文档库 最新最全的文档下载
当前位置:文档库 › 关于SPD的保护整定探讨

关于SPD的保护整定探讨

关于SPD的保护整定探讨
关于SPD的保护整定探讨

关于SPD的保护整定探讨

王勇 (中国航天建筑设计研究院集团 100071 )

摘要就SPD的保护整宅问题进行了研究。着重分析了用断路器、熔断嚣作为保护元件的不用特性。根据雷电流作用机理,提出了保护整定的原则前提。对一、二、三类防雷建筑物的一、二、三级防雷建筑物的一、二、三级SPD的保护整定,给出了计算方法。

关键词 SP的的保护整定断路嚣熔断嚣过流保护雷电流热效应有关规范要求SPD前端应加过流保护。那么为什么要做SPD的过流保护, SPD 的过流保护应该如何日整定,是设计人员在工作中经常遇到的问题。在此本人谈点粗浅认识,谬误之处敬请斧证。1、SPD的过流保护.首先应明确:过流保护包括过负荷和短路保护。SPD过电流保护的目的,是保护电流系统,防止因SPD损坏导致整个电流系统故障,无法保护SPD元件本身。因为若是保护SPD,则电流整定值很小,而要保护在雷电流通过时不动作,则电流整体值很大,两者不易兼顾。必须保证重点。

2、确保保护设备被的通流能力设备应讷讷个通过相应的雷电流,SPD在雷电流通过时,保护器不应该动作。此时可不验证雷电流情况下的断流能力。

3、过电流整定值选取

应保证SPD在雷电流通过时,保护器不动作,核算雷电流通过时的热效应。

3.1过负荷保护

SPD前端加装过电流保护,是希望由于SPD 的劣化导致电流大于整定值后,开关按反时限特性动作,切断电路。因SPD 正常漏电流很小,通常小于1ma,而整定要躲过雷电流,要大于几十安培。保护死区很大。SPD的劣化,一般是渐进的、缓慢的。当漏电流大于几安培时,其承受的耗散功率已过几千瓦,这些功率将以热的形式释放出来。就其封装形式及产品特性而言,该SPD将因热效应而爆裂,出现断路或短路。因此,漏电流大雨整定值几乎是不可能的。过负荷保护已无实际意义。护无实际意义

3.2用断路器作短路保护通过SPD 电流通常时间很短,约几十’微秒到几百微秒 .电流从几千安培几十安培. 其动作脱扣由瞬动脱扣器实现。但瞬动脱扣器的机械特性的动作时间不小于5ms(存在着不能脱扣的不定因素) 也就是说,对雷电流而言,此时的保护整定值的大小已无意义,无论大小,雷电流通过期间都不会脱扣。

那么.此时的保护整定值就是为防止非雷击状态,由于SPD损坏而引起的短路。其过电流整定值大于SPD漏电流流1.5安倍即可,瞬动整定值应按该处短路电流校验。因SPD漏电流很小,而一般线路短路电流很大,这样保护整定取值范围将很宽,从几安培到几十安培甚至上百安培都可以,需要考虑的重整定,需查熔器断器时间特性曲线。

3.3.1计算方法

计算的依据是《建筑物防雷设计规范》 (GB50057—94) 第6.3.4条,第6.4.7条,第6.4.8 条.第6.4.9条,及附录六。根据以上规定,对于SPD的选用.可按以下方法进行。

一般建筑物外来导电物通常不少于三种 (电力线、通信线、给水管、排水管、采暖管等设施).电源线按三相考虑。全部雷电流的50%流入建筑物防雷装置的接地装置,其另50%,即分配于引入建筑物的各种外来导电物、电力线、通信线等设施。流入每一设施的电流i 等于/n,n为上述设施的个数。等于电流i 除以芯线数 m,即 = l。此处n=3,m=3,则L=if i,/(m〓n) =i /9。由于熔断器时间特性曲线一般最小时间约为4ms.应按能量等值的方法.求出4ms对应时间的等效电流。 W/R=(1/2)X(1/0.7)×尸幅值× W/R=F f ,有效=(W/R/t) 根据熔断器时间特性曲线查出熔断器额定电流,熔断。实际选取的熔断器额定电流宜大于1.3,熔断。

3_3.2计算结果计算结果见表1~表3。表1 第一级SPD参数计算雷电流参数:一类、二类、三类

电源线每相幅值 (kA) 200 15O 100 波头时间 ( s) 10 10 1O 半值时

间 ( s) 35O 35O 35O 电荷量 (C) 100 75 50W/R单位量 (MJ/

D.) 10 5.6 2.5 电源线每相幅值 (kA) 11(规范规定不宜小于15) 8.25 (规范规定不宜小于15) 5.5 (规范规定不宜小于 15) 电源线每相W/R单位能

