文档库 最新最全的文档下载
当前位置:文档库 › 《运筹学》 第六章排队论习题及 答案

《运筹学》 第六章排队论习题及 答案

《运筹学》 第六章排队论习题及 答案
《运筹学》 第六章排队论习题及 答案

《运筹学》第六章排队论习题

1. 思考题

(1)排队论主要研究的问题是什么;

(2)试述排队模型的种类及各部分的特征;

(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;

(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分

布的主要性质;

(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系

与区别。

2.判断下列说法是否正确

(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间

服从负指数分布;

(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分

顾客合起来的顾客流仍为普阿松分布;

(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,

则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大

量实际系统的统计研究,这样的假定比较合理;

(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,

系统将进入稳定状态;

(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;

(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的

平均等待时间少于允许队长无限的系统;

(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有

关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人

看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负

指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;

(7)一个顾客在店内逗留时间超过15分钟的概率。

4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数;

(3)病人在门诊部的平均逗留时间;

(4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问

病人平均到达率为多少时,医院才会增加医生?

5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

(3)排队等待服务的顾客数;

(4)顾客在系统中的平均花费时间; (5)顾客平均排队时间。

6.某街区医院门诊部只有一个医生值班,此门诊部备有6张椅子供患者等候应诊。当椅子坐满时,后来的患者就自动离去,不在进来。已知每小时有4名患者按Poisson 分布到达,每名患者的诊断时间服从负指数分布,平均12分钟,求: (1)患者无须等待的概率; (2)门诊部内患者平均数; (3)需要等待的患者平均数; (4)有效到达率;

(5)患者在门诊部逗留时间的平均值; (6)患者等待就诊的平均时间; (7)有多少患者因坐满而自动离去?

7.某加油站有四台加油机,来加油的汽车按Poisson 分布到达,平均每小时到达20辆。四台加油机的加油时间服从负指数分布,每台加油机平均每小时可给10辆汽车加油。求: (1)前来加油的汽车平均等待的时间;

(2)汽车来加油时,4台油泵都在工作,这时汽车平均等待的时间. 8.某售票处有3个售票口,顾客的到达服从Poisson 分布,平均每分钟到达9.0=λ

(人),3个窗口售票的时间都服从负指数分布,平均每分钟卖给4.0=μ(人),设可以归纳为M/M/3 模型,试求:

(1)整个售票处空闲的概率; (2)平均对长; (3)平均逗留时间; (4)平均等待时间;

(5)顾客到达后的等待概率。

9.一个美容院有3张服务台,顾客平均到达率为每小时5人,美容时间平均30分钟,求: (1)美容院中没有顾客的概率; (2)只有一个服务台被占用的概率。 10.某系统有3名服务员,每小时平均到达240名顾客,且到达服从Poisson 分布,服务时间服从负指数分布,平均需0.5分钟,求: (1)整个系统内空闲的概率; (2) 顾客等待服务的概率;

(3)系统内等待服务的平均顾客数; (4)平均等待服务时间; (5)系统平均利用率;

(6)若每小时顾客到达的顾客增至480名,服务员增至6名,分别计算上面的

(1)——(5)的值。

11.某服务系统有两个服务员,顾客到达服从Poisson 分布,平均每小时到达两个。服务时间服从负指数分布,平均服务时间为30分钟,又知系统内最多只能有3名顾客等待服务,当顾客到达时,若系统已满,则自动离开,不再进入系统。求: (1)系统空闲时间; (2)顾客损失率;

(3)服务系统内等待服务的平均顾客数; (4)在服务系统内的平均顾客数; (5)顾客在系统内的平均逗留时间; (6)顾客在系统内的平均等待时间; (7)被占用的服务员的平均数。

12.某车站售票口,已知顾客到达率为每小时200人,售票员的服务率为每小时40人,求: (1)工时利用率平均不能低于60%;

(2)若要顾客等待平均时间不超过2分钟,设几个窗口合适?

13.某律师事物所咨询中心,前来咨询的顾客服从Poisson 分布,平均天到达50个。 各位被咨询律师回答顾客问题的时间是随机变量,服从负指数分布,每天平均接待10人。每位律师工作1天需支付100元,而每回答一名顾客的问题的咨询费为20元,试为该咨询中心确定每天工作的律师人数,以保证纯收入最多。

14.某厂的原料仓库,平均每天有20车原料入库,原料车到达服从Poisson 分布,卸货率

服从负指数分布,平均每人每天卸货5车,每个装卸工每天总费用50元,由于人手不够而影响当天装卸货物,导致每车的平均损失为每天200元,试问,工厂应安排几名装卸工,最节省开支?

15.某公司医务室为职工检查身体,职工的到达服从Poisson 分布,每小时平均到达50人,

若职工不能按时体检,造成的损失为每小时每人平均60元。体检所花时间服从负指数分布,平均每小时服务率为μ,每人的体检费用为30元,试确定使公司总支出最少的参数μ。

《运筹学》第六章排队论习题解答

2.(1)√ (2)√ (3)X (4)√(5)X (6)X (7)X (8)√(9)√(10)X 3.解:单位时间为小时,5.063,6,3=====μλρμλ

(1)店内空闲的时间: 5.021110

=-=-=ρp ;

(2)有4个顾客的概率:03125

.021

21121)1(54

4

4==??? ??-??? ??=-=ρρρ;

(3)至少有一个顾客的概率:

{}5.0110=-=≥p N P ;

(4)店内顾客的平均数:

1

1=-=

ρρ

L ;

(5)等待服务的顾客的平均数:5

.0=-=ρL L

q

(6)平均等待修理的时间:

1667.035

.0==

=

λq

L W ;

(7)一个顾客在店内逗留时间超过15分钟的概率。

{}607.0152

1)20

1101(

15)(====>-----e e e T P t

λμ 4.解: 单位时间为小时,

6.0,51260,3=====μλρμλ

(1)病人到来不用等待的概率:4.06.0110

=-=-=ρp

(2)门诊部内顾客的平均数:

5.1

6.016

.01=-=

-=

ρ

ρ

L (人)

(3)病人在门诊部的平均逗留时间;

5.01

=-=

λμW (小时)

(4)若病人在门诊部内的平均逗留时间超过1小时,则有:

4

,51

11=∴-=

-=λλ

λμ

即当病人平均到达时间间隔小于等于15分钟时,医院将增加值班医生。 5.解:单位时间为小时,

3,4.0,10,4=====K μλρμλ;

(1)系统内没有顾客的概率:616.04.014

.01114

40=--=--=

ρρp ;

(2)系统内顾客的平均数:

562.04.014.044.014.01)1(14

4

11=-?--=-+--=++K K K L ρρρρ

(人);

(3)排队等待服务的顾客数:178

.0384.0562.0)1(0=-=--=p L L q

(人);

(4)顾客在系统中的平均花费时间:

8.8146.0842.3562

.0)

1(03===

-=

p L

W ρλ(分钟)

(5)顾客平均排队时间:8

.2046.01.0146.01==-=-=μW W q

(分钟)。

6.解:此问题可归结为M/M/1/7的模型,单位时间为小时,

7,8.0,5,4=====K μλρμλ

(1)患者无须等待的概率:

2403

.08

.018.018

0=--=

p ;

(2)门诊部内患者平均数:387.28.018.088.018.08

8

=-?--=L (人) (3)需要等待的患者平均数:

627

.1)1(387.20=--=p L q (人)

(4)有效到达率:

8.3)8.08.018

.011(4)1(78

7=?---

?=-=P λλε;

(5)患者在门诊部逗留时间的平均值:

628.08.3387

.2==

=

ε

λL

W (小时)=37.7(分钟)

(6)患者等待就诊的平均时间:

7

.25127.37=-=q W (分钟)

(7)有

%03.50503.0117

8

7==--=

ρρρP 的患者因坐满而自动离去.

7.解:此为一个M/M/4系统,

,

2,10,20====μλρμλ系统服务强度

5.042==*

ρ,所以

13

.02111!42!21

3

00=?

??? ??-+=-=∑k k

k

k p

(1)前来加油的汽车平均等待的时间即为

q

W :

因为

101201

1

-=

-

=

-

=L L

W W q μ

λ

μ

而 17.22)5.01(!413.05.02)1(!2

420=+-???=+-=**ρρρρc p L c

故:

q

W =0.0085(小时)=0.51(分钟)

(2)汽车来加油时,4台油泵都在工作,设汽车平均等待的时间为*

W .

=*

=

c k k q

P W W ,因为

26.001==p p ρ,

26

.02

02

2==

p p ρ

18

.0!

303

3==

p p ρ,4=c ,

17

.013

04

=-=∑∑

=∞

=k k k k p p

所以 :3

17.051

.017.0==

=

*q

W W (分钟)。

8.解:此为一个M/M/3系统,

,25.2,4.0,9.0====μλρμλ系统服务强度:

75

.03==*ρ

ρ

(1)0743.075.011!3)25.2(!)25.2(1

3030=???? ??-?

+=-=∑k k k p (2)因为:95.325.20743.0)75.01(!375.0)25.2(2

3=+?-??=L (人)

所以:

70

.125.295.3=-=-=ρL L q (人)

(3)平均逗留时间:39

.49.095

.3==

=

λL

W (分钟)

(4)平均等待时间:89

.14.0139.41=-=-=μW W q (分钟)

(5)设顾客到达后的等待概率为*

P ,则

57.00743.075.011

!3)25.2(11!30

=?-?=-==*∞

=*

∑P c P P c

c k k ρρ

9.解:此为系统为M / M / n (n=3)损失制无限源服务模型,

5

.2,2060,,5=====μλρμλ,

(1)()108.0604.2125.35.21!)5.2(11

300=+++=?

???

??=--=∑k k k p (2)27.0108.05.201

=?==p p ρ

10.此为系统为M / M / n (n=3)服务模型,

3,2,)/(25.01

,/(460240=======

n μλρμλ分钟人分钟)人,

(1)整个系统内空闲的概率:

111

.0)4221(!3!11

20

30=+++=???

??????? ??-+=--=∑k k n n k p ρρρ;

(2)顾客等待服务的概率:

{}444.094!3003==???? ??-=>p n n W p ρρ;

(3)系统内等待服务的平均顾客数:

888.09

8

)(!)1(02

1

==

--=

+p n n L n q ρρ(人);

(4)平均等待服务时间:

222.092

4198==?==

λq

q L W ;

(5)系统平均利用率;

667.02===*

n ρρ; (6)若每小时顾客到达的顾客增至480名,服务员增至6名,分别计算上面的

(1)——(5)的值。

6,4,)/(25.01

,/(860480=======

n μλρμλ分钟人分钟)人

则:整个系统内空闲的概率:

017

.0)067.17866.42(!!11

20

0=+=???

