文档库 最新最全的文档下载
当前位置:文档库 › 纳米材料增加研磨时间解决分层团聚的原因

纳米材料增加研磨时间解决分层团聚的原因

纳米材料增加研磨时间解决分层团聚的原因
纳米材料增加研磨时间解决分层团聚的原因

纳米材料增加研磨时间解决分层团聚的原因

深圳市叁星飞荣机械有限公司

1、继续研磨,起到更好的分散作用,也即分散剂不断在新产生的表面上覆盖,实现空间阻隔作用而起到分散作用。

2、继续研磨,可消除或减弱颗粒的表面能,表面能主要表现在颗粒的带电现象。颗粒的破碎不管是晶体界面破碎还是穿晶破碎或是分子键的断裂,都使得物质分子的原子的电子云发生变化,必然产生大量的电荷(即是通常所说的研磨产生大量的静电),继续研磨可使正负电荷得到更大限度的相互抵消,从而减弱颗粒的表面活性,从而减弱颗粒的团聚倾向。

3、继续研磨,可使物料颗粒纯化、球化。物料颗粒的破碎,新生产的破裂面必然有大量的尖角和棱边,使物料钝化,球化,防止电荷在颗粒的尖角、棱边上的集中分布,可消除或减弱因电荷集中分布而使颗粒产生极性,从而防止或减弱因带极性的颗粒异极相吸而发生团聚。

4、每一种规格(直径)的珠,对某一种类物料有一个研磨“极限时间”。这个所谓的极限时间即是指研磨到一定时间后物料细度已不再明显变小,所以做工艺试验时选定合适的珠径及测定这个“极限时间”和相对应的“极限细度”,还有助剂类型及用量,是喷墨研磨环节中的核心技术。选定机型后,珠径、产品粒径、极限时间,助剂的造型及用量这些可变因素的最佳配置,通过工艺调试是可以整合的。只要机器能磨细就不是机器的问题了,而工艺、配方、选珠径便是要解决的主要问题了。

举例,以下是用Φ0.1—0.2mm锆珠研磨氧化铝的案例:

图中研磨时间8小时是它的“极限时间”,其相对应的“极限细度”为12nm,也就是说研磨时间达到8小时以后,继续研磨,细度几乎没多少改变了。但是继续研磨多1—2个小时,对物料的稳定、减弱或消除团聚及分层是很有必要的。

在做工艺试验时,测试调整这个“极限细度”与我们产品要求的细度一致,围绕这个目的而选配合适珠径,助剂、分散剂的类型及用量,这样便可以做出最好的产品了。

纳米材料应用现状及发展趋势

NANO MATERIAL NANO MATERIAL NANO MATERIAL 纳米材料 应用现状及发展趋势 北京有色金属研究总院李明怡 摘要纳米材料是近期发展起来的多功能材料,本文概述了纳米材料的结构特性、主要制备工艺及应用现状和发展趋势,由于纳米材料具有许多特殊功能和效应,将在工业和国防等领域中发挥巨大潜力,并将为人类社会带来巨大影响。 关键词纳米结构功能材料制备工艺应用现状发展趋势 1前言 纳米材料是指由极细晶粒组成,特征维度尺寸在1~100纳米范围内的一类固体材料,包括晶态、非晶态和准晶态的金属、陶瓷和复合材料等,是80年代中期发展起来的一种新型多功能材料。由于极细的晶粒和大量处于晶界和晶粒内缺陷中心的原子,纳米材料在物化性能上表现出与微米多晶材料巨大的差异,具有奇特的力学、电学、磁学、光学、热学及化学等诸方面的性能,目前已受到世界各国科学家的高度重视。以纳米材料及其应用技术为重要组成部分的纳米科学技术,被认为对当代科学技术的发展有着举足轻重的作用。美国IB M公司首席科学家Ar mstrong认为:/正像70年代微电子技术产生了信息革命一样,纳米科学技术将成为下一代信息的核心。0我国科学家钱学森也指出:/纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而将引起21世纪又一次产业革命。0由于纳米科学技术具有极其重要的战略意义,美、英、日、德等国都非常重视这一技术的研究工作。美国国家基金会把纳米材料列为优先支持项目,拨巨款进行专题研究。英国从1989年起开始实施/纳米技术研究计划0。日本把纳米技术列为六大尖端技术探索项目之一,并提供1187亿美元的专款发展纳米技术。我国组织实施的新材料高技术产业化专项中也将纳米材料列为其中之一。纳米材料正在向国民经济和高技术各个领域渗透,并将为人类社会进步带来巨大影响。 2纳米材料的结构和特性 我们所使用的常规材料在三维方向上都有足够大的尺寸,具有宏观性。纳米材料则是一些低维材料,即在一维、二维甚至三维方向上尺寸极小,为纳米级(无宏观性),故纳米材料的尺寸至少在一个方向上是几个纳米长(典型为1~10nm)。如果在三维方向上都是几个纳米长,为3D纳米微晶,如在二维方向上是纳米级的,为2D纳米材料,如丝状材料和纳米碳管;层状材料或薄膜等为1D纳米材料。纳米颗粒可以是单晶,也可以是多晶,可以是晶体结构,也可以是准晶或无定形相(玻璃态);可以是金属,也可以是陶瓷、氧化物或复合材料等。纳米微晶的突出特征是晶界原子的比例很大,有时与晶内的原子数相等。这表明纳米微晶内界面很多,平均晶粒直径越小,晶界 20