量 (kJ/1)) 3O f56.25) 17 (56.25) 7.6 (56.25) 4ms时熔断器每相“ (kA) 2.7 (3.75) 2.1 (3.75) 1.4 (3.75) 100 (125) 8O (125) 32 (125) NT型熔断器额定电流值 (A) 实取150 (200) 实取 100 (200) 实取40 (200) 10/350 txs 10/350 txs 10/350 txs 宜选用 SPD规

格 20 kA 15 kA 10 kA (15 kA)

表2 第二级SPD参数计算

雷电流参数:一类、二类、三类

电源线每相i 幅值 (kA) 5 5 5

波头时间 ( s) 8 8 8

半值时间 ( s) 20 20 20

电荷量 (C) 0.143 O.143 O.143

W/R单位能量 (kJ/Q) O_36 O_36 O_36

4ms时熔断器每相, (kA) O_3 O_3 O_3

16 16 16 NT型熔断器额定电流值 (A)

实取20 实取 20 实取208/20 Us 8/20 txs 8/20 txs 宜选用SPD规格10kA 1OkA 1OkA

表3 第三级SPD参数计算雷电流参数:一类、二类、三类

电源线每相幅值 (kA) 3 3 3

波头时间 ( s) 8 8 8

半值时间 ( s) 20 20 20

Qs电荷量 (C) 0.085 0.085 0.085W/R单位能量 (kJ/

t~) 0.13 0.13 0.134ms时熔断器每相I (kA) 0.18 0.18 0.18NT型熔断器额定电流值 (A) 10 实取 16 10 实取16 10取 16

8/20 s 8/20 p.s 8/20 8 宜选用SPD规格5kA 5kA 5kA

-用断路器或熔断器做sPD的过流保护的I;Ir,较

4.1 断路器

a.断路器的动作无论是瞬动还是过负荷,均通过脱扣器来实现。

b.通过SPD的雷电流通常时间很短,约几十微秒到几百微秒。电流从几千安培到几十千安培。

4.1.1用断路器作短路保护

a.由于瞬动脱扣器的机械特性 (具有惯性),在雷电流的冲击作用下,脱扣器能否脱扣,存在着不定因素。若不能脱扣,保护整定值的大小只考虑线路短路的可能性以及与上级保护的配合。

b.若断路器能脱扣,考虑用瞬动脱扣器作保护,则瞬动整定电流应躲过雷电流,整定值很大,当SPD损坏往往由于线路短路电流小于瞬动整定电流而拒动,失去保护意义。这种情况下采用断路器作保护就不合理。

4.1.2用断路器作过负荷保护

若断路器在雷电流的冲击作用下不能脱扣。此处的长延时整定值大于SPD漏电流1.5倍即可,考虑到与上级保护的配合通常不大于主开关整定电流的0.6倍。4.1.3使用断路器的优缺点

a.优点:便于安装、便于SPD的维护检修。

b.缺点:在雷电流的冲击作用下存在是否脱扣的不定因素,且价格较贵。

4.2熔断器

a.优点:熔断器保护无死区,选择正确可保证雷电流泄放时不熔断,而当线路出现过负荷或短路时又能起到保护作用,且价格便宜。

b.缺点:不便于安装和维修。

存在问题:

SPD的1、2、3级保护,实际上是并联在同一线路上,其击穿电压≥≥,通流容量≥,2≥,j。雷电流若由外部线路引来,经过1、2、3级保护,顺序减压,电流顺序泄放,使线路及设备得到保护,是理想状态。但是,如果本建筑物受到直击雷,某些等电位是与所处楼层柱子及楼板内钢筋连接在一起的,此时由于末级SPD限压低,将首先被击穿,而其通流量,远小于前级,故极易造成损坏。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 1、根据被保护线路制式,例如:单相220V、三相220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 50343-5 4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一 级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 50057-里的分流计算,计算线路所需的泄放电流强度,选择合 适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现 在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理 在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地 线连接在一起。 MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电 源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时, 电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的 电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌

