文档库 最新最全的文档下载
当前位置:文档库 › 代数系统简介

代数系统简介

代数发展简史

一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,

而历史却能给我们智慧。

傅鹰

数学的历史是重要的,它是文明史的有价值的组成部分,

人类的进步和科学思想是一致的。

F. Cajori

0、引言

数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。在此简要介绍代数学的有关历史发展情况。

“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。

阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.

花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》.

1859年,我国数学家李善兰首次把“algebra”译成“代数”。后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,亦即:代数,就是运用文字符号来代替数字的一种数学方法。

古希腊数学家丢番图(Diophantus)用文字缩写来表示未知量,在公元250年前后丢番图写了一本数学巨著《算术》(Arithmetica)。其中他引入了未知数的概念,创设了未知数的符号,并有建立方程序的思想。故有“代数学之父”(Father of algebra)的称号。

代数是巴比伦人、希腊人、阿拉伯人、中国人、印度人和西欧人一棒接一棒而完成的伟大数学成就。发展至今,它包含算术、初等代数、高等代数、数论、抽象代数五个部分。

1、算术

算术给予我们一个用之不竭的、充满有趣真理的宝库。

--高斯(Gauss,1777-1855)

数可以说成是统治整个量的世界,而算术的四则可以被认为是作为数学家的完全的装备。

--麦斯韦(James Clark Maxwell 1831-1879)算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。

算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。

自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。为了满足这些简单的量度需要,就要用到分数。

现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。它后来被阿拉伯人采用,之后传到西欧。15世纪,它被改造成现在的形式。在印度算术的后面,明显地存在着我国古代的影响。

19世纪中叶,格拉斯曼(Grassmann)第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。后来,皮亚诺(Peano)进一步完善了格拉斯曼的体系。

算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。同时,它又构成了数学其它分支的最坚实的基础。

2、初等代数

作为中学数学课程主要内容的初等代数,其中心内容是方程理论。代数一词的拉丁文原意是“归位”。代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。初等代数的主要内容在16世纪便已基本上发展完备了。

古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。3世纪的丢番图用有理数求一次、二次不定方程的解。13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。16世纪意大利数学家发现了三次和四次方程的解法。

代数学符号发展的历史,可分为三个阶段。第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。韦达(Viète)在他的《分析方法入门》(Inartem analyticem isagoge,1591)著作中,首次系统地使用了符号表示未知量的值进行运算,提出符号运算与数的区别,规定了代数与算术的分界。韦达是第一个试图创立一般符号代数的的数学家,他开创的符号代数,经笛卡尔(Descarte)改进后成为现代的形式。笛卡尔用小写字母a, b, c等表示已知量,而用x, y, z代表未知量。这种用法已经成为当今的标准用法。

“+”、“-”号第一次在数学书中出现,是1489年维德曼的著作《商业中的巧妙速算法》(Behend und hüpsch Rechnung uff allen kauffmanschafften, 1489)。不过正式为大家所公认,作为加、减法运算的

符号,那是从1514年由荷伊克开始的。1540年,雷科德(R. Rcorde)开始使用现在使用的“=”。到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。1600年哈里奥特(T. Harriot)创用大于号“>”和小于号“<”。1631年,奥屈特给出“×”、“÷”作为乘除运算符。1637年,笛卡尔第一次使用了根号,并引进用字母表中头前的字母表示已知数、后面的字母表示未知数的习惯做法。至于“≮”、“≯”、“≠”这三个符号的出现,那是近代的事了。

数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。公元前4世纪,古希腊人发现无理数。公元前2世纪(西汉时期),我国开始应用负数。1545年,意大利的卡尔达诺(N. Cardano)在《大术》中开始使用虚数。1614年,英国的耐普尔发明对数。17世纪末,一般的实数指数概念才逐步形成。

3、高等代数

在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。高次方程组(即非线性方程组)发展成为一门比较现代的数学理论-代数几何。

线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是

行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度,散度,旋度就更有说服力。同样,行列

式和矩阵如导数一样(虽然在数学上不过是一个符号,表示包括的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。

线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。

十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。而在欧洲,第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz,1693年)。

1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。

1764年,Bezout把确定行列式每一项的符号的手续系统化了。对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是这方程组有非零解的条件。Vandermonde是第一个对行列式理论进行系统的阐述

(即把行列式理论与线性方程组求解相分离)的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。

参照克莱姆和Bezout的工作,1772年,Laplace在《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则,并推广了他的展开行列式的方法,用r行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。1841年,德国数学家雅可比(Jacobi)总结并提出了行列式的最系统的理论。另一个研究行列式的是法国最伟大的数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。