??????? ??-+=--=∑k n k n n n k p ρρρ

顾客等待服务的概率:{}285.0017.0067.17!00=?=????

??-=>p n n n W p n ρρ

系统内等待服务的平均顾客数:

58

.0)

(!)1(02

1

=--=

+p n n L n q ρρ(人)

平均等待服务时间:

07

.0==

λ

q

q L W

系统平均利用率;

667.064===*

n ρρ。 11.解:将此系统看成一个M / M / 2 / 5排队系统,其中

5,2,4,5.0,2======K n μλρμλ

(1)系统空闲时间:

008

.0)241(2))

24(1(4411

1

252

0=???

?

??--++=-+-p ;

(2)顾客损失率:512.02!2008.042

555=??=-p ;

(3)服务系统内等待服务的平均顾客数:

18

.2)24)(125)(241(241)241((!2)24(4008.0251

252

2=???

?

????+---??

? ??--??=-+-q L (人)

(4)在服务系统内的平均顾客数:

13

.4)512.01(418.2)1(5=-?+=-+=p L L q ρ(人);

(5)顾客在系统内的平均逗留时间:

23

.4)512.01(213

.4)1(5=-?=-=

p L W λ (分钟);

(6)顾客在系统内的平均等待时间: 23.2223.41=-=-=μW W q

(分钟) (7)被占用的服务员的平均数。

95

.118.213.4=-=-=q L L n (个)

12.解:将此系统看成一个M / M / n 排队系统,其中

5

.3,45,140====μλρμλ,则

工时利用率平均不能低于60%,即系统服务强度:

6

.05

.3≥==*

n n ρ

ρ ,所以 17.4≤n ,设

4,3,2,1=n 均满足工时利用率的要求,现在计算是否满足等待时间的要求:

(1)当4=n 时,

0737

.05.04!45.2!35.225.25.21!!1

4321

30

0=?

??

???++++=???

??????? ??-+=--=∑k n k n n n k p ρρρ

平均等待时间:

2

!

)

(!)1(p n n L W n q

q ρλρλ

--=

=

+

0067.02700197

.70148.05.162005.22

5==???=(小时)=0.16(分)

(2)当3=n 时,045.0!!1

200=???

????

??? ??-+=-=∑k n k n n n k p ρρρ 平均等待时间:0176.0)(!)1(0

2!

=--==+p n n L W n q q ρλρλ(小时)=1.05(分)

若2≤n ,则1>n ρ,所以,应该设3个窗口符合要求。

13.解:这是一个M / M / n 系统确定n 的问题,因为:

n n 5,5,10,50======*

ρρμλρμλ,则

1

10011!!--=*??????-+=∑n k n k n k p ρρρ,设)(n f 表示当律师有n 个时的纯收入, 则:

?

?????--++-=∑-=200)5(!)1(5!55200100)(n k n k n n n k p n n f 对n 的约束只有一个,即

1<*ρ,由此可得5>n ,为求n ,我们由下表计算)(n f ,再取最大值。

由此可以看出,当时,律师咨询中心的纯收入最大。

14.解:此问题为一个M / M / n 系统确定n 的问题,因为:

n

n 4,4,5,20======*ρρμλρμλ

)(n f 表示当装卸工有n 个时工厂在装卸方面的总支出,则所求为

][50)(min w C E n n f +=

其中w C 为由于货车等待装卸而导致的单位时间的经济损失。

?

???--+==+21

)(!)1(100100ρρρn n L C n w 15.解:我们用M / M / 1 来描述此题,因为

50

=λ人/小时,

30=s C 元/人,60=w C 元/人,则公司每小时总支出为

λ

μλμμ-+=+=w

s w s C C L C C z ,

对μ求导,并令导数为零,得:

s

w C C λλμ+=,所以有

60105030506050=+=?+=*μ(人/小时) 。

运筹学建模例题和判断题

【例1-2】某商场决定:营业员每周连续工作5天后连续休息2天,轮流休息。根据统计,商场每天需要的营业员如表1-2所示。 j 息的营业员,该模型如何变化. 【例1-3】合理用料问题。某汽车需要用甲、乙、丙三种规格的轴各一根,这些轴的规格分别是,1,(m),这些轴需要用同一种圆钢来做,圆钢长度为4 m。现在要制造1000辆汽车,最少要用多少圆钢来生产这些轴 如果要求余料最少,数学模型如何变化; 【例1-4】配料问题。某钢铁公司生产一种合金,要求的成分规格是:锡不少于28%,锌不多于15%,铅恰好10%,镍要界于35%~55%之间,不允许有其他成分。钢铁公司拟从五种不同级别的矿石中进行冶炼,每种矿物的成分含量和价格如表1-4所示。矿石杂质在治炼过程中废弃,现要求每吨合金成本最低 在例中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化. 【例1-5】投资问题。某投资公司拟将5000万元的资金用于国债、地方国债及基金三种类型证券投资,每类各有两种。每种证券的评级、到期年限及每年税后收益率见表1-5 2。问每种证券各投资多少使总收益最大。 【例1-6】均衡配套生产问题。某产品由2件甲、3件乙零件组装而成。两种零件必须经过设备A、B上加工,每件甲零件在A、B上的加工时间分别为5分钟和9分钟,每件乙零件在A、B上的加工时间分别为4分钟和10分钟。现有2台设备A和3台设备B,每天可供加工时间为8小时。为了保持两种设备均衡负荷生产,要求一种设备每天的加工总时间不超过另一种设备总时间1小时。怎样安排设备的加工时间使每天产品的产量最大 在例中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每

