文档库 最新最全的文档下载
当前位置:文档库 › 广州高中数学奥赛班专题资料-立体几何(向量方法)

广州高中数学奥赛班专题资料-立体几何(向量方法)

广州高中数学奥赛班专题资料-立体几何(向量方法)
广州高中数学奥赛班专题资料-立体几何(向量方法)

立体几何(向量方法)

知识精要

1. 证明两条直线平行,只需证明这两条直线上的向量共线(即成倍数关系).证明两条直

线平行,只需证明这两条直线上的向量的数量积等于零.

2. 通过法向量,把线面、面面的角转化为线线的角.从而可以利用公式

cos ||||θαβαβ= 求解.

3. 建立空间直角坐标系.

例题1如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =1

2

PA ,点

O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)求证OD ∥平面PAB ;

(Ⅱ) 求直线OD 与平面PBC 所成角的大小.

解答OP ABC OA OC AB BC ⊥== 平面,,, .OA OB OA OP OB OP ∴⊥⊥⊥ ,,

()O OP z O xyz -以为原点,射线为非负轴,建立空间直角坐标系如图,

,0,0,,0,,0,0AB a A B C ?????=? ? ?? ? ?

??????

设,则 ()0,0,.OP h P h =设,则

()D PC 为的中点,

1,0,,,0,2OD h PA h ??

?∴==- ?? ??????

又,

1...2OD PA OD PA OD PAB ∴=-∴∴

平面∥∥

()2,PA a =

Ⅱ,h ∴=

,OD ??

∴= ? ???

,PBC n ?=- ?

可求得平面

的法向量cos ,OD n OD n OD n ?∴??==?

OD PBC θ设与平面所成的角为

,sin cos ,OD n θ=??= 则

OD PBC ∴ 与平面所成的角为. 练习1如图,已知长方体1111ABCD A BC D -,12,1AB AA ==,直线BD 与平面11AA B B 所成的角为0

30,AE 垂直BD 于,E F 为11A B 的中点.

(Ⅰ)求异面直线AE 与BF 所成的角;

(Ⅱ)求平面BDF 与平面1AA B 所成二面角(锐角)的大小; (Ⅲ)求点A 到平面BDF 的距离

解答 在长方体1111ABCD A BC D -中,以

AB 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴建立空间直 角坐标系如图.

由已知12,1AB AA ==,可得(0,0,0),(2,0,0),(1,0,1)A B F .又AD ⊥平面11AA B B ,

从面BD 与平面11AA B B 所成的角即为0

30DBA ∠=

又2,,1,3

AB AE BD AE AD

=⊥=

=

从而易得1(2

E D (Ⅰ)1((2AE B

F ==- cos ,AE BF

AE BF AE BF

∴<>=

14-==

即异面直线AE 、BF 所成的角为4

(Ⅱ)易知平面1AA B 的一个法向量(0,1,0)m = (,

,)n x y z =

是平面BDF 的一个法向

量.(2,3

BD =- 由n BF

n BD ?⊥??⊥??

n BF n BD ?=??

?=?? 0

20x x x

y -+=??

??=??

x z

y

=?

??取(1n =

∴cos ,5

m n m n m n <>==

=

即平面BDF 与平面1AA B 所成二面角(锐角)大小为5

(Ⅲ)点A 到平面BDF 的距离,即AB 在平面BDF 的法向量n

上的投影的绝对值

所以距离

||cos ,d AB AB n =<> ||

||||AB n AB AB n =

||||AB n n ==

=

1

所以点A 到平面BDF

5

例题2 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2 (Ⅰ)证明:AC ⊥BO 1;

(Ⅱ)求二面角O -AC -O 1的大小.

解答(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB . 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图3,则相关各点的坐标是A (3,0,0),B (0,3,0),C (0,1,3)O 1(0,0,3).从而.0333),3,3,0(),3,1,3(11=?+-=?-=-=BO BO 所以AC ⊥BO 1.

