方法解决stefan Problems? 13. 谈谈你对晶体生长过程中分凝效应理解,分凝系数和有效分凝系数有什么区别。请写出定向凝固方程(scheil方程)并比较与杠杆规则的区别。 14. Crystals that are grown from solution are grown much more slowly, at a rate of perhaps 1 mm/day. For a liquid diffusivity, D=5X 10'5cm2s'1, what is the diffusion length? What does this imply about the concentration in a growth vessel that is 20cm in diameter? 15. the thermal diffusion length is the thermal diffusivity divided by

晶体的生长模式

晶体的生长模式 晶体的生长过程一般认为有三个阶段:首先是溶液或气体达到过饱和状态或过冷却状态,然后整个体系中出现瞬时的微细结晶粒子,这就是形成了晶核,最后这些粒子按照一定的规律进一步生长,成为晶体。科学家已经发现了晶体生长的多种模式,其中较为重要的是层生长模式和螺旋生长理论。 晶体生长理论简介 自从1669年丹麦学者斯蒂诺(N.Steno)开始研究晶体生长理论以来,晶体生长理论经历了晶体平衡形态理论、界面生长理论、PBC理论和负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。现代晶体生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神秘面纱。 下面简单介绍几种重要的晶体生长理论和模型。 .晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Gibbs—Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件,没有考虑晶体的微观条件和环境相对于晶体生长的影响,是晶体的宏观生长理论。 .界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用,没有考虑晶体的微观结构,也没有考虑环境相对于晶体生长的影响。 .PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。

晶体生长理论

晶体生长理论 晶体生长理论是用以阐明晶体生长这一物理-化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶。 基础 晶体生长的热力学理论[1]J.W.吉布斯于1878年发表的著名论文《论复相物质的平衡》奠定了热力学理论的基础。他分析了在流体中形成新相的条件,指出自然体自由能的减少有利新相的形成,但表面能却阻碍了它。只有通过热涨落来克服形成临界尺寸晶核所需的势垒,才能实现晶体的成核。到20世纪20年代M.福耳默等人发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作用(非均匀成核)。一旦晶核已经形成(或预先制备了一块籽晶),接下去的就是晶体继续长大这一问题。吉布斯考虑到晶体的表面能系数是各向异性的,在平衡态自由能极小的条件就归结为表面能的极小,于是从表面能的极图即可导出晶体的平衡形态。晶体平衡形态理论曾被P.居里等人用来解释生长着的晶体所呈现的多面体外形。但是晶体生长是在偏离平衡条件下进行的,表面能对于晶体外形的控制作用限于微米尺寸以下的晶体。一旦晶体尺寸较大时,表面能直接控制外形的能力就丧失了,起决定性作用的是各晶面生长速率的各向异性。这样,晶面生长动力学的问题就被突出了。 动力学理论 晶体生长的动力学理论晶面生长的动力学指的是偏离平衡的驱动力(过冷或过饱和)与晶面生长的速率的关系,它是和晶体表面的微观形貌息息相关的。从20世纪20年代就开始了这方面的研究。晶面的光滑(原子尺度而言)与否对生长动力学起了关键性的作用。在粗糙的晶面上,几乎处处可以填充原子成为生长场所,从而导出了快速的线性生长律。至于偏离低指数面的邻位面,W.科塞耳与 F.斯特兰斯基提出了晶面台阶-扭折模型,晶面上台阶的扭折处为生长的场所。由此可以导出相应的生长律。至于光滑的密集平面(这些是生长速率最低,因而在晶体生长中最常见的),当一层原子填满后,表面就没有台阶提供继续填充原子的场所,则要通过热激活来克服形成二维晶核的势垒后,方能继续生长。这样,二维成核率就控制晶面生长速率,导出了指数式的生长律。只有在甚高的驱动力(例如过饱和度达50%)作用下方可观测到生长。但实测的结果与此推论有显著矛盾。为了解释低驱动力作用下光滑晶面的生长,F.C.夫兰克于1949年提出螺型位错在晶面露头处会形成永填不满的台阶,促进晶面的生长。在晶体生长表面上观测到的螺旋台阶证实了夫兰克的设想。在W.伯顿、N.卡夫雷拉与夫兰克1951年题为《晶体生长与表面平衡结构》这一重要论文中,对于理想晶体和实际晶体的晶面生长动力学进行了全面的阐述,成为晶体生长理论发展的重要里程碑。