大约在1800年,高斯(Gauss)提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯

- 约当消去法则最初是出现在由Wilhelm Jordan撰写的测地学手册中。许多人把著名的数学家Camille Jordan误认为是“高斯 - 约当”消去法中的约当。

矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。

1848年,英格兰的J.J. Sylvester首先提出了矩阵(matrix)这个词,它来源于拉丁语,代表一排数。在1855年矩阵代数得到了Arthur Cayley的进一步发展。Cayley研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST的系数矩阵变为矩阵S和矩阵T的乘积。他还进一步研究了那些包括矩阵的逆在内的代数问题。1858年,Cayley在他的矩阵理论文集中提出著名的Cayley-Hamilton理论,即断言一个矩阵的平方就是它的特征多项式的根。利用单一的字母A来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式

det(AB)=det(A)det(B)为矩阵代数和行列式间提供了一种联系。数学家Cauchy首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论。

数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既V×W不等于W×V)的向量代数是由Hermann Grassmann在他的《线性扩张论》(Die lineale Ausdehnungslehre)一书中提出的(1844)。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为1的矩阵,或简单矩阵。在19世纪末美国数学物理学家Willard Gibbs发表了关于《向量分析基础》(Elements of Vector

Analysis)的著名论述。其后物理学家P.A.M. Dirac提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在20世纪由物理学家给出的。

矩阵的发展是与线性变换密切相连的。到19世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由Peano于1888年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

4、数论

以正整数作为研究对象的数论,可以看作是算术的一部分,但它不是以运算的观点,而是以数的结构的观点,即一个数可用性质较简单的其它数来表达的观点来研究数的。因此可以说,数论是研究由整数按一定形式构成的数系的科学。

早在公元前3世纪,欧几里得的《原本》讨论了整数的一些性质。他证明素数的个数是无穷的,他还给出了求两个数的公约数的辗转相除法。这与我国《九章算术》中的“更相减损法”是相同的。埃拉托色尼则给出了寻找不大于给定的自然数N的全部素数的“筛法”:在写出从1到N的全部整数的纸草上,依次挖去2、3、5、7……的倍数(各自的2倍,3倍,……)以及1,在这筛子般的纸草上留下的便全是素数了。

当两个整数之差能被正整数m除尽时,便称这两个数对于“模”m同余。我国《孙子算经》(公元4世纪)中计算一次同余式组的“求一术”,有“中国

剩余定理”之称。13世纪,秦九韶已建立了比较完整的同余式理论——“大衍求一术”,这是数论研究的内容之一。

丢番图的《算术》中给出了求所有整数解的方法。费尔马指出

在n>3时无整数解,对于该问题的研究产生了19世纪的数论。之后高斯的《数论研究》(1801年)形成了系统的数论。

数论的古典内容基本上不借助于其它数学分支的方法,称为初等数论。17世纪中叶以后,曾受数论影响而发展起来的代数、几何、分析、概率等数学分支,又反过来促进了数论的发展,出现了代数数论(研究整系数多项式的根—“代数数”)、几何数论(研究直线坐标系中坐标均为整数的全部“整点”—“空间格网”)。19世纪后半期出现了解析数论,用分析方法研究素数的分布。二十世纪出现了完备的数论理论。

5、抽象代数

抽象代数(Abstract algebra)又称近世代数(modern algebra),它产生于十九世纪。

抽象代数是研究各种抽象的公理化代数系统的数学学科。由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换(transformation)等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。

被誉为天才数学家的伽罗瓦(Galois, Evariste,1811-1832)是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。

1843年,哈密顿(Hamilton, W. R. )发明了一种乘法交换律不成立的代数——四元数代数。第二年,Grassmann推演出更有一般性的几类代数。1857年,Cayley设计出另一种不可交换的代数——矩阵代数。他们的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是兼容的),就能研究出许多种代数体系。

1870年,克隆尼克(Kronecker)给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;狄德金和克隆尼克创立了环论;1910

年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。

有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是诺特(Emmy Noether), 1882年3月23日生于德国埃尔朗根,1900年入埃朗根大学,1907年在数学家哥尔丹指导下获博士学位。

诺特的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响。1907-1919年,她主要研究代数不变式及微分不变式。她在博士论文中给出三元四次型的不变式的完全组。还解决了有理函数域的有限有理基的存在问题。对有限群的不变式具有有限基给出一个构造性证明。她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(李群)下不变式问题,给出诺特定理,把对称性、不变性和物理的守恒律联系在一起。