(II )解:因为,03331=?+-=?BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量.设),,(z y x =是0平面O 1AC 的一个法向量,由,3.0,033001=??

?==++-???

???=?=?z y z y x O 取得)3,

0,1(=n . 设二面角O —AC —

O 1的大小为θ,由、1BO 的方向可知=<θ,1BO >,所以COS <=cos θ,

1BO .

4

31=

即二面角O —AC —O 1的大小是.43arccos

练习2 如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点

(Ⅰ)求证1AC BC ⊥; (Ⅱ) 求证11AC CDB 平面;

(Ⅲ)求异面直线1AC 与1B C 所成角的余弦值

1

A 图1

解答∵直三棱锥111ABC A B C -底面三边长3,4,5AC BC AB ===,1,,AC BC CC 两两垂直如图建立坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (

3

2

,2,0) (Ⅰ)11(3,0,0),(0,4,4)AC BC =-= ,1110,AC BC AC BC ∴?=∴⊥

(Ⅱ)设1CB 与1C B 的交点为E ,则E (0,2,2)

13

(,0,2),(3,0,4)2

DE AC =-=-

11

1,//2

DE AC DE AC ∴=∴

111,,DE CDB AC CDB ?? 平面平面1//AC CDB ∴平面

(

Ⅲ)11(3,0,4),(0,4,4),AC CB =-= 111111cos ,||||

AC CB AC CB AC CB ∴<>==

∴异面

直线1AC 与1B C 例题3 在ΔABC 中,已知6

6

cos ,364=

=

B AB ,A

C 边上的中线B

D =5,求SINA . 解答 以B 为坐标原点,BC 为x 轴正向建立直角坐标指法,且不妨设点A

位于第一象限

630

sin =B ,则4cos ,sin )()3

BA B B == ,设=(x ,0),则43(,63x BD += ,由条件得5)352()634(||2

2=++=x BD ,

从而x=2,314-=x (舍去),故2(,)33

CA =- .于是

14

14

39

80949809169

80

98cos =

+?++-

=

=

A ∴14

70

cos 1sin 2

=

-=A A

练习3 在平面上给定ABC ?,对于平面上的一点P ,建立如下的变换 :f AP 的中点为Q ,BQ 的中点为R ,CR 的中点为'

P ,'()f P P =,求证 f 只有一个不动点(指P 与'

P 重合的点).

解答:依提意,有12AQ AP = ,且111()224

AR AB AQ AB AP =+=+ ,

'

1111()2248AP AC AR AC AB AP =+=+++ ,要使'P 与P 重合,应

111248AP AC AB AP =++ ,得1(42)7

AP AC AB =+

,对于给定的ABC ?,满足条件的不

动点P 只有一个.

例题4 如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC . 已知,2

1,2,2=

==

AE CD PD 求 (Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E —PC —D 的大小.

解答 (Ⅰ)以D 为原点,、DC 、分别为x 、y 、z 轴建立空间直角坐标系.

由已知可得D (0,0,0),P (0,0,)2, C (0,2,0)设),0,2,(),0)(0,0,(x B x x A 则>

).0,2

3

,(),2,21,(),0,21,(-=-=x x x E

由0=?⊥CE PE 得,即.2

3,0432

==-x x 故

由CE DE ⊥=-?=?得0)0,2

3

,23()0,21,23(

, 又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线,易得1||=DE ,故异面直线PD 、CE 的距离为1.

(Ⅱ)作DG ⊥PC ,可设G (0,Y ,Z ).由0=?得0)2,2,0(),,0(=-?z y ,即),2,1,0(,2==DG y z 故可取作EF ⊥PC 于F ,设F (0,M ,N )

,则 ).,2

1

,23(n m --

= 由0212,0)2,2,0(),2

1

,23(0=--=-?--

=?n m n m PC EF 即得,

又由F 在PC 上得).2

2,21,23(,22,1,222-===+-

=EF n m m n 故 因,,⊥⊥故平面E —PC —D 的平面角θ的大小为向量DG EF 与的夹角. 故,4,22|

|||cos πθθ==

=

EF DG 即二面角E —PC —D 的大小为.4

π

练习4如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB =2,BB 1=2,BC =1,∠BCC 1=3

π

,求: (Ⅰ)异面直线AB 与EB 1的距离;

(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.