浪涌保护器选型

电涌保护器选型 随着国际信息潮流的冲击、微电子科技的沸腾和通讯、计算机及自动控制技术的日新月 异,建筑开始走向高品质、高功能领域,形成了一种新的建筑形式——智能建筑。由于在智能建筑中存在众多信息系统,《建筑物防雷设计规范》GB50057-94(2002年版)(以下简称《防雷规范》)提出了安装电涌保护器的相关要求,以保证信息系统的安全稳定运行,笔者仅对其中使用的电涌保护器的产品选型提几点自己的看法。电涌保护器从本质上看就是一种等电位连接用的材料而已,其选型就是指在不同的防雷区内,按照不同雷击电磁脉冲的严重程度和等电位连接点的位置,决定位于该区域内的电子设备采用何种电涌保护器,实现与共用接地体等电位联结。笔者将从电涌保护器的最大放电电流Imax、持续工作电压Uc、保护电压Up、漏电流Ip、告警方式等方面进行论述。按照《防雷规范》第6.4.4条规定“电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流。”即电涌保护器的最大钳位电压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。最大放电电流按照《防雷规范》第6.4.6条规定,在LPZOA、LPZOB与LPZ1区的交界处安装电涌保护器其最大放电电流计算如下:根据《防雷规范》规定的“全部雷电流的50%流入建筑物的防雷装置。另50%流入引入建筑物的各种外来导电物、电力线缆、通信线缆等设施”, 表一:首次雷击的雷电流参量 雷电流参数一类防雷建筑物二类防雷建筑物三类防雷建筑物 I幅值(KA)200 150 100 T1波头时间( s)350 350 350 雷电波经建筑物引入的电力线缆、信息线缆、金属管道等分解,总配电间的低配供电线缆雷电流的分流值计算表如表二,线路屏蔽时,通过的雷电流降低到原来的30%,根据《通信局(站)雷电过电压保护工程设计规范》YD/T5098-2001中规定的脉冲为10/350 s波形的电荷量 约为8/20 s模拟雷电波波形电荷量的20 ..倍,具体计算如下: 表二:供电线缆雷电流分流值表 雷电流参数一类防雷建筑二类防雷建筑三类防雷建筑 I幅值(KA)200 150 100 供电线缆总分流值(kA)33.33 25 16.67 每根电缆分流值(kA)11.11 8.33 5.56

浪涌保护器的选型及使用

浪涌保护器的选型及使用 由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。 风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。业主对浪涌保护器的需求越来越普遍。这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规范。 应用指南 该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。该标准也说明了选择过电压保护设备的各种问题。标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。下图是评估中最重要问题的概览:

选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT 系统等)。浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。 仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。所以设计该系统时,记得连接电缆要包含火线和接地线。

三合一防雷器技术参数说明

三合一防雷器技术参数说明 产品介绍 RESON监控系统三合一防雷器主要用于动态监控摄像机的电源、视频/音频、云台控制线路实施全方位保护,是一体化多功能电涌保护器。广泛应用于银行监控系统、小区安防系统、学校、企业、道路安全防护等监控设备。 功能特点 1、大容量:10KA,高速反应(10-12纳秒),低损耗; 2、三合一设计理念,适用于动态球形摄像机防雷保护; 3、能有效防止因电源、视频/音频、云台控制等设备间电位差瞬时增大而造成的设备损坏; 4、三级电涌保护,残压低,响应速度快,使用寿命长; 5、集成化、体积小、接线简易、安装方便。 技术指标 型号CPD-12DC/3 CPD-24DC/3 CPD-24AC/3 CPD-220AC/3 电源视频控制电源视频控制电源视频控制电源视频控制标称工作电压 Un 12V 5V 12V 24V 5V 24V 24V 5V 24V 220V 5V 24V 最大持续运行 电压Uc 15V 8V 30V 30V 8V 30V 48V 8V 30V 275V 8V 30V 标称放电电流 (8/20μS)In 5kA 最大放电电流 (8/20μS)Imax 10kA 电压保护水平 (In)Up ≤30V ≤15V ≤75V ≤60V ≤15V ≤75V 60V ≤15V ≤75V ≤900V ≤15V ≤75V 响应时间tA ≤25ns ≤10ns ≤ 25ns ≤10ns ≤25ns ≤10ns ≤25ns ≤10ns 传输速率Vs - 10Mbps - 10Mbps - 10Mbps - 10Mbps 插入损耗Ae - ≤0.2db - ≤0.2db - ≤0.2db - ≤0.2db 接口类型接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 安装接线规 格 2.5mm2 - 2.5mm2 2.5mm2 - 2.5mm2 2.5mm2 - 2.5mm2 4mm2 - 2.5mm2 温度范围-40℃ (85)

电涌保护器(SPD)工作原理和结构

编订:__________________ 审核:__________________ 单位:__________________ 电涌保护器(SPD)工作 原理和结构 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8242-61 电涌保护器(SPD)工作原理和结构 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 电涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: (1).开关型:其工作原理是当没有瞬时过电压

