文档库 最新最全的文档下载
当前位置:文档库 › 高中各种函数图像画法与函数性质

高中各种函数图像画法与函数性质

高中各种函数图像画法与函数性质
高中各种函数图像画法与函数性质

一次函数

(一)函数

1、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

(二)一次函数 1、一次函数的定义

一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.

⑵当0b =,0k ≠时,y kx =仍是一次函数.

⑶当0b =,0k =时,它不是一次函数.

⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

2、正比例函数及性质

一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零

当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.

(1) 解析式:y=kx (k 是常数,k ≠0)

(2) 必过点:(0,0)、(1,k )

(3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限

(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小

(5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴

3、一次函数及性质

一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数

一次函数y=kx+b 的图象是经过(0,b )和(-

k

b

,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-

k

b

,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

????>>00b k 直线经过第一、二、三象限 ???

?<>00

b k 直线经过第一、三、四象限 ????><00b k 直线经过第一、二、四象限 ???

?<<0

b k 直线经过第二、三、四象限

(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.

(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.

(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;

当b<0时,将直线y=kx 的图象向下平移b 个单位.

4、一次函数y=kx +b 的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取

它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.

5、正比例函数与一次函数之间的关系

一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)

6、正比例函数和一次函数及性质

6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠

(3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k

7、用待定系数法确定函数解析式的一般步骤:

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.

8、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.

9、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.

10、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b

c x b a +-的图象相同.

(2)二元一次方程组??

?=+=+2

22111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c

x b a +-和

y=2

222b c

x b a +-

的图象交点.

二次函数

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.

二、二次函数的基本形式

① 一般式:()()2

0f x ax bx c a =++≠

② 顶点式:()()()2

0f x a x m n a =++≠ ③ 零点式:()()()()120f x a x x x x a =--≠

()()20f x ax bx c a =++≠

0a > 0a <

图像

定义域 (),-∞+∞

对称轴 2b x a

=-

顶点坐标

24,24b ac b a

a ??

-- ???

值域

24,4ac b a ??

-+∞ ???

24,4ac b a ??

--∞ ??

?

单调区间

,2b a ??-∞- ??

?递减

,2b a ??

-+∞ ???

递增 ,2b a ?

?-∞- ??

?递增

,2b a ??

-+∞ ???

递减 当2

40b ac ?=->时,二次函数的图像和x 轴有两个交点()11,0M x ,()22,0M x ,

线段1212M M x x a =-== 当2

40b ac ?=-=时,二次函数的图像和x 轴有两个重合的交点,02b M a ??

-

???

. 特别地,当且仅当0b =时,二次函数()()2

0f x ax bx c a =++≠为偶函数.

1. 二次函数基本形式:2y ax =的性质:

a 的绝对值越大,抛物线的开口越小。

2b x a =-

2b x a =-

2. 2y ax c =+的性质:

上加下减。

3. ()2y a x h =-的性质:

左加右减。

4. ()2y a x h k =-+的性 质:

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,;

⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

方法二:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2

变成

m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2

沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2

变成

c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

四、二次函数()2

y a x h k =-+与2y ax bx c =++的比较

从解析式上看,()2

y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2

2424b ac b y a x a a -?

?=++ ??

?,其中2424b ac b h k a a -=-=

,.

五、二次函数2y ax bx c =++图象的画法

五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定

其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们

选取的五点为:顶点、与y 轴的交点()0c ,

、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,

,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

六、二次函数2y ax bx c =++的性质

1. 当0a >时,抛物线开口向上,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ??-- ???

,. 当2b x a <-

时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b

x a

=-时,y 有最小值2

44ac b a

-.

2. 当0a <时,抛物线开口向下,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ??-- ???

,.当

2b x a <-

时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b

x a

=-时,y 有最大值

2

44ac b a

-. 七、二次函数解析式的表示方法

1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);

2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写

成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.

⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;

⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.

2. 一次项系数b

在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.

⑴ 在0a >的前提下,

当0b >时,02b

a

-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

>,即抛物线对称轴在y 轴的右侧.

⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b

a

->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

<,即抛物线对称轴在y 轴的左侧. ab 的符号的判定:对称轴a

b

x 2-

=在y 轴左边则0>ab ,在y 轴的右侧则0

3. 常数项c

⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

1. 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

2. 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

3. 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-;

4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适

的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):

一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.

图象与x 轴的交点个数:

① 当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x ,

,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠

的两根.这两点间的距离21AB x x =-=.

② 当0?=时,图象与x 轴只有一个交点; ③ 当0?<时,图象与x 轴没有交点.

1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'

当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.

2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,

b ,

c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.

二次函数与一元二次方程、一元二次不等式的关系

从函数观点来看,

一元二次不等式()200ax bx c a ++>≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,位于x 轴上方的点的横坐标的集合;

一元二次不等式()200ax bx c a ++<≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,位于x 轴下方的点的横坐标的集合;

一元二次不等式()2

00ax bx c a ++≥≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,

位于x 轴上方的点和与x 轴的交点的横坐标的集合;

一元二次不等式()2

00ax bx c a ++≤≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,

位于x 轴下方的点和与x 轴的交点的横坐标的集合.