1920~1927年间她主要研究交换代数与「交换算术」。1916年后,她开始由古典代数学向抽象代数学过渡。1920年,她已引入「左模」、「右模」的概念。1921年写出的<<整环的理想理论>>是交换代数发展的里程碑。建立了交换诺特环理论,证明了准素分解定理。1926年发表<<代数数域及代数函数域的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人之一。

1927-1935年,诺特研究非交换代数与「非交换算术」。她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。后又引进交叉积的概念并用决定有限维枷罗瓦扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。

诺特的思想通过她的学生范.德.瓦尔登的名著<<近世代数学>>得到广泛的传播。她的主要论文收在<<诺特全集>>(1982)中。

1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论。

到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子。这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映。

6、后记

现在,可以笼统地把代数学解释为关于字母计算的学说,但字母的含义是在不断地拓广的。在初等代数中,字母表示数;而在高等代数和抽象代数中,字母则表示向量(或n元有序数组)、矩阵、张量、旋量、超复数等各种形式的量。可以说,代数已经发展成为一门关于形式运算的一般学说了。一个带有形式运算的集合称为代数系统,因此,代数是研究一般代数系统的一门科学。

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

第14章 代数系统

第14章代数系统 14.1 代数系统 1.集合A={1,2,3,4}, * 是A 上的二元运算,定义为 a * b = a ·b - b ,试写出*的运算表。 2.< Z 5,5⊕>是代数系统,其中Z 5 ={0,1,2,3,4},运算5⊕是模5加法,试写出5⊕的运算表。 3.设A={1,2,3,4,5},A 上二元运算*定义 a * b = min(a,b), 其中min(a,b)是求a 和b 的最小值,写出*的运算表。 4.< Z 3,3?>是代数系统,其中Z 3 = {0,1,2},运算3?是模3乘法,试写出3?的运算表,并求(23?2)3?2和23?(23?2)的值。

5.是代数系统,其中A={a,b,c,d,e}, 运算*由下表给出: 求(b * c) * d 和 b * (c * d)。 6.设< A, *>是代数系统,其中 A = {a,b,c,d}, *是可结合运算,且b = a 2, c = b 2, d = c 2, 证明*是可交换运算。 7.写出< Z 5,5⊕>的幺元和各元素的逆元,并求435⊕3-1。 8.写出< Z 5,5?>中的幺元和各元素的逆元(如果存在的话)。

9.设Z+是所有正整数的集合,Z+上的二元运算*定义为a*b = gcd(a,b), 其中gcd(a,b)表示a和b的最大公约数。写出代数系统< Z+, * >幺元和零元(如果存在的话)。 10.设是代数系统,其中A={a,b,c,d}, 运算*由下表给出,请指出中的幺元,零元和各元素的逆元(如果存在的话)。 11.请构造一个代数系统,除幺元外,每个元素都没有逆元。

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数习题与答案

近世代数习题与答案 Prepared on 22 November 2020

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

代数表示论简介

代数表示论简介 在数学研究中,我们随处可见表示的思想。例如,复数可以用实平面上的点(或数对)表示;有限维复向量空间上的线性变换可以用它的Jordan标准形表达。狭义的表示是指一个代数系统(如群,结合环,李代数等)在某个向量空间上的作用,这些作用常常自然地出现在数学和物理的研究中。比如,分子的对称性可以用某个群刻画,利用这个群的表示理论可以大大简化分子振动微分方程的求解问题。20世纪30年代,德国女数学家Noether系统地发挥了表示的思想,她把表示解释为模,由此奠定了现代表示论的基础。 有限维(结合)代数是抽象代数中的一个古老的分支。它的起点是Hamilton在1843年发现的有名的四元数代数。此后,历经许多大数学家之手,终于由Wedderburn在20世纪初建立了半单代数的表示理论。目前人们研究的主要是各种各样的非半单代数的表示理论。代数表示论的主要目标是研究有限维代数上的不可分解模以及它们之间的同态映射。一个有限维代数A通常可以用一个箭图Q(即有向图)及某种关系表示, 研究代数A上的模相当于研究箭图Q上的表示。给定一个域k, 所谓箭图Q的一个表示,是指如下的要素:在Q的每个顶点处放一个(有限维)k-向量空间,在Q的每条边上放一个k-线性映射。对于Q的两个表示,可以建立它们之间的同态映射。我们关心的是表示的同构类。把箭图Q的全体表示放在一起,就构成了表示的范畴。这是代数表示论的最基本的研究对象。 例如,不难看出,在复数域上如下箭图的表示的同构类与复数矩阵的Jordan标准形一一对应: 上世纪70年代初,瑞士数学家Gabriel证明了如下的著名结果:箭图Q是表示有限型的(即Q的不可分解表示的同构类只有有限多个)当且仅当Q的底图是有限多个如下形式的图的不交并: A (n≥1):??…?? n 1 2 n-1 n ? 2 D (n≥4):??…?? n 1 3 n-1 n ? 3 E (n=6,7,8):????…?? n 1 2 4 5 n-1 n