SPD(避雷器、电涌保护器、浪涌保护器)的选择

低压配电系统中电涌保护器的选择及安装 [日期:2005-10-24] 来源:转引自“中国防雷商务网”作者:[字体:大中小] 近年来,随着现代化水平的不断提高,民用建筑物内安装的电子信息设备和计算机设备越来越多,电子信息设备一般工作电压较低,耐压水平也很低,极易受到雷电电磁脉冲的危害,因此设有信息系统设备的民用建筑物,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施。建立完善的雷电浪涌过电压保护措施是电气工程设计的重要组成部分,为此本文提出了在实际工程中,如何根据被保护建筑物的特点选择电涌保护器,如何根据低压电源系统的不同形式安装电涌保护器及有关的注意事项。可供工程设计人员实际应用中参考。 1.电涌(浪涌、避雷器)保护器(英文缩写为SPD,以下简称SPD)的分类 (1)开关型SPD,又称雷电流避雷器,这种SPD在没有电涌时为高阻抗,但一旦响应电压电涌时其阻抗就突变为低值,用作这种非线性装置的常见例子有放电间隙,气体放电管,闸流晶体管(可控硅)及三端双向可控硅开关。这类S PD有时称为克罗巴型SPD。 (2)限压型SPD,这种SPD在没有电涌时为高阻抗,但随着电涌电流和电压的增加其阻抗会不断减小,用作这类非线性组件的例子是压敏电阻和抑制二极管,这类SPD有时称为箝压型SPD。 (3)联合型SPD,这种SPD由电压开关型部件和限压型部件联合组装在一起,根据二者的联合参数和应用电压特性可组合装成具有电压开关﹑限压或这两种特性兼有的联合型SPD。 2.SPD的主要性能、指标 (1)最大持续运行电压Uc: 可以持续施加于电涌保护器的最大交流有效值电压或最大直流电压,等于电涌保护器的额定电压。 (2)冲击电流Iimp:

安全防范系统雷电浪涌防护技术要求GA-T670-2006

安全防范系统雷电浪涌防护技术要求 GA/T 670-2006 中华人民共和国公安部2006-12-14发布2007-06-01实施 前言 本标准的附录A、附录B为资料性附录。 本标准由全国安全防范报警系统标准化技术委员会(SAC/TC 100)提出并归口。 本标准起草单位:广西地凯科技有限公司、全国安全防范报警系统标准化技术委员会(SAC/TC100)秘书处、广西壮族自治区公安厅技防办。 本标准主要起草人:王东生、刘希清、张凡夫、施巨岭、张跃、马宁。 1 范围 本标准规定了安全防范系统雷电防护的基本要求,着重规定了安全防范系统雷电浪涌防护的具体要求。 本标准适用于安全防范系统雷电防护的设计、实施和检验等。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本标准。 GB 18802.1—2002 低压配电系统的电涌保护器(SPD) 第1部分:性能要求和试验方法(IEC 61643-1:1998,IDT) GB 50057-1994(2000年版) 建筑物防雷设计规范 GB 50343-2004 建筑物电子信息系统防雷技术规范 GB 50348-2004 安全防范工程技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 安全防范系统security and protection system:SPS 以维护社会公共安全为目的,运用安全防范产品和其他相关产品,所构成的入侵报警系统、视频安防监控系统、出入口控制系统、防爆安全检查系统等;或由这些系统作为子系统组合或集成的电子系统或网络。 [GB 50348-2004,2.0.2] 3.2 直击雷direct lightning flash 闪击直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者。 [GB 50057-1994(2000年版)附录8] 3.3 雷电感应lightning induction 闪电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。 [GB 50057-1994(2000年版)附录8] 3.4 雷电浪涌lightning surge 与雷电放电相联系的电磁辐射,所产生的电场和磁场能够耦合到电气(电子)系统中而产生破坏性的冲击电流或电压。 3.5 雷电活动区分类classification of thunder and lightning active zone

B、C、D类防雷器的作用

B、C、D类防雷器的作用: B类防雷产品在整个防雷系统中所起的根本作用在于:当发生强度很大的雷击时,使产生于供电线路上的感应雷电流,在进入总配电柜之前就迅速泄放入地。因此B类防雷产品本质上应具备的特性是高可靠性、大通流量和长寿命,可承受雷雨季节多次高强度、高能量浪涌过电压的冲击,而稳定可靠的发挥迅速大通流量泄流的作用。在泄放雷电流过程中,B 类防雷器两端所产生的残压,即使仍超过被保护设备的最高瞬态耐压值,也会被安装于设备前端的C类或D类防雷器再次泄放,从而使真正到达设备前线端的浪涌电压已经很低,完全不能对设备的正常运行造成影响,使设备受到可靠的保护。 由于B级防雷产品在泄放供电线路上高能量的雷电流时,在防雷器两端所呈现的残压仍然很高,仍可能大大超过被保护设备所能承受的再高耐压值,因此,按国际电工委员会IEC的要求,在供电线路进入分配电柜前端时,应并联安装相应型号的C类防雷器。C类防雷器的本质作用是通过再次泄流而降低线路上的残压,因此并不要求C类防雷器的通流量特别大(一般40KA)。只是由C类防雷器在整个防雷系统中所起的作用决定的,即进一步泄放线路上的浪涌电流,进一步降低真正达到设备供电端口的浪涌电压值,使之小于设备的耐压值,从而在发生雷击时,使设备遭受损坏的可能性大大减小。 D类防雷器主要用于对设备端的保护,其作用是当发生能量特别大的雷击时,感应雷电流在经过B级、C级防雷器的泄放后,其残压仍然可能高于设备的最高耐压值,重要设备的端口及内部的高精度集成电路仍有可能被烧坏。此时D类防雷器的安装就特别必要了。经过D类防雷器的泄放,设备的完全运行就更为可靠了。 电涌保护器的选型及安装要求: 一、SPD的选型原则: 1、 SPD必须能承受预期通过它们的雷电流,并具有通过电涌时的最大箝压和有熄灭工频续流的能力。 2、安装的SPD电压保护水平加上其两端引线的感应电压应低于被保护设备耐压水平的80%,同时SPD与被保护设备的连线不大于10m时,在被保护设备处可不安装SPD。反之,则应在设备前加装不小于3KA(8/200μs)的SPD。 3、在供电的电压偏差超过所规定的10%以及谐波使电压幅值加大的场所,应根据具体情况对氧化锌压敏电阻SPD的Uc值相应提高。 4、当无法获得被保护设备的耐冲击过电压值时,可参考下表给出的值。