晶体生长热力学

第一章 晶体生长热力学 晶体生长是一门古老的“艺术”,但最近几十年来,由于热力学、统计物理以及其它学科在晶体生长中的应用,对解决晶体生长问题发挥了很大的作用,使晶体生长获得了牢固的科学基础,逐步发展成为材料科学中的一个重要分支,对解决工业与科研所需的材料问题做出了重要的贡献。因此,要想了解核掌握晶体生长这门学科,首先必须掌握热力学的基本知识。 晶体生长是一个动态过程,不可能在平衡状态下进行,而热力学所处理的问题一般都是属于平衡状态的问题。在研究任何过程的动力学问题之前,对其中所包含的平衡问题有所了解,则可以预测过程中所遇到的问题(如偏离平衡态的程度),以及说明或提出解决问题的线索。因而在考虑实际晶体生长情况时,必须确定问题的实质究竟是与达到的平衡状态有关,还是与各种过程进行的速率有关。如果晶体生长的速率或晶体的形态取决于某一过程进行的速率(例如,在表面上的成核速率),那么就必须用适当的速率理论来分析,这时热力学就没有什么价值了。但如果过程进行程度非常接近于平衡态(准平衡态,这在高温时常常如此),那么热力学对于预测生长量以及成分随温度、压力和试验中其它变数而改变的情况,就有很大的价值。 可以认为晶体生长是控制物质在一定的热力学条件下进行的相变过程。通过这一过程使该物质达到符合所需要的状态和性质。一般的晶体生长多半是指物质从流动相转变为固相(成为单晶体)的过程。因此将牵涉到热力学中的相平衡和相变的问题。相图(平衡图)是将物质体系中各项可能存在的状态,随成分和温度(有时还有压力)改变的情况明确地表现出来的一种图示。也可以认为相图是将晶体生长(流体相变为固相以及固态中的相变)与热力学联系起来的媒介,可以看出整个晶体生长过程的大概趋势。 §1.1相平衡及相变 相:是指体系中均匀一致的部分,它与别的部分有明显的分界线。 1.1.1热平衡 在与环境无热量和物质交换的体系内,A 与B 两相间只有热量交换条件下,T A =T B 推导方法: 设将A 和B 两个相封闭在一个与环境隔绝的体系内,A 与B 两相间只有热量交换,即A ,B 两相见得隔板完全固定,只能导热,如图1.1所示。设此时从A 有微量的热传到B 内,则A ,B 两相的内能变化为 A A A A A B B B B B dU T dS P dV dU T dS P dV =-=- (1.1) 由于隔板固定,A,B 两相的体积也固定,0A B dV dV ==。这说明此时体系内能的变化只能表现为热的改变,即 A B Q dU dU δ=-= 这里假定由A 传至B 时,对B 相来说,Q δ为正,反方向为负。式(1.1)可写为 /A A Q T dS δ-=,/B B Q T dS δ-= (1.2) 两式相加,得

晶体生长原理与技术

晶体生长原理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:晶体生长原理及电化学基础 所属专业:金属材料物理学 课程性质:专业方向选修课,学位课,必修环节 学分: 4 学时: 72 (二)课程简介、目标与任务; 课程简介:本课程将在绪论中,对人工晶体生长的基本概念,研究范畴,研究历史和晶体生长 方法分类等基本概念进行简要介绍。然后分4篇进行论述。第一篇为晶体生长的基本原理,将分5 章,对晶体生长过程的热力学和动力学原理,结晶界面形貌与结构,形核与生长的动力学过程进行 描述。第二篇为晶体生长的技术基础,将分3章,对晶体生长过程的涉及的传热、传质及流体流动 原理,晶体生长过程的化学原理和晶体生长过程控制涉及的物理原理进行论述。第三篇为晶体生长 技术,将分4章对熔体生长、溶液生长、气相生长的主要方法及其控制原理进行论述。第四篇,晶 体的性能表征与缺陷,将分2章,分别对晶体的结构、性能的主要表征方法,晶体的结构缺陷形成 与控制原理进行论述。 目标与任务:掌握晶体生长的基本物理原理,学会将基本物理知识运用与晶体生长过程分析讨论。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 修完普通物理学及四大力学课程、固体物理课程后才可学习该课程,该课程向前联系基本物理知识的运用,向后衔接研究生科学研究中遇到的实际结晶学问题。 (四)教材与主要参考书。 教材两本: 《晶体生长原理与技术》,介万奇,北京:科学出版社,2010 参考书: 《晶体生长科学与技术》[上、下册],张克从,凝聚态物理学丛书,北京:科学出版社,1997 《人工晶体:生长技术、性能与应用》,张玉龙,唐磊,化学工业出版社,2005 《晶体生长基础》,姚连增,中国科学技术大学出版社,1995