近世代数学习系列二十二 群论与魔方

群论与魔方:群论基础知识 要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。 群的基本定义 设有一个集合G和G上的「二元运算」(Binary Operation)「?」。如果G 的元素和「?」满足以下「公理」(Axiom),我们便说(G, ?)构成一个「群」(为了行文方便,有时可以把「群(G, ?)」径直称为「群G」): 1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a ? b ∈ G。 2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a ? b) ? c = a ? (b ? c)。 3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e ? a = a ? e = a。 4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a?1 (称为a的「逆元」),使得a ? a?1 = a?1? a = e。 请注意由于「?」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a ? b ? c。如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a ? a ? a写成a3。我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a?n= (a?1)n。另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a?1也是唯一的。根据「封闭性」,若a和b是G的元素,则(a ? b)也是G 的元素,因此我们也可以谈论(a ? b)的逆元,而且这个逆元满足 (a ? b)?1 = b?1? a?1(1)

离散数学 代数系统

第三部分:代数系统 1.在代数系统,S *中,若一个元素的逆元是唯一的,其运算*必定可结合。( ) 2.每一个有限整环一定是域,反之也对。( ) 3.任何循环群必定是阿贝尔群,反之亦真。( ) 4.设(),A ∧∨是布尔代数,则(),A ∧∨一定为有补分配格。( ) 5.设Q 为有理数集,Q 上运算*定义为max(,)a b a b *=,则 ,Q * 是半群。( ) 6.阶数为偶数的有限群中,周期为2的元素的个数一定为偶数。( ) 7.群中可以有零元(对阶数大于一的群)。( ) 8.循环群一定是阿贝尔群。( ) 9.每一个链都是分配格。( ) 1. 对自然数集合N ,哪种运算不是可结合的,运算定义为任,a b N ∈ ( ) A. min(,)a b a b *= B. 2a b a b *=+ C. 3a b a b *=+- D. a b a b *=+ (mod 3) 2. 任意具有多个等幂元的半群,它 ( ) A. 不能构成群 B. 不一定能构成群 C. 不能构成交换群 D. 能构成交换群 3. 循环群33,Z +的生成元为[][]1,2,它们的周期为 ( ) A. 5 B. 6 C. 3 D. 9 4. 设是环,则下列正确的是 ( ) A. 是交换群 B. 是加法群 C. 对*是可分配的 D. *对 是可分配的 5. 下面集合哪个关于减法运算是封闭的 ( ) A. N B. {2|}x x I ∈ C. {21|}x x I +∈ D. {x |x 是质数} 6. 具有如下定义的代数系统,G ?*?,哪个不构成群 ( ) A. G={1,10},*是模11乘 B. G={1,3,4,5,9},*是模11乘 C. G =Q(有理数集),*是普通加法 D. G =Q(有理数集),*是普通乘法 7. 设G ={23|,m n m n I *∈},*为普通乘法.则代数系统,G ?*?的么元为 ( ) A.不存在 B. e =0023? C. e =2×3 D. e =1123--? 8. 任意具有多个等幂元的半群,它( A ) A. 不能构成群 B. 不一定能构成群 C. 必能构成群 D. 能构成交换群 9. 在自然数集N 上,下面哪个运算是可结合的,对任意a ,b N ∈ ( ) A. a b a b *=- B. max(,)a b a b *= C. 5a b a b *=+ D. ||a b a b *=-

《近世代数》模拟试题及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213, ,0101c d cd ?? ??== ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