一元二次方程()2

00ax bx c a ++=≠的解就是二次函数()()

2

0f x ax bx c a =++≠的图像上,与x 轴的交点的横坐标.

反比例函数

1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

2、性质:

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交

点,则n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.反比例函数图象是中心对称图形,对称中心是原点

指数函数

概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:

规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;

当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,

图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:

1.当底数相同时,则利用指数函数的单调性进行比较;

2.当底数中含有字母时要注意分类讨论;

3.当底数不同,指数也不同时,则需要引入中间量进行比较;

4.对多个数进行比较,可用0或1作为中间量进行比较

底数的平移:

在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数

1.对数函数的概念

由于指数函数y=a x

在定义域(-∞,+∞)上是单调函数,所以它存在反函数,

我们把指数函数y=a x

(a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1).

因为指数函数y=a x

的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞).

2.对数函数的图像与性质

对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质.

为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数

y=log 2x ,y=log 10x ,y=log 10x,y=log 2

1x,y=log

10

1x 的草图

由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表.

比较对数大小的常用方法有:

(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.

(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.

(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.

(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.

3.指数函数与对数函数对比

幂函数

幂函数的图像与性质

幂函数n

y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n

y x =,当11

2,1,,,323

n =±±±

的图像和性质,列表如下. 从中可以归纳出以下结论:

① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.

② 11

,,1,2,332a =

时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1

,1,22

a =---时,幂函数图像不过原点且在()0,+∞上是减函数.

④ 任何两个幂函数最多有三个公共点.

n y x =

奇函数

偶函数

非奇非偶函数

1n >

01

n <<

0n <

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x 是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函 数;当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a≠1)的反函数称为对数函数,并记为y=log a x(a >0,a≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

高中各种函数图像及其性质(精编版)

一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0)

(2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1) 解析式:y=kx+b(k 、b 是常数,k 0)

高中函数图像大全

高中函数图像大全文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。 3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时, 图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图 由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表.

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中的函数图像大全

高中的函数图像大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有 奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R 上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1). 因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),

高考中所有的函数图像大汇总

专项二 高考用到的函数图像总结 高考中用到的函数图像是指:一次函数图像、反比例函数图像、二次函数图像、幂函数图像(五种)、对勾(也称对号)函数图像、指数函数图像、对数函数图像、简单的三角函数图像、简单的三次函数图像 一、一次函数图像 (1)函数)0(≠+=k b kx y 叫做一次函数,它的定义域是R ,值域是R ; (2)一次函数的图象是直线,这条直线不能竖直,所以一次函数又叫线性函数; (3)一次函数)0(≠+=k b kx y 中,k 叫直线的斜率,b 叫直线在y 轴上的截距; 0>k 时,函数是增函 数,0

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中常用函数性质及图像汇总

高中常用函数性质及图像 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。 补充:反函数定义: 例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: x y b O f (x )=b x y O f (x )=kx +b R

2、与曲线函数的联合运用 反比例函数f(x)= x k (k≠0,k值不相等永不相交;k越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f(x)的图象分别在第一、第三象 限;当k<0时,函数f(x)的图象分别在第二、第四象限; 双曲线型曲线,x轴与y轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:) ,0( )0, (+∞ -∞ 值域:) ,0( )0, (+∞ -∞ 单调性:当k> 0时;当k< 0时周期性:无 奇偶性:奇函数 反函数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x)图像移动比较 3)、f(x)= d cx b ax + + (c≠0且d≠0)(补充一下分离常数) (对比标准反比例函数,总结各项容) 二次函数 一般式:)0 ( ) (2≠ + + =a c bx ax x f 顶点式:)0 ( ) ( ) (2≠ + - =a h k x a x f 两根式:)0 )( )( ( ) ( 2 1 ≠ - - =a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为,顶点坐标为 ②当0 > a时,开口向上,有最低点当0 < a时。。。。。 ③当= >0时,函数图象与x轴有两个交点();当<0时,函数图象与x轴 有一个交点();当=0时,函数图象与x轴没有交点。 ④)0 ( ) (2≠ + + =a c bx ax x f关系)0 ( ) (2≠ =a ax x f 定义域:R值域:当0 > a时,值域为();当0 < a时,值域为() 单调性:当0 > a时;当0 < a时. 奇偶性:b=/≠0 x y O f(x)= d cx b ax + + x y O f(x)=c bx ax+ + 2

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

高中的函数图像大全23382

标准实用 文案大全指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质 :规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但

这两个函数都不具有奇偶 性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。 标准实用 文案大全 3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1). 因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可 以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数 y=log2x,y=log10x,y=log10x,y=log21x,y=log101x的草图 标准实用