晶体生长理论综述教学文案

综述晶体生长理论的发展现状 1前言 晶体生长理论是用以阐明晶体生长这一物理化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶等。 近几十年来,随着基础学科(如物理学、化学)和制备技术的不断进步,晶体生长理论研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的分支学科。它从最初的晶体结构和生长形态研究、经典的热力学分析发展到在原子分子层次上研究生长界面和附加区域熔体结构,质、热输运和界面反应问题,形成了许多理论或理论模型。当然,由于晶体生长技术和方法的多样性和生长过程的复杂性,目前晶体生长理论研究与晶体生长实践仍有相当的距离,人们对晶体生长过程的理解有待于进一步的深化。可以预言,未来晶体生长理论研究必将有更大的发展[1]。 2晶体生长理论的综述 自从1669年丹麦学者斯蒂诺(N.Steno)开始晶体生长理论的启蒙工作以来[2],晶体生长理论研究获得了很大的发展,形成了包括晶体成核理论、输运理论、界面稳定性理论、晶体平衡形态理论、界面结构理论、界面动力学理论和负离子配位多面体模型的体系。这些理论在某些晶体生长实践中得到了应用,起了一定的指导作用。本文主要对晶体平衡形态理论、界面生长理论、PBC理论、晶体逆向生长等理论作简要的介绍。 2.1晶体平衡形态理论 晶体具有特定的生长习性,即晶体生长外形表现为一定几何形状的凸多面体,为了解释这些现象,晶体生长理论研究者从晶体内部结构和热力学分析出发,先后提出了Bravais法则、Gibbs-Wulff晶体生长定律、Frank运动学理论。

三种晶体生长理论

三种晶体生长理论: 一、层生长理论 科赛尔首先提出,后经斯兰特斯基加以发展的晶体的层生长理论亦称为科赛尔-斯兰特斯基理论。这一模型主要讨论的关键问题是:在一个面尚未生长完全前在一界面上找出最佳生长位置。图8-2表示了一个简单立方晶体模型中一界面上的各种位置,各位上成键数目不同,新支点就位后的稳定程度不同。每个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多、释放出能量最大的位置。图8-2所示质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹角,是最有利的生长位置;其次是S阶梯面,具有两面凹角的位置;最不利的生长位置是A。由此可以得出如下的结论:警惕在理想情况下生长时,一旦有三面凹角位存在,质点则优先沿着三面凹角位生长一条行列;而当这一行列长满后,就只有二面凹角位了,质点就只能在二面凹角处就位生长,这时又会产生三面凹角位,然后生长相邻的行列;在长满一层面网后,质点就只能在光滑表面上生长,这一过程就相当于在光滑表面上形成一个二维核,来提供三面凹角和二面凹角,再开始生长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体生长的层生长模型,它可以解释如下一些生长现象:(1)晶体常生长成面平棱直的多面体形态。 (2)晶体在生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造 (图8-3)。它表明晶面是平行向外推移生长的。 (3)由于晶面是向外推移生长的,所以同种矿物不同晶面上对应晶面间的夹角不变。 (4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体,成为生长锥或砂钟状构造(图8-4,图8-5)在薄片中常常能看到。 然而晶体生长的实际情况要比简单层生长模型复杂得多,往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。同时亦不一定是一层一层的顺序堆积,而是一层尚未长完,又有一个新层开始生长。这样继续生长下去的结果,使晶面表面不平坦,成为阶梯状,称为晶面阶梯。 层生长模型虽然有其正确的方面,在实际晶体生长过程中并非完全按照二维层生长的机制进行。因为当晶体的一层面网生长完成之后,再在其上开始生长第二层面网时有很大的困难,其原因是已生长好的面网对溶液中质点的引力较小,不易克服质点的热振动使质点就位。因此,在过饱和度或过冷却度较低的情况下,晶体生长就需要用其他的生长机制加以解释。

蓝宝石各种生长方法

一、蓝宝石生长 1.1 蓝宝石生长方法 1.1.1 焰熔法Verneuil (flame fusion) 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil) 和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末 与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。后 来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil) 改进并发展这一技术使之能进行商业化生产。因此,这种方 法又被称为维尔纳叶法。 1)基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在 通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种 晶上固结逐渐生长形成晶体。 2)合成装置与条件、过程 焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生 高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在 一个冷却的结晶杆上结成单晶。下图是焰熔生长原料及设备 简图。这个方法可以简述如下。图中锤打机构的小锤7按一 定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过 筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。 氢经入口流进,在喷口和氧气一起混合燃烧。粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。炉体4设有观察窗。可由望远镜8观看结晶状况。为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。 焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。 A.供料系统 原料:成分因合成品的不同而变化。原料的粉末经过充分拌匀,放入料筒。如果合成红宝石,则需要Al2O 粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。三氧化 3 二铝可由铝铵矾加热获得。料筒:圆筒,用来装原料,底部有筛孔。料筒中部贯通有