抽象代数

近世代数练习题 一、填空题 1、设集合A={1,2,3,?,m},B={1,2,3,?,n},是正整数n m ,,集合B A ?含有 个元素。 2、设集合{},,,A e f m n =,{}ργβα,,,=B ,则集合A 到B 之间可以建立 个映射。 3、设集合A 含有m 个元素,则A 上的变换共有 个 4、n 次对称群n S 的阶是 。 5、在模5的剩余类加群的子集{}]1[=A 生成的子群是 。 6、设R 是模2 n (N N n ,∈为自然数集)的剩余类环,[]x R 中的多项式2 x 在R 里有 个根。 7、由13 =x 的三个根对于普通乘法构成的群里,阶数大于2的元的个数是 。 8、一个 环是域。 9、设μ一个环R 的一个不等于R 的理想,如果除了R 和μ以外,没有包含μ的理想,那么μ叫作一个 。 10、若域F 的一个扩域E 的每一个元都是F 上的一个代数元,那么E 叫做F 的 。 二、选择题 1、设集合{}3,2,1=A ,则下列集合A 上的变换不是一一映射的是( ) 。 332211:→→→τA 133221:→→→ρB 233221:→→→δC 132231:→→→σD 2、下列说法错误的是( ) 域是除环A 域是整环B 可交换除环是域C 可交换整环是域D 3、在一个有限群里,阶数大于2的元的个数一定是( )。 奇数A 偶数B 0C 整数D 4、下列环中不是除环的是( ) 整数集A 有理数集B 实数集C 复数集D 5、设有理数域Q 上的一元多项式环[]x Q ,理想()()() =+++11 35 2 x x x ( ) 。

()1A ()12 +x B ()135 ++x x C () 2235 +++x x x D 6、对于实数的普通乘法,以下实数域R 的变换中同态满射的是( ) αασ→:A 2:αατ→B ααρ-→:C ααδ→:D 7、设2 2?R 是数域R 上的一切22?矩阵构成的集合,它对于矩阵的加法和乘法做成一个环,则 以下矩阵可作为环2 2?R 的零因子的是( )。 ???? ??0000A ???? ??0001B ???? ??0111C ??? ? ??1101D 8、整数环Z 中,可逆元的个数是( )。 1A 2A 3C 4A 9、剩余类加群Z 18的子群有( )。 个3A 个4B 个5C 个6D 10、设有理数域Q 上的一元多项式环[]x Q ,理想()()() =+++11 35 2x x x ( ) 。 ()1A ()12 +x B ()135 ++x x C () 2235 +++x x x D 三、计算题 1、设集合{}1174,1,,=A ,{}642,,=B ,求A ?B , A ? B ,B A ?。 2、设集合{}864,2,,=A ,{}963,,=B ,求A ?B , A ? B , B A ?。 3、试举出一个由正实数集+ R 到实数集R 的一一映射。 4、设6元置换 ???? ??=???? ??=???? ??=254613654321;456132654321;245316654321 ρτπ (1)求1 -π ,τρ (2)求π, τ和ρ的循环置换表达式,并求||π, τ, ρ。 5、求出3次对称群3S 的所有子群。 6、求出剩余类加群8Z 的所有子群。 7、设{} Q Q b a b a R ,,2∈+=是有理数集,问R 对于普通加法和乘法能否构成一个域。

第六章 代数系统

第六章代数系统 1. 填空题:f是X上的n元运算的定义是()。 2. 判断正误,并说明原因:自然数集合N上的减法运算“-”是个封闭的运算。 3. 判断正误,并说明原因:实数集合R上的除法运算“?”是个封闭的运算。 4.填空题:代数系统的定义是:()。 5. 填空题:*是X上的二元运算,*具有交换性,则它的运算表的特征是()。 6.填空题:*是X上的二元运算,*具有幂等性,则它的运算表的特征是()。 7. 简答题:*是X上的二元运算,*具有幺元,如何在它的运算表上判定哪个元素是幺元? 8. 简答题:*是X上的二元运算,*具有零元,如何在它的运算表上判定哪个元素是零元? 9. 简答题:*是X上的二元运算,*具有幺元,如何判定哪个元素是元素x的逆元? 10 令N4={0,1,2,3},N4上定义运算+4: 任何x,y∈N4 , x+4 y=(x+y)(mod 4) 。例如2+43=(2+3)(mod 4) =5(mod 4)=1 请列出的运算表。然后判断+4运算是否有交换性、有幺元、有零元、各个元素是否有逆元?如果有上述这些元素,请指出这些元素都是什么。 11. 判断正误,并说明原因:对于整集合I上的减法运算“-”来说,0是幺元。 12. 填空题:E是全集,E={a,b},E的幂集P(E)上的交运算?的幺元是()。零元是()。有逆元的元素是(),它们的逆元分别是()。 13. 填空题:E是全集,E={a,b},E的幂集P(E)上的并运算è的幺元是()。零元是()。有逆元的元素是(),它们的逆元分别是()。