排队论例题

排队论例题 1、某重要设施是由三道防线组成的防空系统。第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座武器。所有的武器类型一样。武器对来犯敌人的射击时间服从μ=1(架/分钟)的指数分布,敌机来犯服从λ=2(架/分钟)的泊松流。试估计该防空系统的有效率。

解: 武器联合发挥作用 该防空系统有效率 = 1- (三道防线后的损失率) 三道防线均可看成M/M/1/1系统 第一道防线:λ=2架/分钟, μ=2架/分钟(两座武器) ρ=λ/μ=1 .P )A (P ,P ,P ,P P P 1212111110001=======λλρ损 第二道防线 : .P )A (P ,P ,P ,P P P ,)(.414 143313131122100011========= ===λλρμλρμλλ损损三座武器第三道防线: 975 .0,025.0.05.020 1)(,51,54,1,41,41,1.41 313310100012===========∴=+==== ===总损失率该防空系统的有效率总损失率损损损-12 0.05λλλλρμλρμλλP A P P P P P P P P

2、某汽车加油站只有一个加油灌,汽车到达为泊松流,加油时间服从指数分布。平均到达率和平均服务率分别为λ和μ。已知汽车排队等待(不含服务时间)1小时的损失费为C元,加油站空闲1小时损失费为2C元。试求使总的损失费(包括顾客排队等待的损失费和服务机构空闲时的损失费)最小的最优服务强度ρ(ρ=λ/μ)。

解:该排队系统为M/M/1系统 μλρ= W q ==-)(λμμλρρ-12 P0 = 1-ρ=μλ (空闲概率) 每小时空闲时间为1×P0= P0 总损失费为: ρρρ-+-=+=1)1(2220C C Cw Cp y q 对 ρ 求导 C C C C y 22 22)1(22)1()1(22ρρρρρρρ--+-=-+-+-=' ∴22±=ρ 又∵ ρ<1 ∴22-=ρ 由于2阶导数 0)1()2)(1(2)1)(22(422>---+--=''ρρρρρρy ∴在22-=ρ时为0<ρ<1上取最小值 动态规划问题 1.某企业生产某种产品,每月月初按定货单发货,生产得 产品随时入库,由于空间限制,仓库最多能够贮存产品90000件。在上半年(1至6月)其生产成本(万元/ 6个月的生产量使既能满足各月的订单需求同时生产成本最低?

运筹学课程设计报告(附代码)范文

《运筹学》课程设计报告 姓名: 班级: 学号:

一、问题描述 1、机型指派问题 机型指派优化设计是航空公司制定航班计划的重要内容,它要求在满足航班频率和时刻安排以及各机型飞机总数约束的条件下,将各机型飞机指派给相应的航班,使运行成本最小化。本课程设计要求建立机型指派问题的数学模型,应用优化软件Lindo/Lingo进行建模求解,给出决策建议,包括各机型执行的航班子集和相应的运行成本。 2、问题描述 已知某航空公司航班频率和时刻安排如《运筹学课程设计指导书》中表1所示,航班需求数据和运输距离如表2所示,其中,OrignA/P表示起飞机场,Dep.T.表示起飞时间,Dest.A/P表示目标机场,Dist表示轮挡距离,Demand表示航班需求量,Std Dev.表示需求的标准差。该航空公司的机队有两种机型:9架B737-800,座位数162;6架B757-200,座位数200。飞八个机场:A,B,I,J,L,M,O,S。 B737-800的CASM(座英里成本)是0.34元,B757-200是0.36元。两种机型的 RASM(座英里收益)都是 1.2元。以成本最小为目标进行机型指派,在成本方面不仅考虑运行成本,还必须考虑旅客溢出成本,否则将偏向于选取小飞机,使航空公司损失许多旅客。 旅客溢出成本是指旅客需求大于航班可提供座位数时,旅客流失到其他航空公司造成的损失。旅客需求服从N(μ,σ)的正态分布。如果机票推销工作做得好,溢出旅客并不全部损失,有部分溢出旅客将该成本航空公司其他航班,这种现象叫做“再获得”(Recapture)。设有15%的溢出旅客被再获得。 将飞机指派到航班上去,并使飞机总成本最小。 二、分析建模 1.确定决策变量 经过对问题描述的分析得出,要解决飞机机型指派问题,我设定了两类变量: (1)针对各条航线的机型,令B737-800和B757-200分别为机型1和机型2,设变量Xi,j.其中101≤i≤142,j=1或2。且对于变量Xi,j=0或1,当Xi,j=1,表示第i条航线由第j 种飞机运营。例如,X101,1=1,则第101号航班由第1种机型飞行,且X101,2=0 (2)针对机场时间节点飞机流的变量,设变量Gm,j.表示对于第m个节点上第j种机型的数量,例如,G A1,1表示A机场第1个节点上第1种机型的数量。 2.目标函数 以飞机总成本最小为指派目标,而单个航班的飞机总成本包括两个部分:1.运输成本;2. 旅

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1 +x 2 与 约束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

运筹学各章的作业题答案解析

《管理运筹学》各章的作业 ----复习思考题及作业题 第一章绪论 复习思考题 1、从运筹学产生的背景认识本学科研究的内容和意义。 2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。 3、体会运筹学的学习特征和应用领域。 第二章线性规划建模及单纯形法 复习思考题 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 作业题: 1、把以下线性规划问题化为标准形式: (1) max z= x1-2x2+x3 s.t. x1+x2+x3≤12 2x1+x2-x3≥ 6 -x1+3x2=9 x1, x2, x3≥0 (2) min z= -2x1-x2+3x3-5x4 s.t x1+2x2+4x3-x4≥ 6 2x1+3x2-x3+x4=12 x1+x3+x4≤ 4 x1, x2, x4≥0

