文档库 最新最全的文档下载
当前位置:文档库 › 功率计量芯片HLW8012介绍及应用

功率计量芯片HLW8012介绍及应用

功率计量芯片HLW8012介绍及应用
功率计量芯片HLW8012介绍及应用

功率计量芯片HLW8012介绍与应用

一、引言

HLW8012是深圳市合力为科技推出的单相电能计量芯片,可以测量有功功率、电量、电压有效值、电流有效值;SOP8封装,体积小,广泛应用于智能家电、节能插座,智能路灯、智能LED 灯等应用场合。本文主要内容:1、HLW8012介绍;2、HLW8012应用硬件电路;3、HLW8012脉冲软件测量;4、HLW8012应用场合及展望。

二、、HLW8012介绍

1、HLW8012主要特性

(1)高频脉冲CF ,指示有功功率,在1000:1范围内达到±0.3%的精度

(2)高频脉冲CF1,指示电流或电压有效值,使用SEL 选择,在500:1范围内达到±0.5%的精度 (3)内置晶振、2.43V 电压参考源及电源监控电路 (4)5V 单电源供电,工作电流小于3mA 2、HLW8012引脚图

VDD

VIP

VIN

CF1

SEL

V2P

CF

选择CF1输出

电流/电压值

/电压值

图1芯片引脚图

引脚序号

引脚名称 输入/输出 说明

1 VDD 芯片电源 芯片电源

2,3 V1P ,V1N 输入 电流差分信号输入端,最大差分输入信号为±43.75mV 4 V2P 输入 电压信号正输入端。最大输入信号±700mV 5 GND 芯片地 芯片地

6 CF 输出 输出有功高频脉冲,占空比50% 7, CF1 输出 SEL=0,输出电流有效值,占空比50%; SEL=1,输出电压有效值,占空比50%; 8 SEL

输入

配置有效值输出引脚,带下拉

● 模拟信号输入

(1)V1P ,V1N 输入电流采样信号:峰峰值V P-P :±43.75mV ,最大有效值:±30.9mV 。 (2)V2P 输入电压采样信号:峰峰值V P-P :±700mV ,最大有效值:±495mV 。 ● 数字信号输出

(1)高频脉冲CF (PIN6):指示功率,计算电能;输出占空比为1:1的方波。

(2)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL 选择;输出占空比为1:1的方波。 注:MCU 与HLW8012的接口不是使用协议进行读取,而是通过测量CF 、CF1引脚输出高频脉冲的周期来计算功率、电流、电压值。 3、芯片内部框图

SEL

CF1CF

图2 芯片内部框图

HLW8012内部带有2路PGA 及ADC ,对电流、电压采样信号进行模数转换,得到数字信号,芯片内部计算有功功率值、电流有效值、电压有效值,经过频率转换模块,HLW8012将有功功率值、电流有效值、电压有效值转换为方波脉冲输出(占空比1:1),各数值的大小与频率的大小成正比,与周期的大小成反比。

三、HLW8012应用硬件设计

所有电能计量测量,电压、电流通道的采样方式有2种:互感器采样方式、电阻采样方式。互感器采样方式成本高,本文只介绍电阻采样方式。外围硬件主要包含几部分:电源电源、功率计量电路、MCU 接口。 1、电源电路

为了配合电阻采样方式(即从电网直接采样,非隔离),电源电路必须为非隔离电源,非隔离电源有2种方式:AC-DC 非隔离电源、阻容降压电源。两者的比较如下:

序 项目

AC-DC 非隔离电源 阻容降压电源

1 驱动电流(5V 时) 最大可达到150mA 约35mA (电容为0.68uF 时) 2

体积 小 大 3 成本 高 低 4 可靠性

高 低

5 输入电压影响驱动能力 基本不影响 电压下降,驱动能力下降 6

零负载功耗

基本为零

与驱动电流一致

用户可根据产品的不同要求,选用不同的电源电路。 (1)AC-DC 非隔离电源

下图是其中一种AC-DC 非隔离电源,L 与N 分别是交流电压的火线与零线,以零线作为地线。此设计得到电压为5V ,驱动电流大约在50mA ,可以根据产品需求增加一些元器以提高驱动能力。

图3 AC-DC 非隔离电源

(2)阻容降压电源

下图是低成本的阻容降压电源,以零线作为地线:

图4 阻容降压电路

经安规电容C1降压,二极管整流后,采用1N4738将电源降压至8.2V ,再经过稳压芯片78L05将输出电源稳定在5V ,给HLW8012提供电源。选用0.68uF 的安规电容,电源电路大约可以提供20mA-30mA 的驱动电流;如果需要设计更小体积的系统,可以选用0.47uF 的小体积的安规

电容,驱动电流约在15mA 。如果需要驱动继电器,建议使用更大的电容,比如1uF 。 2、功率计量电路

HLW8012集成内置振荡器、参考电源,外围电路非常简单,主要包括电流、电压的采样。电流信号是通过康铜电阻对负载的工作电流进行采样,电压信号是通过电阻网络分压采样。

须注意康铜电阻的接法:一端与GND 连接,另一端再与负载连接。

图5 电能计量电路

3、MCU 与HLW8012的接口

MCU 与HLW8012的接口有2种情况:MCU 与HLW8012直连、MCU 通过光耦与HLW8012连接 (1)MCU 与HLW8012直连

图6 MCU 与HLW8012直连

若MCU 与HLW8012的工作电源为同一个,且

MCU 其它控制不需要隔离措施,那么

MCU 可以与HLW8012的接口直连。HLW8012高频脉冲引脚连接MCU 的外部中断,SEL 连接普通IO

口。接口资源如下表:

序 测量参数 MCU 与HLW8012连接 1 功率,电量

1个IO 口(1个外部中断) 2 功率,电量 + 电流/电压 2个IO 口(2个外部中断)

3

功率,电量 + 电流 + 电压

3个

IO 口(2个外部中断,1个GPIO )