解答(I )以B 为原点,1BB 、分别为Y 、Z 轴建立空间

直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3

π

在三棱柱ABC —A 1B 1C 1中有

B (0,0,0),A (0,0,2),B 1(0,2,0),

)0,2

3

,23(),0,21,23(

1C C - 设即得由,0,),0,,2

3

(

11=?⊥EB EB EA a E )0,2,2

3

()2,,23(0a a --?--

=,432)2(432+-=-+=a a a a

.

,04

3

43)02323()0,21,23()

0,2

1

,23(),(2321,0)23)(21(11EB BE EB E a a a a ⊥=+-=??-?=?===--即故舍去或即得

又AB ⊥面BCC 1B 1,故AB ⊥BE . 因此BE 是异面直线AB 、EB 1的公垂线, 则14

1

43||=+=

,故异面直线AB 、EB 1的距离为1. (II )由已知有,,1111EB A B EB EA ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量

A B 11的夹角.

1

1

.2

2tan ,

32||||cos ),2,2

1

,23(),2,0,0(111111=

=

=--===θθ即故因A B EA A B

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高中数学向量专项练习(含答案)

高中数学向量专项练习 一、选择题 1.已知向量(1,),(1,),a x b x ==-r r 若(2).a b b -⊥r r r 则a =r ( ) A .2 B .3 C .2 D .4 2.化简+ + + 的结果是( ) A . B . C . D . 3.已知向量(1,2),(4,)a b m ==-v v ,若2a b +v v 与a v 垂直,则m =( ) A .-3 B .3 C .-8 D .8 4.已知向量(1,1)a =-r ,(1,)b m =r ,若(2)4a b a -?=r r r ,则m =() A .1- B .0 C .1 D .2 5.设向量(12)a =-r , ,(1)b m =r ,,若向量a r 与b r 平行,则a b ?=r r A .27- B .21- C .23 D .2 5 6.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ?=u u u r u u u r ( ) A .8 B .10 C .12 D .14 7.在△ABC 中,若点D 满足2BD DC =u u u v u u u v ,则AD =u u u v ( ) A .1233AC A B +u u u v u u u v B .5233AB A C -u u u v u u u v C .2133AC AB -u u u v u u u v D .2133 AC AB +u u u v u u u v 8.在ABC ?中,已知90BAC ∠=o ,6AB =,若D 点在斜边BC 上,2CD DB =,则AB AD ?u u u r u u u r 的值为 ( ). A .6 B .12 C .24 D .48 9.已知向量(1,1),(2,2),m n λλ→ → =+=+若()()m n m n → → → → +⊥-,则=λ( ) A .4- B .3- C .2- D .1- 10.已知向量(12)=,a ,(4)x =,b ,若向量//a b ,则实数的x 值为 A .2 B .2- C .8 D .8- 11.已知向量()()2,1,3,4==-a b ,则2+=a b A .()1,5- B .()1,5 C .()1,6- D .()1,6 12.已知向量()()2,1,3,4==-a b ,则+=a b A .()1,5- B .()1,5 C .()1,3-- D .()1,3

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

人教版高中数学向量练习题

一、选择题; 1、若a r ,b r ,c r 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( ) A 、a b b a +=+r r r r B 、() a b a b λλλ+=+r r r r C 、()() a b c a b c ++=++r r r r r r D 、b a λ=r r 2、已知向量a r =(1,1,0),则与a r 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、( 22,2 2,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 5、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8 9 ,则λ=( ) A.2 B.2- C.2-或 2 55 D.2或255 - 6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,, 则D 的坐标为( ) A.7412 ?? - ??? , , B.(241),, C.(2141)-,, D.(5133)-,, 7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) C.12 9、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角 P AD C --为60°,则P 到AB 的距离为( ) A. C.2