浪涌保护器选择应注意的几个问题

低压配电系统SPD选择应注意的几个问题 1. SPD最大持续工作电压U C 1)TN系统U C≥(U0=220V相电压) 由于GB12325《电能质量供电电压》标准规定220V电网内的正偏差不大于7%,但我国实际电压正偏差往往超过此值,再加上SPD老化等因素,所以规定U C ≥ 2)TT系统U C≥(在剩余电流保护器负荷侧,U0=220V相电压) 此种TT系统变电所10kV侧必须为中性点不接地系统。根据IEC标准,为防范TT系统内绝缘击穿事故而规定的过电压允许值和切断电源时间:低压电气绝缘允许承受的过电压为U0+250V,切断时间>5s。 按此规定低压电气绝缘允许承受的过电压为450V且切断时间大于5s。根据电力行业标准DL/T620-1997相关规定,10kV中性点不接地系统允许最大接地故障电容电流按线路不同情况分别为10A、20A、30A,因线路情况复杂取其中间值20A。当10kV线路发生单相接地故障时接地故障电容电流会流经变电所变压器中性点的接地电阻流回不接地的两相,一般接地电阻不大于4Ω,此时可能产生80V的最大故障电压,使地电位升高80V。低压电气绝缘允许承受的过电压为U0+80V,切断时间>5s。在此系统中低压电气绝缘允许承受的过电压为300V且切断时间大于5s,同理需考虑1)款中的系数则 U C≥×300=345V≈×U0=341V。由于断路器的额定工作电压均为400V,冲击耐压为6000V,所以SPD可以以四星型接法接在剩余电流保护器负荷侧。 3)TT系统U C≥(在剩余电流保护器电源侧,U0=220V相电压) 此种TT系统变电所10kV侧采用小电阻接地,同时和变压器低压侧中性点接地

spd浪涌保护器选型

深圳市安普迅通信技术有限公司是专业的spd浪涌保护器生产厂商,主要的防雷系列有:AX电源防雷箱,AM电源防雷模块、ASspd浪涌保护器、AR天馈浪涌保护器、AJ监控系统三合一(二合一)集成浪涌保护器、防雷插座(排插),千兆网浪涌保护器,POE以太网供电浪涌保护器,并对外提供OEM等。 交流电源spd浪涌保护器 交流电源spd浪涌保护器适用范围 ·交流电源防雷模块适用于配电室、配电柜、开关柜、交直流配电屏等系统的电源保护;·建筑物内有室外输入的配电箱、建筑物层配电箱; ·用于低压( 220/380V AC)工业电网和民用电网; ·在电力系统中,主要用于自动化机房、变电站主控制室电源屏内三相电源输入或输出端。命名规则 AM系列交流电源spd浪涌保护器的型号命名规则

保护方式 保护方式 三相 L1,L2,L3,N—PE 三相 L1,L2,L3—N,N—PE (3+1电路) 单相 L,N—PE; 单相 L—N, N—PE;(1+1电路) 代号 A B C D 产品性能参数及特点 性能特点 ·通流容量大,残压低,响应时间快; ·漏电流及变化率小; ·采用最新热脱离技术,彻底避免火灾; ·采用特殊冲击熔片,具有高可靠性; ·自带远程告警干接点,便于远程监控; ·具有工作故障指示,遥信告警功能; ·采用温控保护电路,内置热保护,短路故障自动脱离装置; · 3+1保护模式(L-N, N-PE),特别适合电网差的地区使用; ·采用标准模块化设计,安装简单,维护方便; ·核心元件采用国际知名品牌,性能优异,工作稳定可靠; ·可以实现凯文接线;结构严谨,安装方便,维护简单; ·工艺考究,能在酸、碱、尘、盐雾及潮湿等恶劣环境下长期工作。 主要技术参数 型号AM100A AM80B AM60C AM40D