(2)MCU 通过光耦与HLW8012连接

图7 MCU 通过光耦与HLW8012连接

若MCU 工作电源为隔离电源,则与

HLW8012的连接必须通过光耦隔离,MCU 的接口资源需要如上表。

四、HLW8012脉冲软件测量

HLW8012的脉冲输出图如下:

图8 HLW8012脉冲

1、脉冲测量原理

测量1个脉冲周期的长短,就是测量相邻2个下降沿(或上升沿)的时间间隔T 。测量到周期之后就可以根据比例关系计算功率值、电压值、电流值。 2、脉冲测量方法

为了提高测量精度,CF 、CF1与MCU 外部中断IO 相连,外部中断模式设置为下降沿触发中断,使用MCU 外部中断来确定2次中断间隔,使用MCU 定时器来测量相邻2次外部中断的时间间隔。

3、软件流程图

脉冲测量的程序主要是在中断服务子程序中运行,相关流程图如下:

图9 外部中断服务子程序

图10 定时中断服务子程序

图11 周期测量结束的操作

按照以上流程图,得到功率、电压、电流的脉冲周期之后,功率值、电压值、电流值计算都在大循环程序中运行。

五、HLW8012应用展望

HLW8012可以测量有功功率、电量、电压有效值、电流有效值,外围元器件少,SOP8封装,适合于许多电能测量场合,尤其是体积要求小的产品。插座类如:计量插座、WIFI智能插座、电视脑智能节能插座、电脑智能节能插座等;智能采集器如:智能路灯采集终端。

随着智能家电的发展,内部集成的传感器越来越多,电能计量模块将会是最基本的“传感器”之一,它可以“感知”家电的真实状态:若没有功率,表示家电确认关闭,若有功率,表示家电仍在工作。电能计量模块可以统计耗电量,检测当前电压、电流是否正常,若出现异常状态,执行相应的处理措施。所以随着智能家电的发展,家电越来越智慧,电能计量的应用将会更加广泛。

STPM01计量芯片资料

1/9 September 2004 s INTEGRATED LINEAR VREGS TO SUPPLY THE DIGITAL AND ANALOG CORES s ADVANCED BICMOS TECHNOLOGY FOR HIGH PERFORMANCE s OTP FOR CALIBRATION AND CONFIGURATION s INTEGRATED OSCILLATOR WITH EXTERNAL RESISTOR OR CRYSTAL s MONITOR BOTH LIVE AND NEUTRAL FOR TAMPER DETECTION s SIGMA DELTA 1st ORDER CONVERTER s POWER SUPPLY CURRENT LESS THAN 6mA s SUPPORT 50 ÷ 60 Hz – IEC 62052-11, IEC 62053-2X SPECIFICATION FOR CLASS 0.5 AC WATT METERS s PRECISION VOLTAGE REFERENCE ON CHIP: 1.25 V AND 30 ppm/°C MAX s TSSOP20 PACKAGE DESCRIPTION The STPM01 is designed for effective measurement of active energy in a power line system using the Rogowski and/or Shunt principle. This device can be implemented as a single chip 1-phase energy meter or as a peripheral measurement in a microprocessor based 1-phase or 3-phase energy meter. The STPM01 consists, essentially, of two parts:the analog part and the digital part. The former, is composed by preamplifier and 1st order ΣD AD converter blocks, Bandgap voltage reference,Lowdrop voltage regulator and a pair of DC buffer,the latter, is composed by system control, clock generator, hard wired DSP and SPI interface.There is also a OTP block, which is controlled through the SPI by means of a dedicated command set. The configured bits are used for testing, configuration and calibration purpose.From a pair of ΣD output signals coming from analog section, a DSP unit computes the amount of consummated active, reactive and apparent energy, RMS values of voltage and current value.The results of computation are available as pulse frequency and states on the digital outputs of the device or as data bits in a data stream, which can be read from the device by means of SPI interface. This system bus interface is used also during production testing of the device and/or for temporary or permanent programming of bits of internal OTP. In the STPM01 the calibration is very easy: an output signal with pulse frequency proportional to energy is generated, this signal is used to enable the calibration of the energy meter. When the device is fully configured and calibrated,a dedicated bit of OTP block, can be written permanently in order to prevent accidental entering into some test mode or changing any configuration. Table 1: Order Codes Type Temperature Range Package Comments STPM01 -40 to 85 °C TSSOP20 (Tape & Reel) 2500 parts per reel STPM01 PROGRAMMABLE SINGLE PHASE ENERGY METERING IC WITH TAMPER DETECTION This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. PRELIMINARY DATA Rev. 1

集成电路使用常识

集成电路使用常识 费仲兴编译 前言 在多年的半导体器件的推广应用中了解到,很多整机厂的技术人员并不太了解集成电路使用的必要常识,即使是对于我公司的技术人员来说,关于这方面知识的掌握也不够全面,因此有必要把有关这方面的材料编译出来,供大家参考。 本材料主要根据日本东芝公司、三洋公司双极集成电路手册中的有关内容编译而成,有些地方加进了一些个人的理解。一共包含了以下三个方面的内容,一是有关集成电路最大额定值的物理意义以及和产品性能的关系;二是整机设计中功率集成电路的热设计方法;三是集成电路使用中的注意事项。其中最大额定值中的各种使用条件和环境温度的相互关系、关系集成电路功耗等的考虑方法还是值得参考的。 一、最大额定值 1、最大额定值的必要性和意义 根据半导体物理理论,半导体器件中载流子密度和温度成指数关系,因此温度对集成电路性能影响很大。 如果在集成电路内部器件的PN结上施加上足够的电压,载流子就会得到附加的能量,引起雪崩倍增,反向电流迅速增大,这时往往会发生击穿现象。 电流所引起的变化不像电压所引起的变化那样剧烈,但它会使半导体元件的性能缓慢地劣化,逐步地失去功能。此外,流过PN结的电流和施加电压的乘积变为功耗,引起温升,如果温度过高,也会引起热破坏。因此,温度、电压、电流和功耗就成为限制集成电路工作的四大因素。 据于上述理由,集成电路制造厂家往往对施加在集成电路上的电压、电流、功耗和温度规定最大容许值,要求用户遵照执行,这就是通常所说的最大额定值。 究竟什么是最大额定值,日本JIS7030(日本工业标准晶体管试验方法)中是这样定义的: 关于集成电路的最大额定值,JIS中没有明确定义过,但只要把上述定义中的晶体管换成集成电路的话,就成为集成电路最大额定值的定义。 集成电路最大额定值,就是为了保证集成电路的寿命和可靠性不可超越的额定值。这些额定值受结构材料、设计和生产条件等限制,因集成电路的种类不同其数值也不同。如果采用绝对最大额定值的概念,可以作如下表述。 所谓绝对最大额定值,就是在工作中即使瞬间也不能超过的值,如果定有两个以上项目的最大额定值时,其中的任何一个项目也不容许超过。 此外,最大额定值的大小不仅决定于半导体芯片内部的特征,同时还要考虑芯片以外的结构材料,如封装树指、芯片焊料等材料的特征。 超过最大额定值使用时,有时会不回复其特性。此外,应在设计时考虑电压的变化、零件特性的元件误差、环境温度的变化及输入信号的变化等,避免超过最大额定值中的任何一项。 2、电压的最大额定值 集成电路内部有许多PN结,当PN结上施加的电压一高,PN结空间电荷区内形成高电场强度,由于载流子的倍增作用,会引起电子雪崩,如果没有足够大的限流电阻,就会引起PN结的损坏。