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

2020年高考数学平面向量专题复习(含答案)

2020年高考数学平面向量专题练习 一、选择题 1、P是双曲线上一点,过P作两条渐近线的垂线,垂足分别为A,B 求的值() A. B. C. D. 2、向量,,若,且,则x+y的值为() A.-3 B.1 C.-3或1 D.3或1 3、已知向量满足,若,则向量在方向上的投影为A. B. C.2 D.4 4、.如图,为等腰直角三角形,,为斜边的高,为线段的中点,则 () A.B. C.D. 5、在平行四边形中,,若是的中点,则() A. B. C. D. 6、已知向量,且,则()

A. B. C. D. 7、已知是边长为2的等边三角形,D为的中点,且,则( ) A. B.1 C. D. 3 8、在平行四边形ABCD中,,则该四边形的面积为 A. B. C.5 D.10 9、下列命题中正确的个数是() ⑴若为单位向量,且,=1,则=;⑵若=0,则=0 ⑶若,则;⑷若,则必有;⑸若,则 A.0 B.1 C.2 D.3 10、如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为() 二、填空题 11、已知向量与的夹角为120°,且,则____. 12、若三点满足,且对任意都有,则的最小值为________. 13、已知,,则向量在方向上的投影等于___________. 14、.已知,是夹角为的两个单位向量,,,若,则实数的值为 __________.

15、已知向量与的夹角为120°,,,则________. 16、已知中,为边上靠近点的三等分点,连接为线段的中点,若 , 则__________. 17、已知向量为单位向量,向量,且,则向量的夹角为. 18、在矩形ABCD中,已知E,F分别是BC,CD上的点,且满足,。若 (λ,μ∈R),则λ+μ的值为。 三、简答题 19、已知平面直角坐标系中,向量,,且. (1)求的值;(2)设,求的值. 20、已知向量=(sin,cos﹣2sin),=(1,2). (1)若∥,求的值; (2)若,0<<,求的值. 21、已知向量,.(1)若在集合中取值,求满足的概率;(2)若 在区间[1,6]内取值,求满足的概率. 22、在平面直角坐标系xOy中,已知向量, (1)求证:且; (2)设向量,,且,求实数t的值.

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

届高三文科数学平面向量专题复习

2014届高三数学四步复习法—平面向量专题(311B ) 第一步:知识梳理——固本源,基础知识要牢记 1.基本概念:(1)向量:既有大小又有方向的量. (2)向量的模:有向线段的长度,a r . (3)单位向量:长度为1 的向量 .(4)零向量0r ,00=r ,方向任意. (5)相等向量:长度相等,方向相同.(6)共线向量(平行向量):方向相同或相反的向量。 规定零向量与任意向量平行。 (7)向量的加减法 ①共起点的向量的加法:平行四边形法则 ②首尾相连的向量的加法:口诀:首尾连,起点到终点. 如:AB BC CD AD ++=u u u r u u u r u u u r u u u r ③共起点的向量的减法:共起点,连终点,指向被减向量 ④化减为加:AB AC AB CA CA AB CB -=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r (8)平面向量基本定理(向量的分解定理)1e u r ,2e u u r 是平面内两个不共线的 向量,a r 为该平面内任一向量,则存在唯一的实数对12,λλ,使得 1122a e e λλ=+u r u u r r ,12,e e u r u u r 叫做表示这一平面内所有向量的一组基底.