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

电源系统电涌保护器(SPD)选用

电源系统电涌保护器(SPD)选用(2013版) 一、主要依据 《建筑物电子信息系统防雷技术规范》GB50343-2012 《建筑物防雷设计规范》GB50057-2010 二、按建筑物电子信息系统的重要性和使用性质, 确定本单位目前的设计的建筑物 (主要为住宅)的雷电防护等级为D级。经计算当第一级浪涌保护器保护的线路长度大于100m时,需设第二级浪涌保护器,当第二级浪涌保护器保护的线路长度大于 50m时,需在被保护设备处设第三级浪涌保护器;在具有重要终端设备或精密敏感设备处,可安装第三级SPD。 三、 SPD的选用原则及主要参数 1、 第一级 SPD (主要安装在建筑物380V低压配电柜(箱)总进线处) 1.1 、 在 IPZ0A或LPZ0B区与LPZ1区交界处,在电源引入的总配电箱出应装设Ⅰ级试 验的电涌保护器。主要参数需满足以下要求: 波形 10/350μS 最大持续运行电压 Uc≥253V 电压保护水平 Up≤2.5KV 冲击电流Iimp≥12.5KA 1.2、 当进线完全在LPZ0B或雷击建筑物和雷击与建筑物相连接的电力线路或通信线上的失效风险可以忽略时,可采用Ⅱ级试验的电涌保护器。主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2.5KV 标称放电电流In≥50KA

1.3、 过电流保护器(熔断器和断路器,优先使用熔断器),选用100A 2、第二级 SPD (主要安装在动力配电柜、楼层配电箱、水泵房、中央控制室、消防、电梯机房、屋面用电设备等)。 2.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2KV 标称放电电流In≥10KA 2.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用32A 3、第三级 SPD (主要安装在重要的终端设备或精密敏感设备处,如信息机房、办公室入室配电箱等)。 3.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤1.2KV 标称放电电流In≥3KA 3.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用16A 四、产品选用要求(需在说明中注明) 选用的浪涌保护器(SPD) 须经过北京雷电防护装置测试中心或上海防雷产品测试中心的检测通过,并经过当地防雷装置主管机构的备案。

航嘉相关电涌保护器技术参数

相关电涌保护器技术参数 HJSPD140/4-550电源电涌保护器额定电压Un 380V AC 启动电压V1ma 910V 最大连续工作电压Uc 550V 放电电流In 80KA Imax 140KA 保护级别≤3.1KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:144×92×67mm HJSPD80/4-420电源电涌保护器额定电压Un 380V AC 启动电压V1ma 680V 最大连续工作电压Uc 420V 放电电流In 40KA Imax 80KA 保护级别≤2.5KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:108×90×62mm HJSPD40/4-385电源电涌保护器:额定电压Un 380V AC 启动电压V1ma 620V 最大连续工作电压Uc 385V 放电电流In 20KA Imax 40KA 保护级别≤1.6KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×72mm B级电源防雷器HJSPD80/2 额定电压Un 380V AC 启动电压V1ma 680V 最大连续工作电压Uc 420V 放电电流In 40KA Imax 80KA 保护级别≤2.5KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨

HJSPD40/2-385电源电涌保护器: 额定电压Un 230V AC 启动电压V1ma 620V 最大连续工作电压Uc 385V 放电电流In 20KA Imax 40KA 保护级别≤1.6KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×36mm HJSPD40/2-75电源电涌保护器: 启动电压V1ma 120V 最大连续工作电压Uc 75V 放电电流In 5KA Imax 10KA 保护级别≤280V 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×36mm HJSPDFLD230电源电涌保护器: 额定电压:230V AC 最大连续工作电压Uc:255V 放电电流:In 5KA Imax 10KA 保护级别:L-N≤1.25KV L/N-PE≤1. 5KV 额定电流:5A 响应时间:L-N≤25ns L/N-PE≤100ns 接入方式:串联 接线规格:最大2.5mm2 安装方式:35mm标准导轨 外形尺寸:90×18×63mm HJSPDFLD24电源电涌保护器: 额定电压:24V 最大连续工作电压Uc:35VDC 25V AC 放电电流:In 5KA Imax 10KA 保护级别:线/线≤50V 线/地≤600V 额定电流:5A 响应时间:线/线≤1ns 线/地≤100ns 接入方式:串联 接线规格:最大2.5mm2 安装方式:35mm标准导轨 外形尺寸:90×18×63mm