单相电能计量芯片MCP3906及其应用

单相电能计量芯片MCP3906及其应用 引言电能表作为电能计量的专用仪表,在电能管理仪器仪表中占有很大比例,其性能直接影响着电能管理的效率和科技水平。从产品的功能、性能及经济效益等多方面来看,全电子电能表与传统的感应式电能表相比,存在着明显的优势。而且电能表作为计量管理和用电管理的终端,它所提供的各种功能是实现电力系统自动化管理必不可少的。传统的测量都是采用A/D转换电路,但这种方法使部分电参量测量精度欠佳,性价比不理想,且软件编程相对复杂,微控制器必须对采样电路进行数据处理(如电压、电流的平均值、有效值,有功、无功计算等)。而随着现代电子产业的高速发展,测量电路的集成化、模块化成为未来发展的趋势,各大器件公司也纷纷推出自己的电能计量芯片。这种集成芯片不仅精确度高,而且硬件、软件设计简单,价格便宜,性价比高,极具市场潜力。本文给出了基于Microchip公司的MCP3906单相电能计量芯片,并以AVR公司的ATMega16为MCU设计开发的一款新型单相电能表实现方案。与以往电能表相比,该方案具有设计接口简单、结构紧凑、可靠性高等特点。 1 MCP3906单相电能计量芯片 MCP3906是Microch ip公司推出的单相电能计量芯片,它支持国际电能计量标准技术规范IEC62053,可提供与平均有功功率成比例的频率输出,以及与瞬时功率成比例的高频输出用于电表校准。MCP3906内部包含两个16位△-∑ADC,可用于各种IB和IMAX电流和小分流器(<200μΩ )的电表设计。该芯片还包含一个超低温漂(<15ppm/℃)参考电压,通过特殊设计的带隙温度曲线,可在整个工业级温度范围内使温度梯度达到最小。固定功能的片上DSP模块可用于计算有功功率,此外,片上还有驱动机械计数器的高输出驱动器,可以减少现场故障和机械计数器咬合。芯片的空载门限模块可防止任何电流潜变(Creep)测量,而上电复位(Power on Reset,POR)模块则可在低电压时限制电表测量。因此,MCP3906是具备高现场可靠性的精密电能计量IC,并采用业界标准的引脚配置。 1.1 MCP3906的内部结构及工作原理 MCP3906是混合模拟/数字信号的CMOS集成电路,其内部结构框图。 MCP3906可提供与有功功率成比例的频率输出和与瞬时功率成比例的高频输出来用于校准。它的两个通道均使用16位二阶△-∑ADC,能以MCLK/4的频率对输入进行采样,同时允许对动态范围很宽的输入信号进行采样。可编程增益放大器(Programmable Gain Amplifier,PGA)扩大了电流输入通道(通道0)的可用范围。其有功功率的计算以及与计算有关的滤波均可在数字域中完成,从而提高了其稳定性和温漂性能。 MCP3906的两个数字高通滤波器(HPF1和HPF2)可以滤除两个通道的系统偏移量,因此,有功功率的计算不含任何电路或系统偏移量。经过高通滤波后,电压和电流信号相乘,即可得出瞬时功率信号。此信号不含直流偏移分量,因此可有效利用求平均法(Averaging Technique)计算出所需的有功功率输出。 瞬时功率信号包含的有功功率信息就是瞬时功率的直流分量。求平均法可用于计算正弦和非正弦波形,以及所有功率因数。瞬时功率经过低通滤波器(LPF)就可以产生瞬时有功功率信号。 通过MCP3906的DTF转换器可对瞬时有功功率信息进行累加,以产生输出脉冲,此脉冲的频率与平均有功功率成比例。FOUT0和FOUT1输出的低频脉冲可用于设计驱动机电式计数器和双相步进电机,以便显示实际消耗的有功功率。每个脉冲对应于一个固定的有功电量值,其功能可由F2、F1和F0的逻辑进行选择。HFOUT输出具有较高的频率设定和较低的积分周