高中数学教参——函数图像

第八节函数的图象[备考方向要明了] 考什么怎么考 1.掌握函数图象画法. 2.会利用变换作函数图象. 3.会运用函数图象理解和研究函 数的性质,解决方程解的个数与 不等式的解的问题. 4.会用数形结合思想、转化与化 归思想解决函数问题. 1.由于题型的限制江苏没有单独对图象的画法进行考查, 但不单独考查,并不意味基本作图的方法不用掌握. 2.函数图象的考查主要是其应用如求函数的值域、单调区 间,求参数的取值范围,判断非常规解的个数等,以此考 查数形结合思想的运用,在每一年的江苏高考中大量存 在,如2012高考T13、T18等. [归纳知识整合] 1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等). 其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换: y=f(x)――――――――――→ a>0,右移a个单位 a<0,左移|a|个单位 y=f(x-a); y=f(x)――――――――――→ b>0,上移b个单位 b<0,下移|b|个单位 y=f(x)+b. (2)伸缩变换: y=f(x)―――――――――――→ 0<ω<1,伸长为原来的 1 ω倍 ω>1,缩短为原来的 1 ω y=f(ωx); y=f(x)――――――――――→ A>1,伸为原来的A倍 0

(3)对称变换: y =f (x )――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――→关于原点对称 y =-f (-x ). (4)翻折变换: y =f (x )―――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )――――――――→留下x 轴上方图 将x 轴下方图翻折上去 y =|f (x )|. [探究] 1.函数y =f (x )的图象关于原点对称与函数y =f (x )与y =-f (-x )的图象关于原点对称一致吗? 提示:不一致,前者是本身的对称,而后者是两个函数图象间的对称. 2.一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称有何区别? 提示:一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称不是一回事.函数y =f (x )的图象关于y 轴对称是自身对称,说明该函数为偶函数;而函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,是两个函数的图象对称. 3.若函数y =f (x )的图象关于点(a,0)(a >0)对称,那么其图象如何变换才能使它变为奇函数?其解析式变为什么? 提示:向左平移a 个单位即可;解析式变为y =f (x +a ). [自测 牛刀小试] 1.函数y =x |x |的图象经描点确定后的形状大致是________(填序号). 解析:y =x |x |=???? ? x 2,x >0,0,x =0, -x 2,x <0为奇函数,奇函数图象关于原点对称. 答案:① 2.函数y =ln(1-x )的图象大致为________. 解析:y =ln(1-x )=ln [-(x -1)],其图象可由y =ln x 关于y 轴对称的图象向右平移一个

高一数学函数的图象

§2.7函数的图象 1.描点法作图 方法步骤:(1)确定函数的定义域.(2)化简函数的解析式.(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势).(4)描点连线,画出函数的图象.2.图象变换(1)平移变换 (2)对称变换 ①y =f (x )―――――→关于x 轴对称 y =-f (x ).②y =f (x )―――――→关于y 轴对称y =f (-x ).③y =f (x )―――――→关于原点对称y =-f (-x ). ④y =a x (a >0且a ≠1)―――――→关于y =x 对称 y =log a x (a >0且a ≠1).(3)伸缩变换 ①y =f (x )――――――――――――――――――――→ a >1,横坐标缩短为原来的 倍,纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

概念方法微思考 1.函数f(x)的图象关于直线x=a对称,你能得到f(x)解析式满足什么条件? 提示f(a+x)=f(a-x)或f(x)=f(2a-x). 2.若函数y=f(x)和y=g(x)的图象关于点(a,b)对称,则f(x),g(x)的关系是g(x)=2b-f(2a -x). 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(×) (2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.(×) (3)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(×) (4)若函数y=f(x)满足f(1+x)=f(1-x),则函数y=f(x)的图象关于直线x=1对称.(√)题组二教材改编 2.函数f(x)=x+1 x的图象关于() A.y轴对称B.x轴对称 C.原点对称D.直线y=x对称 答案C 解析函数f(x)的定义域为(-∞,0)∪(0,+∞)且f(-x)=-f(x),即函数f(x)为奇函数,其图象关于原点对称,故选C. 3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________.(填序号) 答案③

高中数学常见函数图像

高中数学常见函数图像1. 2.

过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 — 在(0,)+∞上是增函数 在(0,)+∞上是减函数 定义 形如α x y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数. 图像 性质 。 过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ) ~

{ 4. 函数 sin y x = cos y x = tan y x = 图象 % 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 ( []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, / max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π — 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++??? ? 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数.

高中各种函数图像画法与函数性质94624

一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.

高中数学常见函数图像

- 高中数学常见函数图像1.指数函数: 2.对数函数:

过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 @ 在(0,)+∞上是增函数 在(0,)+∞上是减函数 定义 形如α x y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数. 图像 性质 【 过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. 。 #

> 4. 函数 sin y x = cos y x = tan y x = 图象 ! 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 · []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, @ max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 、 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++??? ? 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数.

相关文档
相关文档 最新文档