避雷器与浪涌保护器

避雷器和电涌保护器运用说明

目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献

一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

?从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

防雷器主要技术参数

防雷器主要技术参数 链接:https://www.wendangku.net/doc/6e13295798.html,/tech/12839.html 防雷器主要技术参数 信息时代的今天,电脑网络和通讯设备越来越精密,其工作环境的要求也越来越高,而雷电以及大型电气设备的瞬间过电压会越来越频繁的通过电源、天线、无线电信号收发设备等线路侵入室内电气设备和网络设备,造成设备或元器件损坏,人员伤亡,传输或储存的数据受到干扰或丢失,甚至使电子设备产生误动作或暂时瘫痪、系统停顿,数据传输中断,局域网乃至广域网遭到破坏。其危害触目惊心,间接损失一般远远大于直接经济损失。防雷器就是通过现代电学以及其它技术来防止被雷击中的设备。 防雷器又称等电位连接器、过电压保护器、浪涌抑制器、突波吸收器、防雷保安器等,用于电源线防护的防雷器称为电源防雷器。 防雷器的一些主要技术参数:额定工作电压、额定工作电流,特批串并式电源防雷器的载流量。通流能力,防雷器转移雷电流的能力,以千安为单位,与波开开式有关。防雷器在功能上可分为可防直击雷的防雷器和防感应雷的防雷器。可防直击雷的防雷器通常用于可能被直击雷击中的线路保护,如LPZOA区与LPZ1区交界处的保护。用10/35μs电流波形测试与表示其通流能力。防感应雷的防雷器通常用于不可能被直击雷击中的线路保护,如LPZOB区与LPX1区、LPZ1区交界处的保护。用8/20μs电流波形测试与表示其通流能力响应时间,防雷器对瞬态现象起控制作用所需的时间,与波形性质有关。残压,防雷器对瞬态现象的电压限制能力,与雷电流幅值及波形性质有关。 防雷器的主要技术参数说明: 1.标称电压Un 与被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 2.额定电压Uc 能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 3.额定放电电流Isn 给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。4.最大放电电流Imax 给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。5.电压保护级别Up 保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 6.响应时间tA 主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。7.数据传输速率Vs 表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。 8.插入损耗Ae 在给定频率下保护器插入前和插入后的电压比率。 9.回波损耗Ar 表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数 原文地址:https://www.wendangku.net/doc/6e13295798.html,/tech/12839.html 页面 1 / 1

电涌保护器设备工作原理

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。 按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理: 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是*回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的, 气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常

电源避雷器的选型

电源防雷器的选型 1、电源防雷器的分类 1)按产品性能分类: 电压开关型SPD——采用放电间隙技术,可最大限度的消除电网后续电流,疏导10/350μs的模拟雷电冲击电流,按照IEC61312-3的要求,一般用在LPZO B-LPZ1区中电源系统的防雷器。(亦称短路型SPD) 产品特点:雷电通流量大,无漏泄电流,多用于建筑物的总配电系统,实用于各种供电系统制式中。 电压限制型SPD——采用压敏器件,其可较大程度减低电网上的残压,疏导8/20μs的模拟雷电冲击电流,按照IEC61312-3的要求,一般用在LPZ1-LPZ2区中电源系统的防雷器。 产品特点:反应时间快,残压低,应用于TN制式保护效果较好。 (在TT制式中如有漏泄电流,可能引起地电位的升高) 复合型SPD——由电压开关型组件和电压限制型组件组合而成的防雷器。其特性随所加电压的特性可表现为电压开关型、电压限制型或两者特性皆有。(通常指相线与零线之间采用压敏防雷模块,而零线与地线之间采用放电间隙防雷模块(NPE模块)的防雷器) 产品特点:在接地阻抗高或地线接触不良的情况下,因防雷器接在相线与零线之间,而相线与零线回路阻抗主要是供电变压器和电缆,阻抗很低而故障电流很大,流经防雷器的电流可使前端保护断路器或熔断器动作,把防雷器与电网隔离。 2)按保护级别分类:防雷器按IEC分类方法,分为I、II、III级(顺序对应为B、C、D三级)B级(第I级)防雷器——适用于LPZO A区或LPZO B区与LPZ1区交界面处的等电位连接,能承受直击雷的能量和释放部分直接雷击电流的防雷器。 C级(第II级)防雷器——适用于LPZ1区与LPZ2区交界面处的等电位连接,能够释放由远距离或传导雷击以及开关转换而引起的电涌的防雷器。 D级(第III级)防雷器——适用于LPZ2区与其后续防雷区交界面处的等电位连接,为了保护线路末端的单个负载而设计的防雷器。 3)按电源特性分类:分为单相交流、三相交流和直流三种。 4)按外形结构分类:分为模块式、箱式、插座式和机架式。 5)按接线方式分类:分为串联型和并联型。 2、电源防雷器技术参数的选择 1)最大持续运行电压(Uc)的选择 限压型电源防雷器的最大持续运行电压Uc,是影响防雷器运行稳定性的关键参数。选型时除要符合相关标准要求外,还应考虑电网可能出现的正常波动及最高持续故障电压。 ★在纵向保护模式中(L~N;L~PE;N~PE)Uc标称值应≮1.15U*(U*为220V); ★在横向保护模式中(L~L)Uc标称值应≮线间电压的1.15倍。 按照IEC61643-2的说明,在TT交流供电系统中,相线对地线的最高持续故障电压,可能达到标称电压(U N)(交流电压220Urms)的1.5倍,即有可能达到330Urms。故此在电流不稳定的地方,建议选择电源防雷器的最大持续运行电压值Uc为385Urms的模块。 在直流电源系统中,并没有一个统一的最大持续运行电压值Uc与正常工作电压Un之比例,该比例一般可取1.5倍到2倍之间。 2)电压保护水平(Up)的选择 Us.max<Up<Uchoc (Us.max—电网的最高运行电压;Uchoc—被保护设备的冲击耐受电压)根据IEC60364-4,三相电网电压为230V/400V被保护设备冲击耐受电压(8/20μs)分为四类;