智能功率集成电路发展概述

微电子技术学科前沿(三) ——智能功率集成电路发展技术前沿调研 指导老师:罗萍 学生:叶庆国 学号:2011032030018 SPIC:智能功率集成电路。随着微电子技术和功率MOS器件的发展,目前又新兴出一个领域:SPIC,Smart Power IC 。将输出功率集成器件与低压控制的信号处理以及传感、保护、检测、诊断等功能电路集成到同一芯片,是微电子技术和电力电子技术、控制技术、检测技术相结合的产物。SPIC自问世以来已经有了巨大的进步,汽车电子、平板显示、开关电源,电机驱动,工业控制,电源管理各方面应用广泛。 现就从SPIC(智能功率集成电路)的电路层面的技术实现,新型功率器件,封装技术,应用领域等多方面调研来了解智能集成电路的前沿动态。 1、Spic电路 SPIC 将所有的高压器件与低压电路集成在同一芯片上,消除了原来电力电子装置中各模块之间多余的连接[6]。这样既提高了电路的稳定性,也可以明显降低原来在高频工作时各模块之间引线对电路造成的破坏性影响,甚至可将过温、过流、过压和欠压等保护电路都集成进芯片去增强对功率器件的保护。因此,不仅显著地提高集成度、降低成本,更可令芯片整体的可靠性获得提升。 SPIC 共分为三个功能模块,分别是功率控制、传感保护和智能接口,如图1-3所示。其中,功率控制主要包括用作开关的各种功率半导体器件以及它们的驱动电路,在常见的率器件图腾柱式应用中,由于高侧器件的驱动电路与低侧器件的驱动电路分别参考不同的基准电位,驱动电路部分通常还要包含一个高压电平位移电路用以顺利从低侧向高侧传递控制信号。传感保护模块通过模拟电路采集芯片内各种电压、电流、温度信息并反馈给保护电路,在适当之时对芯片进行有效防护。另外,电力电子装置除了要与源和负载对接之外,还常常要与外部的计算机对接以实现编码控制。因此智能接口模块也非常重要,它使得SPIC 外界信息沟通及各种高级指令得以实现。 单片式 单片式智能功率集成电路具有成本低、体积小、工作稳定等诸多优点,自20世纪90 年代中期问世以来已得到广泛应用。功率半导体器件是单片式智能功率集成电路发展的关键所在,如何提高功率半导体器件的耐压、降低其导通电阻以及解决其工艺兼容性直接关系着单片式智能功率集成电路的发展。RESURF(REduced SURface Field)技术是设计横向功率半导体器件的关键技术之一,它能够在保证横向功率半导体器件击穿电压不变的同时,降低横向功率半导体器件的导通电阻。 开关电源,即是电路中的功率器件通过开关两种状态切换来控制电源向负载 输出稳定功率的一种电力电子装置。传统的开关电源,由于生产工艺技术水平不 足的原因,除其功率管和控制电路之外,还另有若干个分立器件,使得开关电源 在成本、体积以及可靠性等方面都受到不小的限制。因此,开关电源一直沿着以 下两个方向不断发展。 第一个方向是对开关电源的核心单元——控制电路实现集成化[27],1977 年国外率先推出PWM(Pulse Width Modulation,脉冲宽度调制)控制器集成电路,如美国SiliconGeneral 公司的SG3524、美国Uuitrode 公司(已被美国Texas Instruments公司收购)的UC3842。

基于功率测量芯片HLW8012的功率显示表设计

基于功率测量芯片HLW8012的功率显示表设计 [摘要] 功率显示表是一种用于显示电量数据的仪表,是针对电力系统、公共设施、智能大厦的电力监控需求而设计的。 本文主要讲述功率显示表的主要功能、硬件原理图等。该功率显示表可以对单相交流电路中的用电设备进行功率、电压和电流等参数的检测。仪表采用HLW7021作为控制MCU,以专用电能计量集成电路芯片HLW8012为电量采集的核心器件,显示电路由芯片SM1642驱动4位数码管显示。 [关键词] 功率显示模块,功率计量,功率检测,功率计量模块,,功率计量方案,HLW8012,智能家电,功率监测模块 [正文] 一、功率显示表原理 为了能够测量单相电路中的电流、电压、功率、电量和功率因系素等有效值,本次设计的采样电路以电能计量芯片HLW8012为主,不需使用复杂的设计电路和编写复杂的软件。因为HLW8012内置了晶振和参考电源,所以外围电路非常简单。 HLW8012主要特性 ●高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 ●高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精 度 ●内置晶振、2.43V 电压参考源及电源监控电路 ●5V单电源供电,工作电流小于3mA HLW8012输入输出 图1 芯片引脚图 功率显示表是对负载设备的用电情况进行实时的检测,将负载设备的用电数据进行收集,提供给控制终端,并通过4位数码管进行显示。使用HLW8012设计的功率检测模块的测量精度<0.3%,可以准确的测量功率、用电量等信息,具有性能稳定、设计简单等特点。 功率检测模块主要包含以下几个系统模块:电源模块,功率采集模块,主控制器模块和显示模块。 功率显示表的原理框图如下:

功率半导体应用提速 电源管理芯片一马当先

科学技术的飞速发展,使半导体技术形成两大分支:一个是以大规模集成电路为核心的微电子技术,实现对信息的处理、存储与转换;另一个则是以功率半导体器件为主,实现对电能的处理与变换。功率半导体器件与大规模集成电路一样具有重要价值,在国民经济和社会生活中具有不可替代的关键作用。 电力、电子两大领域并行发展 功率半导体器件在其发展的初期(上世纪60年代-80年代)主要应用于工业和电力系统,近二十年来,随着4C产业(通信、计算机、消费电子、汽车)的蓬勃发展,功率半导体器件的应用范围有了大幅度的扩展,已渗透到国民经济与国防建设的各个领域,其技术已成为航空、航天、火车、汽车、通讯、计算机、消费类电子、工业自动化和其他科学与工业部门的至关重要的基础。 过去,通常把大规模集成电路和功率半导体器件的关系比喻为大脑和四肢,因为大规模集成电路的作用是接受和处理信息,而功率器件则根据这些信息指令产生控制功率,去驱动相关电机进行所需的工作。上世纪80年代以后,随着新型功率半导体器件如VDMOS、IGBT及功率集成电路的兴起,功率半导体器件步入一个新的领域,除了驱动电机之外,其为信息系统提供电源|稳压器的功能也越来越引人注目。因此,功率半导体器件在系统中的地位已不仅限于“四肢”,而是为整个系统“供血”的“心脏”。 概括而言,功率半导体器件的技术领域主要分为两大门类,即以发电、变电、输电为代表的电力领域和以电源管理应用为代表的电子领域。随着技术的进步,这两大领域的功率半导体器件正沿着不同的路径发展。在电力领域,功率半导体器件以超大功率晶闸管、IG CT技术为代表,继续向高电压、大电流的方向发展;而在电子领域,电源管理器件则倾向于集成化、智能化以及更高的频率和精度。北京工业大学电子信息与控制工程学院亢宝位教授在接受记者采访时表示:“功率半导体器件的这两大技术领域由于用途各异,不存在谁替代谁的问题,两个领域的技术发展是并行不悖的。”不过,亢宝位同时也指出,由于历史的原因,按照很早以前的管理体制,电力领域归原机械部系统管理,而电子领域归原电子工业部门管理,原有挂靠在两个管理系统的企业、学会、协会等社会网络需要加强合作、加速融合,以促进我国的功率半导体产业快速发展。 促进节能及产业升级 使用功率半导体器件的最根本的目的,一是为了将电压、电流、频率转换到负载所需要的数值,二是为了更有效地利用电能。 功率半导体器件的广泛应用可以实现对电能的传输转换及最佳控制,大幅度提高工业生产效率、产品质量和产品性能,大幅度节约电能、降低原材料消耗,因此,它已经愈加明显地成为加速实现我国能源、通信、交通等量大面广基础产业的技术改造和技术进步的支柱。例如在绿色照明工程中,在节能灯中使用VDMOS产品将提高节能灯的性能及寿命,彻底纠正节能灯在人们头脑中留下的寿命短、节电不省钱的印象,使节能灯应用到千家万户。I GBT的出现及在空调、UPS电源等中的广泛应用,使效率得到大幅提高,同时体积也大幅缩小。如逆变焊机原来要两个人才能拿动,采用了IGBT器件之后,体积只有书包大小,重量仅为几公斤,同时其性能、效率及可靠性等也得到质的改进。 功率半导体器件的应用对于节约能源具有深远影响。在人类所消耗的电能中有75%需经功率半导体器件转换成一定的形式后才可供最终设备使用。新型功率半导体器件能较大

集成电路的发展与应用

粉体(1)班学号:1003011020 集成电路技术的发展与应用 摘要: 集成电路(Integrated Circuit,简称IC)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”(也有用文字符号“N”等)表示。 关键词:集成电路模拟集成电路电子元件晶体管发展应用集成电路对一般人来说也许会有陌生感,但其实我们和它打交道的机会很多。计算机、电视机、手机、网站、取款机等等,数不胜数。除此之外在航空航天、星际飞行、医疗卫生、交通运输、武器装备等许多领域,几乎都离不开集成电路的应用,当今世界,说它无孔不入并不过分。 在当今这信息化的社会中,集成电路已成为各行各业实现信息化、智能化的基础。无论是在军事还是民用上,它已起着不可替代的作用。 一、集成电路的定义、特点及分类介绍 1、什么是集成电路:所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体 工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。[1] 2、集成电路的特点:集成电路或称微电路(microcircuit)、微芯片(microchip)、 芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜(thin-film)集成电路。另有一种厚膜(thick-film)混成集成电路(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到衬底或线路板所构成的小型化电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 3、集成电路的分类: (1)按功能结构分类:集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大系。

基于功率计量芯片HLW8012的计量插座方案

基于功率计量芯片HLW8012计量插座方案 【摘要】 计量插座是一种插座转换装置,可以显示电量、功率、电压、电流、时钟等参数,是针对于家庭电器节能要求而设计。 本文主要讲述计量插座的主要功能、硬件原理图等。该计量插座可以对单相交流用电的电器进行电量、功率、电压及电流等参数的测量。此方案采用HLW7031作为控制MCU,以专用功率计量芯片HLW8012为电量采集器件,HT1621为LCD驱动芯片,DS1302作为时钟记录芯片。【关键词】 计量插座,功率计量,功率计量,节能插座,智能插座,HLW8012,智能家电 【正文】 一、计量插座原理 计量插座需要测量功率、电量、电流和电压等参数,同时计量插座产品内部空间小,本次设计使用功率计量芯片HLW8012作为各个电参数的测量器件。因为HLW8012可以测量功率、电量、电流和电压值,内置晶振、参考源,SOP8封装,外围电路简单,在满足性能要求的同时,可以做到体积更小。 ●HLW8012主要特性 (1)高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V电压参考源及电源监控电路 (4)5V单电源供电,工作电流小于3mA ●HLW8012输入输出 VIP SEL CF CF1输出 电流/电压值 /电压值 图1 HLW8012芯片引脚图 (1)V1P,V1N输入电流采样信号:峰峰值V P-P:±43.75mV,最大有效值:±30.9mV。

(2)V2P输入电压采样信号:峰峰值V P-P:±700mV,最大有效值:±495mV。 (3)高频脉冲CF(PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (4)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL选择;输出占空比为1:1的方波。 计量插座实际上是一个插座转接设置,电器通过计量插座之后再连接到电网。MCU从功率计量模块获取用电器的电量、功率、电压、电流等参数,从时钟模块获取当前时钟,MCU将这些数据通过LCD驱动芯片显示在LCD屏上。MCU可以打开或关闭插座孔的电源,通过按键直接操作或设置定时自动操作,电源的打开与关闭是通过MCU控制继电器的闭合与切断实现。 时钟设置是通过按键进行设置,可以设置日期、小时、分、秒,自动设置星期。可以设置一星期内哪几天定时打开或关闭插座孔的电源,实现无人自动控制插座孔的电源。一般在出厂前会设置好时间。计量插座结构框图如图2所示。 图2 计量插座方案结构框图 二、计量插座硬件设计 计量插座硬件设计相对应于结构框图,有6部分模块电路:电源管理电路、功率计量电路、显示模块电路、继电器控制电路、时钟电路及按键。 所有功率计量测量,电压、电流通道的采样方式有2种:互感器采样方式(隔离采样)、电阻采样方式(非隔离采样)。互感器采样方式成本高,本设计使用电阻采样方式。 1、电源管理电路 使用LNK304设计的AC-DC非隔离电源,L与N分别是交流火线与零线,以零线作为地线。此电路无需变压器,稳压5V,可以提供150mA左右的电流,能够保证在AC85V~265V的交流范围内,实现稳定的电压输出,纹波也很小,在50mV左右。此电源为所有模块提供工作电压。