排队论习题

排队论习题 1、某大学图书馆的一个借书柜台的顾客流服从泊松流,平均每小时50人,为顾客服 务的时间服从负指数分布,平均每小时可服务80人,求: (1)顾客来借书不必等待的概率3/8 (2)柜台前平均顾客数5/3 (3)顾客在柜台前平均逗留时间1/30 (4)顾客在柜台前平均等待时间1/80 2、一个新开张的理发店准备雇佣一名理发师,有两名理发师应聘。由于水平不同,理发师甲平均每小时可服务3人,雇佣理发师甲的工资为每小时14元,理发师乙平均每小时可服务4人,雇佣理发师乙的工资为每小时20元,假设两名理发师的服务时间都服从负指数分布,另外假设顾客到达服从泊松分布,平均每小时2人。问:假设来此理发店理发的顾客等候一小时的成本为30元,请进行经济分析,选出一位使排队系统更为经济的理发师。 3、一个小型的平价自选商场只有一个收款出口,假设到达收款出口的顾客流为泊松流,平均每小时为30人,收款员的服务时间服从负指数分布,平均每小时可服务40人。(1)计算这个排队系统的数量指标P0、L q、L s、W q、W s。 (2)顾客对这个系统抱怨花费的时间太多,商店为了改进服务准备队以下两个方案进行选择。 1)在收款出口,除了收款员外还专雇一名装包员,这样可使每小时的服务率从40人提高到60人。 2)增加一个出口,使排队系统变成M/M/2系统,每个收款出口的服务率仍为40人。 对这两个排队系统进行评价,并作出选择。 4、汽车按泊松分布到达某高速公路收费口,平均90辆/小时。每辆车通过收费口平均需时间35秒,服从负指数分布。司机抱怨等待时间太长,管理部门拟采用自动收款装

置使收费时间缩短到30秒,但条件是原收费口平均等待车辆超过6辆,且新装置的利用率不低于75%时才使用,问上述条件下新装置能否被采用。 5、有一台电话的共用电话亭打电话的顾客服从λ=6个/小时的泊松分布,平均每人打电话时间为3分钟,服从负指数分布。试求: (1)到达者在开始打电话前需等待10分钟以上的概率 (2)顾客从到达时算起到打完电话离去超过10分钟的概率 (3)管理部门决定当打电话顾客平均等待时间超过3分钟时,将安装第二台电话,问当λ值为多大时需安装第二台。 6、某无线电修理商店保证每件送到的电器在1小时内修完取货,如超过1小时分文不收。已知该商店每修一件平均收费10元,其成本平均每件5.5元,即每修一件平均赢利4.5元。已知送来修理的电器按泊松分布到达,平均6件/小时,每维修一件的时间平均为7.5分钟,服从负指数分布。试问: (1)该商店在此条件下能否赢利 (2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。 7、顾客按泊松分布到达只有一名理发员的理发店,平均10人/小时。理发店对每名顾客的服务时间服从负指数分布,平均为5分钟。理发店内包括理发椅共有三个座位,当顾客到达无座位时,就依次站着等待。试求: (1)顾客到达时有座位的概率 (2)到达的顾客需站着等待的概率 (3)顾客从进入理发店到离去超过2分钟的概率 (4)理发店内应有多少座位,才能保证80%顾客在到达时就有座位。 8、某医院门前有一出租车停车场,因场地限制,只能同时停放5辆出租车。当停满5辆后,后来的车就自动离去。从医院出来的病人在有车时就租车乘坐,停车场无车时就向附近出租汽车站要车。设出租汽车到达医院门口按λ=8辆/小时的泊松分布,从医院依次出来的病人的间隔时间为负指数分布,平均间隔时间6分钟。又设每辆车每次只载一名病人,并且汽车到达先后次序排列。试求:

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

排队论练习题

第9章排队论 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

运筹学课设 doc(1)

西安建筑科技大学课程设计(论文)任务书 一、本次课程设计应达到的目的 1. 掌握运筹学知识在管理问题中应用的基本方法与步骤; 2. 巩固和加深对所学运筹学理论知识及方法的理解与掌握; 3. 培养与锻炼学生从管理实践中提炼问题、分析问题、构建模型求解问题的综合应用能力; 4. 上机练习,了解与掌握几种常用的运筹学计算软件及其使用与操作方法; 5. 锻炼并初步掌握运筹学模型求解程序的编写方法与技术。 6. 初步了解学术研究的基本方法与步骤,并通过设计报告的撰写,了解学术报告的写作方法。 二、本次课程设计任务的主要内容和要求 1. 结合专业知识,对某一实际管理问题进行分析,调查收集相关数据,并整理出符合问题特征的数据,包括目标因素、约束因素以及必须的参数与系数等等; 2. 在上一步分析基础上,按照运筹学建模的基本方法与要求,通过抽象处理,建立所研究问题的运筹学模型,判断模型的类型并选择求解方法; 3. 上机练习,学习常用运筹学计算软件的使用与基本操作方法,并选择其中一种对所建运筹学模型进行求解,得出最优解、灵敏度计算等相关计算结果; 4. 结合理论课以及计算机程序设计课程所学的基本知识,编写线性规划单纯形法的计算程序,别用所编写程序和已学习的某种运筹学计算软件,并分求解相关课后习题,对所编写的算程序进行验证; 5. 总结设计过程,整理与记录设计中的关键工作与成果,撰写设计报告。 三、应收集的资料及主要参考文献: 1. 应收集的资料: [1]研究对象的现状数据材料 [2]与所建模型的参数、系数、约束条件等因素相关的数据材料 2. 主要参考文献: [1]杨茂盛.运筹学(第三版).陕西科学技术出版社,2006 [2]运筹学编写组. 运筹学(第三版).清华大学出版社,2005 [3]徐玖平, 胡知能, 王緌. 运筹学(第二版). 北京: 科学出版社, 2004 [4]胡运权. 运筹学基础及应用. 哈尔滨: 哈尔滨工业大学出版社, 1998 [5]陈汝栋,于延荣. 数学模型与数学建模(第2版).国防工业出版社,2009 [6]刘建永.运筹学算法与编程实践:Delphi实现.清华大学出版社,2004 [7]谢金星,薛毅.建优化建模LINDO/LINGO软件.清华大学出版社,2005