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

晶体生长方法

1.1.5 热交换法Heat exchange method (HEM) 该方法的实质是熔体在坩埚内直径凝固。它 与坩埚移动法的区别是在这种方法中,坩埚不做 任何方向的移动。这是近年来生长大尺寸晶体的 又一发展。Schmid最初的生长是在一个梯度单 晶炉内进行,用以生长大尺寸白宝石单晶。右图 所示的是这种方法的示意图。该梯度炉就是在真 空墨电阻炉的底部装上一个钨铝制成的热交换 器,内有冷却氦气流过。把装有原料的坩埚放在 热交换器的顶端,两者中心互相重合,而籽晶置 于坩埚底部的中心处(注意,热交换器与坩埚底 面积之比应有一定的比例),当坩埚内的原料被 加热熔化以后,此时,由于氦气流经热交换器冷却,使籽晶并未熔化,当氦气流量逐渐加大后,则从熔体带走的热量亦相应增加,使籽晶逐渐长大。最后使整个坩埚内的熔体全部凝固。整个晶体生长过程分两个阶段进行,即成核阶段和生长阶段。在这个过程中晶体生长的去的驱动力来自固—液界面上的温度梯度。通过调节石墨加热器的功率,可达到调节熔体温度的目的。而晶体的热量可通过氦气的流量带走。因此,在生长过程中,晶体的生长界面上可以建立起所需要的温度梯度。 这种方法的主要优点如下: 1)晶体生长时,坩埚、晶体和加热区都不移动,这就消除了由于机械运动而产生的熔体涡流,控制热交换器的温度,是晶体生长在温度梯度场中进行,抑制了熔体的涡流和对流,可以消除固—液界面上温度和浓度的波动,以避免晶体造成过多的缺陷。 2)刚生长出来的晶体被熔体所包围,这样就可以控制它的冷却速率,以减少晶体的热应力及由此产生的开裂和位错等缺陷。同时,也可以长出与坩埚形状和尺寸相仿的单晶。 当然热交换法生长晶体的周期较长,例如,Schmid生长32cm直径的白宝石单晶约需一周左右的时间。 1.1.6水平结晶法Horizontal directional crystallization method(HDC) 其生长原理如右图所示,将原料放入船形坩埚之中,船形坩埚之船头部位主要是放置晶种,接着使坩埚经过一加热器,邻近加热器之部份原料最先熔化形成熔汤,形成熔汤之原料便与船头之晶种接触,即开始生长晶体,当坩埚完全经过加热器后,便可得一单晶体。为了晶体品质及晶体生张结束后,方便取出晶体,坩埚应采用不沾其熔汤之材料所製,如石英、

晶体生长方法(新)

晶体生长方法 1)提拉法(Czochralski,CZ 晶体提拉法的创始人是J. Czochralskj他的论文发表于 1918年。提拉法是熔体生长中最常用的一种方法,许多重要 的实用晶体就是用这种方法制备的。近年来,这种方法又得 到了几项重大改进,如采用液封的方式(液封提拉法, LEC,如图1,能够顺利地生长某些易挥发的化合物(GaP 等);采用导模的方式(导模提拉法)生长特定形状的晶体 (如管状宝石和带状硅单晶等)。 所谓提拉法,是指在合理的温场下,将装在籽晶杆上的 籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机 构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩 肩、转肩、等径、收尾、拉脱等几个工艺阶段,生 长出几何形状及内在质量都合格单晶的过程。这种方 法的主要优点是:(a)在生长过程中,可以 图1提拉法晶体生长装置结构示意图方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处 生长, 而不与坩埚相接触,这样能显 著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与缩颈” 工艺,得 到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以 较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不 得不改用其它生长方法。

2) 热交换法(Heat Exchange Method, HEM ) 热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1)热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作 为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2)固 液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM 可用于生长具有特定形状要求的晶体。 由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如①30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长, 体价格昂贵,所以长晶成本很高。 悶Wliry; 图2 HEM晶体生长装置结构示意图 He气 In別加口 "—. / Power ! Crumble H i: jinl ? Heatrngi c hm衍 B pump Heat Hdum

相关文档