电能计量芯片

电能计量芯片 ADE7755是ADI公司生产的一款用于电能计量的芯片,其技术指标超过了IEC1036规定的准确度要求[7]。它将有功功率的信息以频率的形式输出。在50 / 60Hz 输入信号时都能满足IEC687 / 1036标准规定的测试精度要求,在1000:1的输入动态范围内,测试误差小于0.1%。其功能框图如图3.1所示,实物图如图3.2所示。 图3.1 ADE7755功能框图 图3.2 ADE7755芯片实物图 3.1 ADE7755的特点 ADE7755 应用了过采样ADC和DSP相结合的技术,对温度的敏感度很低,即使在很高的环境温度下也能维持较高的测试精度。ADE7755只在ADC和基准源中使用模拟电路,所有其他信号处理(如相乘和滤波)都使用数字电路,这使其在恶劣的环境条件下仍能保持极高的准确度和长期稳定性。

其主要特点如下: (1)工作温度范围-40~85℃。 (2)低阈值启动,启动电流小于 0.2%Ib。 (3)低成本 CMOS 工艺。 (4)片内设有电源监控电路。 (5)片内带有防潜动功能(空载阈值)。 (6)片内带有抗混叠滤波器。 (7)+5V 单电源、低功耗(典型值 15mW)。 (8)具有负功率或错线指示功能。 (9)5V 单电源工作,正常工作时芯片功耗 30Mw。 (10)1Vpeak-peak 的最大模拟信号输入范围。 (11)电流通道具有 1/2/8/16 四种增益选择,以便灵活选用不同大小的锰铜采样电阻。 (12)2.5V 片内高精度参考电压源,绝对偏差小于!4%,温漂小于!20ppm/℃。 (13)片内基准电压 2.5V±8%(温度系数典型值 30ppm/℃),能为外部电路提供基准。 (14)带有电源电压检测功能,当电源电压降低到 80%VDD 时芯片自动复位。 (15)灵活的模拟信号输入电路,既可单端输入也可全差分输入并且输入共模电压可在 0V 和2V 之间选择,由管脚 SCOM 控制。 (16)有功功率平均值从 ADE7755 引脚 F1 和 F2 以频率方式输出,且F1、F2能直接驱动步进电机。 (17)有功功率瞬时值从引脚 CF 以较高频率方式输出,能用于仪表校验;逻辑输出引脚 REVP 能指示负功率或错线;FI 和 F2 能直接驱动机电式计度 器和两相步进电机;电流通道中的可编程增益放大器(PGA)使仪表能使 用小阻值的分流电阻。 3.2 ADE7755工作原理 ADE7755内部拥有两个16位的二阶∑-△模数转换器,这两个ADC对来自电流 和电压传感器的电压信号进行数字化,过采样速率达900KHz。AD7755的模拟 输入结构具有宽动态范围,大大简化了传感器接口(可以与传感器直接连接),也

功率放大集成电路原理及应用解读

家电检修技术<资料版>2007第7期总页(?? 初 学者天地 压从0V 逐渐升高,刚开始可看到两个万用表的数 值都上升,当电压增高到某一值时,可以看到表1的电压值在增大,而表2的电流值却在减小,当电压继续增大到另一个值时,这时又可以看到两个表的电压、电流值都开始增大。如果测试过程与上述的一样,说明该管是好的。如果不一样或变化很不明显,表明该管是坏的。 (完 TD 表1 5V 表2 10mA 20k 图11(b 判断隧道二极管测试电路 功率放大集成电路原理及应用 !丁朋 要点提示: ▲功率放大集成电路的功能是对音频信号进行功率放大,其最大特点是具有较大的输出功率,能够推动扬声器等负载。

▲功率放大集成电路的主要参数有:电源电压、静态电流、输出功率、电压增益、频响范围和谐波失真等。▲O TL 电路的优点是可以使用单电源,缺点是由于输出电容的存在,低频响应较差。 一、功能与参数 1.功能与特点 功率放大集成电路的功能是对音频信号进行功率放大。其最大特点是:具有较大的输出功率,能够推动扬声器等负载。 功率放大集成电路品种规格众多。按声道数可分为单声道音频功放和双声道音频功放;按电路形式可分为O TL 功率放大器、O CL 功率放大器和BTL 功率放大器等。其输出功率从数十毫瓦到数百瓦,具有很多规格,并具有多种封装形式。许多功率放大集成电路自带散热板,但由于自带的散热板一般较小,因此功率较大的功率放大集成电路在应用时仍应按要求安装散热器。功率放大集成电路自带的散热板有的与内部电路绝缘,有的与内部电路的接地点连通,有的与内部输出功放管集电极连通,安装散热器时应区别对待。对于自带散热板与内部电路不绝缘的功率放大集成电路,应在集成电路与散热器之间放置耐热绝缘垫片,如图1所示。 2.参数 功率放大集成电路的主要参数有:电源电压V CC 、静态电流I O 、输出功率P O 、电压增益、频响范围和谐波失真THD 等。 (1电源电压V CC ,包括最高电源电压和额定电源 电压,对于O TL 功率放大器一般为单电源(+V CC ,对于 O CL 功率放大器一般为双电源(±V CC 。最高电源电压是极限参数,使用中不得超过,推荐使用额定电源电压。

电能计量芯片CS5460及其应用

电能计量芯片CS5460及其应用 1. 概述 CS5460是CRYSTAL公司最新推出的带有串行接口的单相双向功率/电能计量集成电路芯片。与目前在电子式电度表应用中广泛使用的 AD7750和AD7755(见《国外电子元器件》1999年第3期文章)相比较,CS5460增加了以下功能: ●具有片内看门狗定时器(Watch Dog Timer)与内部电源监视器; ●具有瞬时电流、瞬时电压、瞬时功率、电流有效值、电压有效值、功率有效值测量及电能计量功能; ●提供了外部复位引脚; ●双向串行接口与内部寄存器阵列可以方便地与微处理器相连接; ●外部时钟最高频率可达20MHz; ●具有功率方向输出指示。 这些增加的功能更加便于与微处理器(MPU)接口,并能方便地实现电压、电流、功率的测量和用电量累积等功能。