运筹学习题课

运筹学习题课 一、选择题 1.用图解法解线性规划时,以下几种情况中不可能出现的是( )。 A. 可行域有界,无有限最优解 B. 可行域无界,有唯一最优解 C. 可行域是空集,无可行解 D. 可行域有界,有多重最优解 2.根据线性规划的互补松弛定理,安排生产的产品机会成本一定( )利润. A. 小于 B. 等于 C. 大于 D. 大于等于 3.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为( )。 A. 3 B. 2 C. 1 D. 以上三种情况均有可能 4.在求解整数规划问题时,不可能出现的是( )。 A. 唯一最优解 B. 无可行解 C. 多重最佳解 D. 无穷多个最优解 5.1m n +-个变量构成一组基变量的充要条件是( )。 A. 1m n +-个变量恰好构成一个闭回路 B. 1m n +-个变量对应的系数列向量线性相关 C. 1m n +-个变量中部分变量构成一个闭回路 D. 1m n +-个变量不包含任何闭回路 6.线性规划具有唯一最优解是指( )。 A. 最优表中存在常数项为零 B. 可行解集合有界 C. 最优表中存在非基变量的检验数为零 D. 最优表中非基变量检验数全部非零 7.有6 个产地4个销地的产销平衡运输问题模型具有特征( )。 A. 有10个变量24个约束 B. 有24个变量10个约束 C. 有24个变量9约束 D. 有9个基变量10个非基变量 8.下列关于网络最大流的说法中,不正确的是( )。 A. 可行流*f 是最大流,当且仅当网络中存在关于* f 的增广链 B. 用标号法求解最大流问题,同时可得到一个最小截集 C. 最小截集的容量的大小影响网络总的输送量的提高 D. 网络的最大流需满足容量条件和平衡条件

运筹学课程设计

目录 一问题提出 (1) 二问题分析 (1) 三模型建立 (1) 3.1模型一的建立 (3) 3.2模型二的建立 (5) 3.3模型三的建立 (6) 四结果分析 (8) 五模型评价 (8) 5.1模型优点 (8) 5.2模型缺点 (8) 六参考文献 (9)

旅游最短路 一 问题提出 周先生退休后想到各地旅游。计划从沈阳走遍华北各大城市。请你为他按下面要求制定出行方案: 1. 按地理位置(经纬度)设计最短路旅行方案; 2. 如果2010年5月1日周先生从沈阳市出发,每个城市停留3天,可选择航空、铁路(快车卧铺或动车),设计最经济的旅行互联网上订票方案; 3. 设计最省时的旅行方案,建立数学模型,修订你的方案; 二 问题分析 第一问要求按地理位置(经纬度)设计最短路旅行方案,求最短路径是一个典型的旅行售货商(TSP )模型。TSP 模型可解的是知道任意两个城市之间的距离,通过查阅资料可以华北各个城市所在的经纬度,所以首先就需要通过经纬度计算出任意两个城市之间的距离,得到一个距离矩阵,再建立()TSP 模型, 对模型进行求解。问题的目标函数为 ij n i n j ij x d z ∑∑==1min ( )j i ≠ 其中10或=ij x , 若1=ij x 表示周先生直接从i 市到j 市。建立整数目标规划,用Lindo 软件求解,找出所有1=ij x ,确定最短路的旅行方案。 第二问要求最经济,所以应从票价方面进行考虑,通过查阅资料可得各城市之间航空、铁路(快车卧铺或动车)的不同票价,由于要求最经济的旅行互联网上订票方案,所以选取三种类型票价中最低的票价,构建票价矩阵。用票价矩阵代替第一问中的距离矩阵,求解出一条最经济路径。 第三问要求设定省时的方案就需要考虑时间因素,因为以上三种交通工具中航空用时最短,选择飞机作为旅行交通工具。通过查阅资料得到各城市间航班的时间矩阵,用时间矩阵代替第一问中的距离矩阵,求解一条最省时的路径。 三 模型建立 在具体的实现上,我们采用了整数规划法,并辅以LINGO 软件编程实现 在下述意义下,引入一些0—1变量: ???≠=其他情况 且到巡回路线是从0,1j i j i x ij