2. 平面向量的坐标运算?? ①设()()1122,,,a x y b x y ==r r ,则()()()11221212,,,a b x y x y x x y y ±=±=±±r r ; ()()1111,,a x y x y λλλλ==r , ②(),B A B A AB x x y y =--u u u r ,AB = u u u r ③(),a x y =r ,则a =r 3. 平面向量的数量积 ①向量a r 与b r 的数量积:cos a b a b θ?=r r r r (θ为向量a r 与b r 的夹角,[]0,θπ∈) ; ②若()()1122,,,a x y b x y ==r r ,则1212a b x x y y ?=+r r ; ③22a a a a =?=r r r r ;④a r 在b r 方向上的投影:cos a θr (θ为向量a r 与b r 的夹角); ⑤θ为锐角?0a b ?r r f ,且a r 与b r 不同向;θ为钝角?0a b ?r r p ,且a r 与b r 不 反向; θ为直角?0a b ?=r r (θ为向量a r 与b r 的夹角). 4.向量的平行: ① a r ∥b r a b λ?=r r (0b ≠r r ,λ唯一确定); ②a r ∥b r 1221x y x y ?= 5.向量的垂直: 121200a b a b x x y y ⊥??=?+=r r r r 第二步:典例精析——讲方法,究技巧,悟解题规律.

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

高三数学平面向量专题复习

高三数学平面向量专题复习 一、选择题: 1.若r r |a -b|=r r |a|=4, |b|=5,则r r a与b 的数量积为 ( ) A .10 3 B .-10 3 C .10 2 D .10 2.若点P 分 AB 所成的比为 4 3 ,则A 分BP 所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 3.若将向量r a =(2, 1)围绕原点按逆时针方向旋转π 4 得到向量b r ,则向量b r 的坐标为( ) A .) 2 23,22(-- B .)223,22( C .)22,223(- D .)2 2,223(- 4.在矩形ABCD 中,u u r u u r u u r u u r u u r u u r 设11AE =AB,BF =BC, AB =(a,0),AD =(0,b)22,当u u r u u r EF ⊥DE 时, |a| |b| 的值为 ( ) A .2 B .3 C .2 D .3 5.已知A (5,7),B (2,3),将u u r r AB a 按=(4,1)平移后的坐标为 ( ) A .(-3,-4) B .(-4,-3) C .(1,-3) D .(-3,1) 6.将函数 )(x f y =图象上的点P (1,0)平移至P ′(2,0),则经过这种平移后得到的新 函数的解析式为 ( ) A .y =f(x -1) B .y =f(x)-1 C .y =f(x +1) D .y =f(x)+1 7.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-2 1 ) 8.已知02 =+?AB BC AB ,则△ABC 一定是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 9.若非零向量r r a,b 互相垂直,则下列各式中一定成立的是 ( ) A .r r r r a + b =a -b B .r r r r |a +b|=|a -b| C .r r r r (a +b)(a -b)=0 D .r r 2 (a -b)=0 10.设四边形ABCD 中,有DC =2 1 ,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 11.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是 A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 12.将椭圆0716******* 2 =---+y x y x 按向量r a 平移,使中心与原点重合,则r a 的坐标为 ( ) A .(2,1) B .(-1,-2) C .(-1,2) D .(1,-2)

高中数学平面向量知识点总结及常见题型(供参考)

平面向量 一.向量的基本概念与基本运算 1 ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同),(),(2211y x y x =?? ?==?2 12 1y y x x 2 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

高中数学向量专题复习(知识点+典型例题+大量习题附解析)精编材料值得拥有

平面向量 平面向量 平面向量的概念 与线性运算 向量概念及表示 向量的线性运算 平面向量基本定理 及坐标表示 平面向量基本定理 正交分解及坐标表示 坐标运算 平面向量的数量积 数量积的定义 数量积的性质

一、平面向量的概念与线性运算 1.向量概念及表示 定义:即有大小,又有方向的量叫做向量. 表示: 有向线段 小字母上加箭头 起点到终点,大字母加箭头 向量的长度(模):a r 或AB 的模记作||a 或||AB . 几种特殊向量:

2.向量的线性运算 例如:AB BC CD AD +=u u u r u u u r u u u r u u u r +,0AB BC CA +=u u u r u u u r u u u r r +,BC BA AC -=u u u r u u u r u u u r ,DE DF FE -=u u u r u u u r u u u r . 向量不等式:||||||||||||a b a b a b -≤±≤+r r r r r r (等号在向量a r ,b r 共线时取得). 例如:||3a =r ,||5b =r ,则||a b +r r 的最大值为8,当且仅当a r ,b r 同向时取到;最小值为2, 当且仅当a r ,b r 反向时取到. 3 如图:正六边形ABCDEF 中,BA CD EF ++=u u u r u u u r u u u r ( ) A .0r B .BE u u u r C .A D u u u r D .CF u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r

2020高考数学《平面向量》复习专题

a 高一平面向量复习专题 一、选择题 1.化简AC -BD +CD -AB 得() A.AB B.DA C.BC D.0 2.设a0 , b0 分别是与a, b 向的单位向量,则下列结论中正确的是() A.a0 =b0B.a ?b = 1C.| a0 | + | b0 |= 2 D.| a0 +b0 |= 2 0 0 3.已知下列命题中: (1)若k ∈R ,且kb = 0 ,则k = 0 或b = 0 , (2)若a ?b = 0 ,则r = 0 或b = 0 (3)若不平行的两个非零向量a, b ,满足| a |=| b |,则(a +b) ? (a -b) = 0 (4)若a 与b 平行,则a g b =| a | ? | b | 。其中真命题的个数是() A.0 B.1 C.2 D.3 4.下列命题中正确的是() A.若a?b=0,则a=0 或b=0 B.若a?b=0,则a∥b C.若a∥b,则a 在b 上的投影为|a| D.若a⊥b,则a?b=(a?b)2 r 5.已知平面向量a = (3,1) ,b = (x, -3) ,且a ⊥b ,则x =() A.-3 B.-1 C.1 D.3 6.已知向量a = (cos, sin) ,向量b = ( 3,-1) 则| 2a -b | 的最大值,最小值分别是() A.4 2,0 B.4, 4 C.16, 0 D.4, 0 7.下列命题中正确的是() A.OA -OB =AB B.AB +BA = 0 C.0 ?AB = 0 D.AB +BC +CD =AD 1 2

2 3 2 7 10 13 a r r u u u r u u u r 8. .设点 A (2, 0) , B (4, 2) , 若点 P 在直线 AB 上,且 AB = 2 AP ,则点 P 的坐标为( ) A . (3,1) B . (1, -1) C . (3,1) 或(1, -1) D .无数多个 9. 若平面向量b 与向量 a = (1,-2) 的夹角是180o ,且| b |= 3 A . (-3,6) B . (3,-6) C . (6,-3) D . (-6,3) ,则b = ( ) 10.向量 a = (2, 3) , b = (-1, 2) ,若 ma + b 与 a - 2b 平行,则 m 等于( ) A . -2 B . 2 C . 1 D . - 1 2 2 11.若 a , b 是非零向量且满足(a - 2b ) ⊥ r , (b - 2a ) ⊥ b ,则 a 与b 的夹角是( ) A . B . 6 C . 3 2 5 D . 3 6 r 3 r 1 12.设 a = ( , sin ) , b = (cos , ) ,且a // b ,则锐角为( ) 2 3 A . 30 B . 600 C . 750 D . 450 13.若三点 A (2, 3), B (3, a ), C (4, b ) 共线,则有( ) A . a = 3, b = -5 B . a - b +1 = 0 C . 2a - b = 3 D . a - 2b = 0 14.设 0 ≤< 2,已知两个向量 OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ), 则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 2 15. 下列命题正确的是( ) A .单位向量都相等 B .若 a 与b 是共线向量, b 与c 是共线向量,则 a 与c 是共线向量( ) C .| a + b | =| a - b | ,则 a ? b = 0 D .若 a 0 与b 0 是单位向量,则 a 0 ? b 0 = 1 r 0 r r 16. 已知 a , b 均为单位向量,它们的夹角为60 ,那么 a + 3b = ( ) A . B . C . D . 4 5 3

相关文档
相关文档 最新文档