2. 基本结构与技术指标 2.1 内部结构 CS5460内部集成了两个△-∑A/D转换器、高、低通数字滤波器、能量计算单元、串行接口、数字-频率转换器、寄存器阵列和看门狗定时器等模拟、数字信号处理单元,其内部结构框图如图1所示。 2.2 引脚排列及功能 CS5460的引脚排列如图2所示。各引脚的功能如下: 1脚XOUT:晶体振荡器输出; 2脚CPUCLK:CPU时钟输出; 3脚VD+:数字电路电源正极; 4脚DGND:数字地; 5脚SCLK:串行时钟输入; 6脚SDO:串行数据输出; 7脚CS:片选; 8脚NC:空脚; 9脚VIN+:差分电压正输入端; 10脚VIN-:差分电压负输入端;

11脚VREFOUT:参考电压输出;12脚VREFIN:参考电压输入; 13脚VA-:模拟地; 14脚VA+:模拟电源正极; 15脚IIN-:差分电流负输入端;16脚IIN+:差分电流正输入端;17脚PFMON:电源掉电监视输出;18脚NC:空脚; 19脚RESET:复位输入; 20脚INT:中断输出; 21脚EOUT:电能脉冲输出; 22脚EDIR:功率方向指示输出;23脚SDI:串行数据输入; 24脚XIN:晶体振荡器输入。 2.3 主要技术指标 ●差分电压输入范围:150mV; ●温度系数:<60ppm/℃

智能功率器件的原理

智能功率器件的原理与应用 1 智能功率器件的特点及产品分类 1.1 智能功率器件的特点 所谓智能功率器件,确实是把功率器件与传感器、检测和操纵电路、爱护电路及故障自诊断电路等集成为一体并具有功率输出能力的新型器件。由于这类器件可代替人工来完成复杂的功率操纵,因此它被给予智能的特征。例如,在智能功率器件中,常见的爱护功能有欠电压爱护、过电压爱护、过电流及短路爱护、过热爱护。此外,某些智能功率器件还具有输出电压过冲爱护、瞬态电流限制、软启动和最大输入功率限制等爱护电路,从而大大提高了系统的稳定性与可靠性。 智能功率器件具有体积小、重量轻、性能好、抗骚扰能力强、使用寿命长等显著优点,可广泛用于单片机测控系统、变频调速器、电力电子设备、家用电器等领域。

1.2 智能功率器件的产品分类 智能功率器件可分成两大类,即智能功率集成电路与智能功率模块。 1)智能功率集成电路 智能功率集成电路的种类专门多,下面仅列出几种典型产品。 ——高压功率开关调节器(High Voltage Power Switching Regulator)。例如,美国摩托罗拉公司研制的MC33370系列产品。 ——智能功率开关(IntelligentP ower Switch)。例如,德国西门子(Siemens)公司生产的Smart SIPMOS智能功率开关,产品型号有BTS412B、BTS611等。 2)智能功率模块 智能功率模块是采纳微电子技术和先进的制造工艺,把智能功率集成电路与微电子器件及外围功率器件组装成一体,能实现智能功率操纵的商品化部件。模块大多采纳密封式结构,以保证良好的电气绝缘和抗震性能。用户只须了解模块的外特性,即可使用。因此,它能简化

电能计量芯片汇总

电能计量SA9904B, 1引言新型集成芯片不仅精确度高,而且硬件软件设计简单性价比高 1引言 新型集成芯片不仅精确度高,而且硬件软件设计简单、性价比高。着重介绍SA9904B,ATT7026A及CS54633种三相电能计量芯片的工作原理,比较其性能指标,为合理选择电能芯片提供了有力的帮助。 2电能计量芯片 SA9904B是南非微电子系统有限公司设计开发的一种电能计量芯片, ATY7026A是珠海炬力集成电路设计有限公司开发的电能计量芯片,CS5463是美国CRYSTAL公司推出的带有串行接口的单相双向功率/电能计量集成电路芯片。这三者都用于三相多功能电能计量,均适用于三相三线制的具有50Hz 或60Hz标准频率的电网,支持电阻网络校表和软件校表两种方式。由于电能计量、参数测量和数据读取是电能芯片的核心部分。下面主要从有功计量、无功计量、视在功率/电能计量、有效值测量、中断和SPI接口6个方面介绍芯片原理。 2.1SA9904B简介 SA9904B有20个引脚,PDIP封装,12个元暂存器。SA9904B包含9个代表各相的有功电能、无功电能与电源电压的24位元暂存器。第10个24位元暂存器代表任何有效相位的市频,包含3个位址以保存与SA9604A的兼容性。3个位址的任何其一可用于存取频率暂存器。每相位的有功与无功功率被积存于24位元暂存器。被测电路的电能或功率不直接提供给用户,但是可以通过公式计算。计算每相的有功或无功电能:电能每计数=(VRATED×IRATED)/320 000;计算每相的有功或无功功率:功率=VRATED×IRATED×N/INTTIME/320 000。其中:VRATED为电表的额定电源电压,IRATED为电表的额定电源电流,N=相继读数间的暂存器数值差数(△值),INTTIME为相继读数间的时间差值(单位为秒)。若要求合相有功电能,只能通过程序对三相有功电能求和,或通过有功功率脉冲输出F50计数。芯片内的3个电压暂存器包含各相位测得的RMS电压值.用户可以直接从暂存器中读取。SA9904B不具有中断功能。串行周边的接口汇流排(SPI)为一同步汇流排,使用于微控器与SA9904B之间的数据传输。引脚D0(串行数据出端),DI(串行数据入端),CS(芯片选项)与SCK(串行时脉)用于此汇流排的应用。SA9904B为从器件,。而微控器为汇流排主器件。CS 输入启始与终止数据传输。SCK信号(微控器发送的)选通微控器与SA9904B的SCK引脚间的数据。DI与DO引脚为SA9904B的串行数据输入与输出引脚。2.2ATT7026A简介 ATT7026A44个引脚,QFP44封装,102个寄存器翻。有功功率通过求瞬时功率代数均值获得。分相、合相有功功率分别存入指定寄存器,供用户读取。。无功功率是通过将电压采样信号作一90°相移,再求瞬时功率的代数均值获得。分相、合相无功功率同样提供给用户。芯片中有电能累加寄存器,能够提供分相、合相有功、无功电能,但不提供电网周期累加模式。芯片通过能量脉冲生成器,提供校表脉冲CFl和驱动步进电机的低频脉冲F1/F2。由于芯片提供电流和电压有效值,用户也可用公式S=VRMS×IRMS,通过MCU计量分相、合相视在功率。有效值测量通过对电压、电流的采样数据求均方值实现。能够同时计算6通道的有效值,结果存在指定的寄存器中供用户读取。此外,芯片不仅提供分相电流、电压有效值.还提供三相电流、电压矢量和的有效值,用户可在指定寄存