信号类防雷器技术参数资料

信号类防雷器 技术参数资料 目录 前言 (1) 一、产品用途 (1) 二、型号说明 (1) 三、产品特点 (1) 第一章信号类防雷器技术参数 (2) 一、计算机网络防雷器 (2) 二、控制信号防雷器 (2) 三、视频信号防雷器 (3) 四、音频信号防雷器 (4) 五、天馈线防雷器 (4) 第二章安装说明 (5) 第三章包装、运输、储存 (5)

前言 长沙市雷立行电子科技有限公司是集防雷产品研制、生产及服务于一体的专业防雷公司。公司研发生产的雷科星系列防雷产品已广泛应用于电力、通信、金融、交通、石化、计算机网络工程、安防工程等领域。公司本着“质量就是生命”的原则,不断开拓进取,为广大用户提供优质的产品、完善的技术支持与服务。 一、产品用途 信号类防雷器主要用于沿各种信号线路侵入设备的雷电(过电压)防护,广泛应用于金融、电信、通信、交通运输、石化工控等设备,如网络设备(网络交换机、服务器、路由器、MODEM、网络终端等)、控制信号设备(各种并口、串口、控制信号等)、视频监控设备(摄像机、视频监控器、云台、光端机、显示器、有线电视、家用电视等)、音频设备(程控交换机、传真设备、MODEM、应急电话、中继线等)、天馈信号设备(GSM、CDMA、WCDMA、CDMA2000、TD-SCDMA等移动通信设备和有线电视等)。 二、型号说明 LKX □□ /□ 8W:计算机网络8线保护; 4E、8E:4口、8口计算机网络防雷器; 4PT:4口信号类防雷器; 10PT:10口音频信号防雷器(模块拔插式); 4PT-12V,4PT-24V:4口12V、24V控制信号防雷器; 48,130,170:音频防雷器工作电压 接口类型 SC100:100M计算机网络; SC1000:1000M计算机网络; SC:控制信号;SV:视频; SA:音频;ST:天馈 雷科星 三、产品特点 ●通流容量大,采用多级保护。 ●内置快速半导体保护器件,响应速度快,残压低。 ●插入损耗低,确保线路畅通。 ●驻波系数小,工作频率范围宽。 ●核心元件采用国际知名品牌,性能优越。 ●节能、环保,安装简便,适用于各种标准接口类型。

浪涌保护器参数含义

防雷击保护的选用,分为4个等级,IEC61312-1规定:10/350μs是首次雷击波型,用于电源的第一级(A级)保护,值得注意的是这只是雷击波的测试波型,而不是雷电的实际波型;8/20μs是用在首次后的B级、C级、D级雷击保护,二者在本质上是没有区别,只是反映了保护器件能分流雷电流能量大小而已! TDS(TDX)浪涌保护器 浪涌保护器作为低压配电系统的元件之一,所涉及到很多的参数指标都与其他的空气开关是相同的。但是每一种空气开关都有其不同于其他空气开关的参数与指标。当然,并不是所有的空气开关都如此。只是一些特殊作用的空气开关才会涉及到很多不同的参数。例如双电源自动转换开关、浪涌保护器和隔离开关等。 以下是浪涌保护器的各种参数含义的解析; 1.最大放电电流Imax:给浪涌保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 2.额定放电电流Isn:给浪涌保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 3.标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

4.电压保护级别Up:浪涌保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 5.额定电压Uc:能长久施加在浪涌保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 6.数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用浪涌保护器的参考值,浪涌保护器的数据传输速率取决于系统的传输方式。 7.最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。 8.漏电流:指在75或80标称电压Un下流经浪涌保护器的直流电流。 9.最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。 10.峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。 11.响应时间tA:主要反应在浪涌保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。 12.在线阻抗:指在标称电压Un下流经浪涌保护器的回路阻抗和感抗的和。通常称为“系统阻抗”。

相关文档