《运筹学》_练习卷一、二、三_-_答案

《运筹学》练习卷(一)-答案 一、填空题(每空1分,共8分) 1、在线性规划问题中,若存在两个最优解时,必有相邻的顶点是最优解。 2、树图中,任意两个顶点间有且仅有一条链。 3、线性规划的图解法适用于决策变量为两个的线性规划模型。 4、在线性规划问题中,将约束条件不等式变为等式所引入的变量被称为松弛变量。 5、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。 6、运输问题中求初始基本可行解的方法通常有最小费用法与西北角法两种方法。 7、称无圈的连通图为树,若图的顶点数为p,则其边数为 p-1 。 二、单项选择题(每题2分,共10分) 1、最早运用运筹学理论的是(A) A 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署 B 美国最早将运筹学运用到农业和人口规划问题上 C 二次世界大战期间,英国政府将运筹学运用到政府制定计划 D 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上 2、下列哪些不是运筹学的研究范围(D) A 质量控制 B 动态规划 C 排队论 D 系统设计 3、对于线性规划问题,下列说法正确的是(D) A 线性规划问题可能没有可行解 B 在图解法上,线性规划问题的可行解区域都是“凸”区域 C 线性规划问题如果有最优解,则最优解可以在可行解区域的顶点上到达 D 上述说法都正确 4、下面哪些不是线性规划问题的标准形式所具备的(C)A所有的变量必须是非负的 B 所有的约束条件(变量的非负约束除外)必须是等式 C 添加新变量时,可以不考虑变量的正负性 D 求目标函数的最小值 5、在求解运输问题的过程中运用到下列哪些方法(D) A 西北角法 B 位势法 C 闭回路法 D 以上都是 三、名词解释(每题3分,共12分) 1、需求:对存储来说,需求就是输出。最基本的需求模式是确定性的,在这种情况下,某一种货物的未来需求都是已知的。

胡运权排队论习题解

胡运权排队论习题解 某修理店只有一个修理工人,来修理的顾客到达次数服从普阿松分布,平均每小时3人,修 理时间服从负指数分布,平均需10分钟,求 (1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率 ; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间; (8) 必须在店内消耗15分钟以上的概率. (1)P o (3)1 P o 1(人 ); 1 1 (小时); 3 1 1 答:(1修理店空闲时间概率为-;(2)店内有三个顾客的概率为 —;(3)店内至少 1 1 有一个顾客的概率为寸;(4)店内顾客平均数为1人;(5)等待服务顾客平均数为1 2 人; (6)在店内平均逗留时间 1 分钟;(7)平均等待修理时间为丄分钟;(8)必须在店内 3 6 15 消耗15分钟以上的概率为e 20. 1 丄(小时); 6 解:该系统为(M/M/1/ / )模型, 3, 60 6. 10 ⑵P 4 (1 (1 扯4 1 ; ; ⑷L s (5)L q 23 1(人); (8)1-F( )e -(-) e^ 60 e -25

90 3600 38 94.7 94.7 0.95 10.2设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为 打字时间服从指数分布,平均时间为 15分钟,求 (1) 顾客来打字不必等待的概率; (2) 打字室内顾客的平均数; (3) 顾客在打字室内平均逗留时间; (4) 若顾客在打字室内的平均逗留时间超过 1.25小时,则主人将考虑增加设备 及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做? 解:该题属M /M /1模型. (1)P 0 1 1 - 4 4 (2)L s - 3 3(人 ); 4 3 ⑶W s - — 1 1(小时); 4 3 ⑷Q W s 1 1.25; 1.25, 323.2 3 0.2(人 /小时). 4 1 答:1)顾客来打字不必等待的概率为-;(2)打字室内顾客平均数为3人;(3)顾客在 4 打字室内平均逗留时间为1小时;(4)平均到达率为0.2人/小时时,店主才会考 虑增加设备及打字员. 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间 为38s 。由于驾驶人员反映等待时间太长,主管部门打算采用新装置,使汽车通过关卡的平 均时间减少到平均30s 。但增加新装置只有在原系统中等待的汽车平均数超过 5辆和新系统 中关卡空闲时间不超过 10%时才是合算的。根据这一要求,分析新装置是否合算。 解:该系统属于 M/M/1模型 旧装置各参数计算: 90/h 20分钟, 60 3(人/小时), 20 60 4(人/小 时). 15

运筹学课程设计

运筹学

案例6.1网络中的服务及设施布局 (a)在11个小区内准备共建一套医务所,邮局,储蓄所,综合超市等服务设施,应建于哪一个居民小区,使对居民总体来 说感到方便; ●问题分析 为满足题目的要求。只需要找到每一个小区到其他任何一个小区的最短距离。然后再用每一小区的人数进行合理的计算后累加,结果最小的便是最合理的建设地。 ●以下表中数据d ij表示图中从i到j点的最短距离

设施建于各个小区时居民所走路程

由以上数据可知。各项服务设施应建于第八个居民小区。 (b)电信部门拟将宽带网铺设到各个小区,应如何铺设最为经济 ●问题分析 要解决这个问题时期最为经济。只需要找到图找的最小部分树便可以。 ●以下是最小部分树。 起点终点距离 1 4 4 4 2 5 4 5 5 5 6 4 6 3 5 4 8 6 8 7 4 8 9 4 7 10 5 10 11 0 所以按照以上路径进行线路铺设,就可达到最经济。总的距离为42 (c)一个考察小组从小区1出发,经5.8.10。小区(考察顺序不