14. 填空题:E是全集,E={a,b},E的幂集P(E)上的对称差运算?的幺元是()。零元是()。有逆元的元素是()。它们的逆元分别是()。 15. 填空题:对于自然数集合N上的加法运算“+”,13=()。 16. 填空题:你所知道的满足吸收律的运算有()。 17. 填空题:你所知道的具有零元的运算有(),其零元是()。 18. 设?是X上的二元运算,如果有左幺元e L∈X,也有右幺元e R∈X,则e L= e R =e ,且幺元e 是唯一的。 19. 设?是X上的二元运算,如果有左零元θL∈X,也有右零元θR∈X,则θL=θR =θ,且零元θ是唯一的。 20. 设?是X上有幺元e且可结合的二元运算,如果x∈X,x的左、右逆元都存在,则x的左、右逆元必相等。且x的逆元是唯一的。 21. 设?是X上且可结合的二元运算,如a∈X,且a-1∈X,则a是可消去的,即任取x,y∈X,设有a?x=a?y 则x=y。 22. 对于实数集合R,给出运算如下:+是加法、—是减法、·是乘法、max是两个数中取最大的、min是两个数中取最小的、|x-y|是x与y差的绝对值。判 N”。 23. 设R是实数集合,在R上定义二元运算* 如下:任取x,y∈R, x*y=xy-2x-2y+6

离散数学代数系统练习

一、填空 1.下列集合中, 对普通加法和普通乘法都封闭。 ( ) (A ){}1,0 (B ){}2,1 (C ){}N n n ∈2 (D ){} N n n ∈2 2、在自然数集N 上,下面哪种运算是可结合的? ( ) (A )b a - (B )),max(b a (C )b a 2+ (D )b a - 3、有理数集Q 关于下列哪个运算能构成代数系统? ( ) (A )b a b a =* (B )()1ln 22++=*b a b a (C )()b a b a +=*sin (D )ab b a b a -+=* 4、下列运算中,哪种运算关于整数集I 不能构成半群? ( ) (A )()b a b a ,max =* (B )b b a =* (C )ab b a 2=* (D )b a b a -=* 5.设代数系统?A ,·?,则( )成立. A .如果?A ,·?是群,则?A ,·?是阿贝尔群 B .如果?A ,·?是阿贝尔群,则?A ,·?是循环群 C .如果?A ,·?是循环群,则?A ,·?是阿贝尔群 D .如果?A ,·?是阿贝尔群,则?A ,·?必不是循环群 6.设?L ,∧∨,?是格,?L ,≤?是由这个格诱导的偏序集,则( )不成立. A .对任意a L b a ,,∈≤b b a b =∨? B .∧∨对是可分配 C .∧∨,都满足幂等律 D .?L,≤?的每对元素都有最小上界与最大下界 7.在下列四个哈斯图表示的偏序集中( )是格.

8. 已知偏序集的哈斯图,如图所示,是格的为( ) 9. 6阶有限群的任何子群一定不是()。 (A) 2阶(B) 3 阶(C) 4 阶(D) 6 阶 10. 下列哪个偏序集构成有界格() (1) (N,≤)(2) (Z,≥) (3) ({2,3,4,6,12},|(整除关系))(4) (P(A),?) 11. 下面代数系统中(G、*)中()不是群 A、G为整数集合*为加法 B、G为偶数集合*为加法 C、G为有理数集合*为加法 D、G为有理数集合*为乘法 12. 设 是阶大于1的群,则下列命题中()不真。 A、存在零元 B、存在幺元 C、G中每个元素都有逆元 D、运算*是可结合的 13. 若的真子群,且|H︳= n|G︳= m, 则有 A、n整除m B、m整除n C、n整除m且m整除n D、n不整除m且m不整除n 14. 设?L,≤?是一条链,其中|L︳≧3,则?L,≤?是() A、不是格 B、有补格 C、分配格 D、布尔格

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则 3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。