3-计量芯片应用心得之选型篇

电能计量芯片应用心得之选型篇 什么是计量芯片 计量芯片是测量交流电信号的一类芯片,因最早是使用于电表产品,所以在行业内也俗称电表芯片,它可以统计用电负载的用电量、测量用电负载的功率大小和电流大小,以及市电的电压。市电一般分为单相电和三相电,所以电表芯片有两大类,一类是单相计量芯片,一类是三相计量芯片。 随着近几年物联网行业的发展,许多智能产品除了增加无线通讯的功能外,在和市电使用相关的产品中,比如WIFI PLUG、充电桩、智能交通灯和火灾检设备等产品上面都增加了计量芯片,用于测量电能参数,因此电表芯片慢慢从工业应用产品走向了消费类应用产品。 计量芯片有哪些功能 计量芯片最基础的功能是测量用电量、功率大小、有效电流和有效电压,这是计量芯片最基础的测量功能。还有一些计量芯片除了基础的测量功能外,还可以测量功率因素、市电的线性频率、相角、过零点、视在功率等参数,这类计量芯片的功能比较多。下表是列举了几类计量芯片功能分类 下表是不同型号的计量芯片的性能和功能差异表

以上我们基本对于计量芯片有一个初步的了解,也了解到计量芯片可以测量哪些电参数。 现在要回到我们的产品本身,根据产品的定义,要选择合适的计量芯片。 要做一个什么样的产品 选定一款合适的计量芯片之前,我们要先知道我们需要设计一个什么样的产品,这个产品有哪些功能,需要用到计量芯片的哪些功能参数,才能实现这些功能。目前市面上的计量芯片一般都能满足产品的大部分功能,只需要我们关注几个细微的指标,就能够做出判断。 下面给出一个简单的方法,将产品的功能进行分解,然后根据这些功能进行 反向寻找,找出合适的计量芯片。

功率计量芯片HLW8012介绍及应用

功率计量芯片HLW8012介绍与应用 一、引言 HLW8012是深圳市合力为科技推出的单相电能计量芯片,可以测量有功功率、电量、电压有效值、电流有效值;SOP8封装,体积小,广泛应用于智能家电、节能插座,智能路灯、智能LED 灯等应用场合。本文主要内容:1、HLW8012介绍;2、HLW8012应用硬件电路;3、HLW8012脉冲软件测量;4、HLW8012应用场合及展望。 二、、HLW8012介绍 1、HLW8012主要特性 (1)高频脉冲CF ,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL 选择,在500:1范围内达到±0.5%的精度 (3)内置晶振、2.43V 电压参考源及电源监控电路 (4)5V 单电源供电,工作电流小于3mA 2、HLW8012引脚图 VDD VIP VIN CF1 SEL V2P CF 选择CF1输出 电流/电压值 /电压值 图1芯片引脚图 引脚序号 引脚名称 输入/输出 说明 1 VDD 芯片电源 芯片电源 2,3 V1P ,V1N 输入 电流差分信号输入端,最大差分输入信号为±43.75mV 4 V2P 输入 电压信号正输入端。最大输入信号±700mV 5 GND 芯片地 芯片地 6 CF 输出 输出有功高频脉冲,占空比50% 7, CF1 输出 SEL=0,输出电流有效值,占空比50%; SEL=1,输出电压有效值,占空比50%; 8 SEL 输入 配置有效值输出引脚,带下拉

● 模拟信号输入 (1)V1P ,V1N 输入电流采样信号:峰峰值V P-P :±43.75mV ,最大有效值:±30.9mV 。 (2)V2P 输入电压采样信号:峰峰值V P-P :±700mV ,最大有效值:±495mV 。 ● 数字信号输出 (1)高频脉冲CF (PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (2)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL 选择;输出占空比为1:1的方波。 注:MCU 与HLW8012的接口不是使用协议进行读取,而是通过测量CF 、CF1引脚输出高频脉冲的周期来计算功率、电流、电压值。 3、芯片内部框图 SEL CF1CF 图2 芯片内部框图 HLW8012内部带有2路PGA 及ADC ,对电流、电压采样信号进行模数转换,得到数字信号,芯片内部计算有功功率值、电流有效值、电压有效值,经过频率转换模块,HLW8012将有功功率值、电流有效值、电压有效值转换为方波脉冲输出(占空比1:1),各数值的大小与频率的大小成正比,与周期的大小成反比。 三、HLW8012应用硬件设计 所有电能计量测量,电压、电流通道的采样方式有2种:互感器采样方式、电阻采样方式。互感器采样方式成本高,本文只介绍电阻采样方式。外围硬件主要包含几部分:电源电源、功率计量电路、MCU 接口。 1、电源电路 为了配合电阻采样方式(即从电网直接采样,非隔离),电源电路必须为非隔离电源,非隔离电源有2种方式:AC-DC 非隔离电源、阻容降压电源。两者的比较如下:

相关文档