限),最后到小区9再离去,请帮助选一条最短的考察路线。 问题分析 找出这几个小区通过的不同组合,计算出路程总和,最短的就是最优路线。 以下是不同组合以及各个路程 一·1→5(11)5→8(8)8→10(9)10→9(12)40 二·1→5(11)5→10(17)10→8(9)8→9(4)41 三·1→8(12)8→10(9)10→5(17)5→9(6)44 四·1→8(12)8→5(8)5→10(17)10→9(12)49 五·1→10(13)10→5(17)5→8(8)8→9(4)42 六·1→10(13)10→8(9)8→5(8)5→9(6)36 由以上数据可知最短的考察路线是 1→10→8→5→9 案例8.2用不同的方法解决最短路问题 说明:为了解题的方便,现将图中的代号修改如下。A、B1、B2、B3、C1、C2、D1、D2、D3、E.修改为1、2、3、4、5、7、8、9、10。

运筹学课后习题答案

第一章 线性规划及单纯形法 1.用X j (j=1.2…5)分别代表5中饲料的采购数,线性规划模型: 12345123412341234min 0.20.70.40.30.8.3267000.50.2300.20.8100 (1,2,3,4,5,6)0 j z x x x x x st x x x x x x x x x x x x x x x x j =+++++++≥+++≥+++≥=≥555 +18 +2 0.5+2 2.解:设123456x x x x x x x 表示在第i 个时期初开始工作的护士人数,z 表示所需的总人数,则 123456 161223344556min .607060502030 (1,2.3.4.5.6)0i z x x x x x x st x x x x x x x x x x x x x i =++++++≥+≥+≥+≥+≥+≥=≥ 3.解:设用i=1,2,3分别表示商品A ,B ,C ,j=1,2,3分别代表前,中,后舱,Xij 表示装于j 舱的i 种商品的数量,Z 表示总运费收入则: 111213212223313233111213212223313233112131122232132333112131max 1000()700()600() .6001000800105740010575400105715008652000z x x x x x x x x x st x x x x x x x x x x x x x x x x x x x x x =++++++++++≤++≤++≤++≤++≤++≤++≤ 122232132333112131122232132333 122232112131 132333865300086515008650.15 8658650.15 8658650.1 8650(1,2.3.1,2,3)ij x x x x x x x x x x x x x x x x x x x x x x x x x i j ++≤++≤++≤++++≤++++≤++≥== 5. (1)

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

排队论练习题

第9章排队论 9.1 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、 3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 9.2、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时 间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 9.3、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

运筹学部分课后习题解答_1

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题 a) 12 12 12 12 min z=23 466 ..424 ,0 x x x x s t x x x x + +≥ ? ? +≥ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为 最优解,即该问题有无穷多最优解,这时的最优值为 min 3 z=2303 2 ?+?= P47 1.3 用图解法和单纯形法求解线性规划问题 a) 12 12 12 12 max z=10x5x 349 ..528 ,0 x x s t x x x x + +≤ ? ? +≤ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点, 即 1 12 122 1 349 3 528 2 x x x x x x = ? += ?? ? ?? +== ?? ? ,即最优解为* 3 1, 2 T x ?? = ? ?? 这时的最优值为 max 335 z=1015 22 ?+?=

单纯形法: 原问题化成标准型为 121231241234 max z=10x 5x 349 ..528,,,0x x x s t x x x x x x x +++=?? ++=??≥? j c → 10 5 B C B X b 1x 2x 3x 4x 0 3x 9 3 4 1 0 0 4x 8 [5] 2 0 1 j j C Z - 10 5 0 0 0 3x 21/5 0 [14/5] 1 -3/5 10 1x 8/5 1 2/5 0 1/5 j j C Z - 1 0 - 2 5 2x 3/2 0 1 5/14 -3/14 10 1x 1 1 0 -1/7 2/7 j j C Z - -5/14 -25/14

运筹学 第三版 胡运权 郭耀煌 黄色封皮 第九and十章排队论习题答案

9.1 有A,B,C,D,E,F 6项工作,关系分别如图9-38(a),(b),试画出网络图。 9.2 试画出下列各题的网络图(见表9-8,表9-9,表9-10),并为事项编号。

9.3 设有如图9-39,图9-40网络图,用图上计算法计算时间参数,并求出关键 路线。

9.4 绘制表9-11,表9-12所示的网络图,并用表上计算法计算工作的各项时间参数、确定关键路线。

9.5 某工程资料如表9-13所示。 要求: (1)画出网络图。 (2)求出每件工作工时的期望值和方差。 (3)求出工程完工期的期望值和方差。 (4)计算工程期望完工期提前3天的概率和推迟5天的概率。 解:每件工作的期望工时和方差见表9-13的左部。 工程完工期的期望值为32个月,方差为5(1+1+1+1+1)。 工程期望完工期提前3天的概率为0.09,推迟5天的概率为0.987。

9.6 对图9-41所示网络,各项工作旁边的3个数分别为工作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完工时间的概率。 根据关键线路,再考虑到其他线路上的时差很多,可知最早完工时间应该等于关键线路上各个工作最早完工时间之和: 4+2+6+2+3=2=19 。概率为0.005 。 9.7 某项工程各道工序时间及每天需要的人力资源如图9-42所示。图中,箭线上的英文字母表示工序代号,括号内数值是该工序总时差,箭线下左边数为工序工时,括号内为该工序每天需要的人力数。若人力资源限制每天只有15人,求此条件下工期最短的施工方案。 解:最短工期还是15天。各个工作的开始时间如下图所示:

相关文档