近世代数学习系列三 环

环 简介 一个具有两种二元运算的代数系统。在抽象代数产生的19世纪,数学家们开始研究满足所有合成律(即加法交换律、结合律,乘法交换律、结合律,以及乘法对加法的分配律等等)或者满足其中的一部分的集合。倘若一个集合具有加法、乘法和相应的运算性质,它就称为环。整数集Z就构成一个(数)环。 在20世纪,数学家们开始研究一种新型结构叫“环”。环是一个集合,其中的元素能通过一种类似加法运算按下面的方式结合起来: 1. 若a和b都是环中的元素,那么a+b也是环中的元素; 2. 加法符合结合律:若a、b和c都属于这个环,那么a+(b+c)=(a+b)+c; 3. 在环中存在一个类似于0的元素--甚至也可以称它为0--具有性质:对于环中的任一元素a,有0+a=a; 4. 对于环中的每个元素a和b,a+b=b+a都成立。 在环中,还对这些元素定义了另一个类似于乘法的运算,它具有下面两个性质: 1. 若a和b属于环,那么它们的乘积ab也属于环; 2. 若a、b和c属于环,那么结合律成立:a(bc)=(ab)c。 环的乘法通常不满足交换律(ab=ba 一般不成立),而且并不是环中的每个元素都有一个乘法的逆元。各种n×n矩阵的集合连同运算选出来,就形成一个具体的环的例子。 在20世纪的前30多年中,由于德国数学家诺特(Emmy Noether,1882-1935年)的工作,环的结构的研究变得非常重要。 环论往往相当抽象。虽然许多对环论感兴趣的数学家常常用字母表示环中的元素,但是由于他们对矩阵的理解非常深刻,给出了许多卓有成效的解释,所以有时把一个特殊的环表示成一个n×n矩阵的集合。这类矩阵表示,不仅能使数学家们把环理解成具体的,甚至是可以计算的问题,而且能使数学家们去运用数学理论家的那种非常抽象的思想。这种用矩阵集合表示环或群的方法,已经成为

代数系统简介

代数发展简史 一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识, 而历史却能给我们智慧。 傅鹰 数学的历史是重要的,它是文明史的有价值的组成部分, 人类的进步和科学思想是一致的。 F. Cajori 0、引言 数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。在此简要介绍代数学的有关历史发展情况。 “代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。

阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期. 花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》. 1859年,我国数学家李善兰首次把“algebra”译成“代数”。后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,亦即:代数,就是运用文字符号来代替数字的一种数学方法。

内蒙古大学离散习题代数系统部分答案

《离散数学》代数系统 1.以下集合和运算是否构成代数系统?如果构成,说明该系统是否满足结合律、交换律?求出该运算的幺元、零元和所有 可逆元素的逆元. 1)P(B)关于对称差运算⊕,其中P(B)为幂集. 构成代数系统;满足结合律、交换律;幺元φ;无零元;逆元为自身。 2)A={a,b,c},*运算如下表所示:构成代数系统;满足结合律、交换律;无幺元;无逆元;零元b. 2.设集合A={a,b},那么(1)在A上可以定义多少不同的二元运算?(2)在A上可以定义多少不同的具有交换律的二元 运算?24个不同的二元运算;23个不同的具有交换律的二元运算 3.设A={1,2},B是A上的等价关系的集合. 1)列出B的元素. 2元集合上只有2种划分,因此只有2个等价关系,即B={I A,E A} 2)给出代数系统V=的运算表. 3)求出V的幺元、零元和所有可逆元素的逆元. 幺元E A、零元I A;只有E A可逆,其逆元为E A. 4)说明V是否为半群、独异点和群?V是为半群、独异点,不是群 4.设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律. 1)给出关于*运算的一个运算表. 其中表中?位置可以是a、b、c。 2)*运算是否满足结合律,为什么?不满足结合律;a*(b*b)=c≠(a*b)*b=b 5.设是一个代数系统。 *是R上的一个二元运算,使得对于R(实数集合)中的任意元素a,b都有a*b=a+b+a·b(·和+为数集上的乘法和加法). 证明:: 是独异点. 6.如果是半群,且*是可交换的. 证明:如果S中有元素a,b,使得a*a=a和b*b=b,则(a*b)*(a*b)=a*b. (a*b)*(a*b) = a*(b*a)*b 结合律 = a*( a*b)*b 交换律 = (a* a)*(b*b) = a*b. 7.设是一个群,则?a,b,c∈S。试证明:群G中具有消去律,即成立: 如果a·b=a·c ,b·a=c·a 那么b=c. 8.求循环群的所有生成元和子群. 生成元有:1、3、5、7、9、11、13、15 子群有:<0>、<1>、<2>、<4>、<8>. 9.设是群,a∈G . 现定义一种新的二元运算⊙:x⊙y=x*a*y,?x,y∈G . 证明:也是群. 证明:显然⊙是G上的一个二元运算。 ?x,y,z∈G,(x⊙y)⊙z=(x⊙y)*a*z=(x*a*y)*a*z=x*a*(y*a*z)= x*a*(y⊙z)= x⊙(y⊙z).故运算⊙满足结合律.

韩士安 近世代数 课后习题解答

习题1-1(参考解答) 1. (1)姊妹关系 (2)()(),P S ? (3) (),{1},1a b Z a b ∈?≠,.例如(2 ,6 )2,(3 ,6 )3,==但()2,31=. 2. 若b 不存在,则上述推理有误.例如{}{~~~~}S a b c R b c c b b b c c =,,,:,,,. 3. (1)自反性:,(),,n A M E GL R A EAE ?∈?∈=~A A ∴ 对称性: 1111,,~,,(),,,,().~.n n A B M A B P Q GL R A PBQ B P AQ P Q GL R B A ?????∈?∈==∈∴ 传递性: 12211221212,,~,~,,,,(),,,,n A BC M A B B C P Q P Q GL R A PBQ B P CQ A PP CQ Q ?∈?∈===1212,(),~.n PP Q Q GL R A C ∈∴ (2) 自反性:1,(),,~.n A M E GL R A E AE A A ??∈?∈=∴ 对称性: ()11,,~,(),,,(),~.T T n n A B M ifA B T GL R A T BT B T BT T GL R B A ???∈?∈=∴=∈∴ 传递性: 121122,,,~,~,,(),,,T T n A B C M ifA B B C T T GL R A T BT B T CT ?∈?∈== ()12211221,T T T A T T CT T TT CT T ∴==12(),~.n TT GL R A C ∈∴ (3) 自反性:()1,,,~.n n A GL E GL R A E AE A A ??∈?∈=∴ 对称性: 1,(),~,(),,n n A B GL R ifA B T GL R A T BT ??∈?∈= () 1 1 111,(),~n B TAT T AT T GL R B A ?????∴==∈∴. 传递性: 11121122,,(),~,~,,(),,,n n A B C GL R A B B C T T GL R A T BT B T CT ???∈?∈== ()()1 1112212121,A T T CT T T T C T T ???∴==21(),~.n T T GL R A C ∈∴ 4. 证明: (1) 反身性:,()(),~a A a a a a φφ?∈=∴Q (2)对称性: ,,~,()(),()(),.a b A ifa b a b b a b a φφφφ∈=∴==

近世代数习题解答(张禾瑞)一章

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? 解? d d c = , a c d = a b c a a b c b b c a c c a b

近世代数试题及答案

内蒙古广播电视大学2008—2009年度第二学期期末 《近世代数》试题 一、(16分)叙述概念或命题 1.正规子群; 2.唯一分解环; 3.代数数; 4.鲁非尼-阿贝尔定理 二、(12分)填空题 1.设有限域F 的阶为81,则的特征=p 。 2.已知群G 中的元素a 的阶等于50,则4a 的阶等于 。 3.一个有单位元的无零因子 称为整环。 4.如果710002601a 是一个国际标准书号,那么=a 。 三、(10分)设G 是群。证明:如果对任意的G x ∈,有e x =2,则G 是交换群。 四、(10分)证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。 五、(15分)设}R ,,,|{H ∈+++=d c b a dk cj bi a 是四元数体,对H 中任意元 dk cj bi a x +++=, 定义其共轭 dk cj bi a x ---=。 1.证明:x x x x =是一个非负实数; 2.对k j i x 221-+-=,k j i y -+-=22,求xy ,yx 和1-x 。 六、(15分)设)6(1=I ,)15(2=I 是整数环的理想,试求下列各理想,并简述理由。 1.21I I +; 2.21I I ?; 3.21I I ?

七、(10分)设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。 1.求στ和στ-1; 3.确定置换στ和στ-1的奇偶性。 八、(12分)求剩余类加群Z 12中每个元素的阶。

《近世代数》试卷答案 一、1.若H 是群G 的子群,且对每个G a ∈,有Ha aH =,那么H 称为是G 的正规子群。 2.设R 是个整环,若对于R 中每个非零非单位的元都有唯一分解,则称R 为唯一分解环。 3.有理数域上的代数元称为代数数。 4.如果5≥n (特征为0),那么n 次的一般方程没有根式解。 二、1.3 2.25 3.交换环 4.6 三、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。 四、设A 是任意方阵,令)(21A A B '+= ,)(2 1 A A C '-=,则 B 是对称矩阵,而 C 是反对称矩阵,且C B A +=。若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:1B B =,1C C =,所以,表示法唯一。 五、1.02222≥+++==d c b a x x x x 2.k j i xy 8424-+--=,k j i yx 2484-+--=,)221(10 1 1k i i x +-+=- 六、1.)3(21=+I I ; 2.)30(21=?I I ; 3.)90(21=?I I 七、1.)56)(1243(=στ,)16524(1=στ-; 2.两个都是偶置换。 八、

相关文档