《纳米技术就在我们身边》知识点整理

教材分析: 这是一篇介绍纳米、纳米技术的科普说明文,说明思路清晰,逻辑性强。作者以大胆的想象,通俗易懂的语言,向我们介绍了纳米技术的神奇,展示了纳米技术在应用上的美妙前景。文章除了向我们介绍“纳米”等科学术语外,在内容上更突出介绍纳米的神奇,对此作家将纳米技术在社会生活中的应用通过想象表现得淋漓尽致。这样大批的举例使枯燥的科学变得生动起来,让我们看到了纳米技术在应用上的前景,激发了我们热爱科学、乐于观察和探究的兴趣。 作者介绍: 刘忠范,男,汉族,1962年10月生,吉林九台人,2007年12月加入九三学社,1990年4月参加工作,研究生毕业(日本东京大学光电化学专业),工学博士,教授,中国科学院院士。 我会写: 纳:纳米接纳容纳吐故纳新 拥:拥有拥抱拥挤蜂拥而至 箱:冰箱信箱邮箱箱子 臭:除臭臭气臭味遗臭万年 蔬:蔬菜果蔬时蔬瓜果菜蔬 碳:低碳碳酸二氧化碳 钢:钢铁钢笔钢琴百炼成钢 隐:隐蔽隐藏隐患若隐若现 健:健康强健健身健忘 康:健康康乐小康康庄大道 胞:细胞胞衣胞兄侨胞同胞

疾:疾病顽疾疾驰疾恶如仇 防:预防防御国防防微杜渐 灶:灶台灶王病灶另起炉灶 需:需要必需军需各取所需 书写指导: “臭”上下结构,上面是个“自”下面是个“犬”,不要少写“自”里的一横和“犬”上的一点。 “蔬”上窄下宽,下面是“疏”,不要多写横撇下的一撇,也不要少写了撇折右边的一点。 “健”左窄右宽,注意中间是“廴”不是“辶”。 “康”半包围结构,注意里面的部分,最后四笔分别是:点、提、撇、捺。 形近字: 蔬(蔬菜)疏(亲疏)钢(钢铁)刚(刚才) 健(健康)建(建筑) 多音字: 臭:chòu臭味xiù乳臭未干 率:lǜ概率shuài 率领 近义词:

二年级数学上册《认识时间·解决问题》优秀教案_教学设计

二年级数学上册《认识时间·解决问题》优秀教案_教学设计 一、教学目标 (一)知识与技能 学会用“几时几分”的知识分析生活中相关联事件发生的时间。 (二)过程与方法 经历用时间的有关知识解决简单的实际问题的过程,形成初步的推理能力。 (三)情感态度和价值观 感受数学就在身边,提高学习数学的兴趣,并养成珍惜时间,合理安排时间的良好习惯。 二、目标解析 本节课是让学生通过语言描述生活中相关联事件发生的时间,再通过合情推理,推算出时间可能是多少。教材通过两个小朋友的对话,引出问题“明明可能在下面哪个时间去踢球?”,让学生在经历“合情推理──演绎推理”的过程中获取数学结论,发现数学方法。同时,教师应注重让学生对结论进行检验。 三、教学重难点 教学重点:能合理推测事件发生的时间。 教学难点:培养学生的推理能力。 四、教学准备 课件 五、教学过程 (一)创设情境,激发经验 1.谈话引入 (1)课件出示一组钟面(时间分别为6:30、7:40、9:35、11:30),先请学生读出钟面上的时间。 (2)说一说这些时间是按什么顺序排列的。 (3)这是老师周一上午的作息时间安排,你们猜一猜在这些时间里老师分别在干什么?2.唤醒已有经验 (1)说一说你们一般会怎样安排事情的先后。 (2)学生交流后汇报。 (3)明明和他的好朋友在星期天也有自己的时间安排,今天我们将去帮他们解决一些关于时间的问题。(板书课题) 【设计意图】学生对时间的认识和理解离不开情境的支撑。由复习旧知入手,感受时间的运动方式,再结合学生感兴趣的生活情境——教师作息时间安排,引导学生说一说自己生活中对事情先后顺序的安排,唤起学生的生活经验,为学习新知做好了准备。 (二)教学互动,探索新知 1.呈现主题图,尝试解决问题 (1)课件出示例3主题图,引导学生观察图片,获取信息。 (2)学生汇报。 (3)共同分析关键词“可能”。 (4)启发学生将条件和问题完整地说一说。 (5)学生独立思考,并尝试解决问题。 【设计意图】观察是思维的前提,学生需要从主题图中获取有关的信息才能展开思考,教

最新纳米材料的背景、意义资料

纳米知识介绍 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。 纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合), ?纳米微粒与常规块体复合(0-3复合), ?纳米复合薄膜(0-2复合)。 第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。 图1 纳米颗粒材料SEM图 一、纳米材料的基本特性

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。 4、磁学性质 当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

纳米材料粒度分析

纳米材料粒度分析 一、实验原理 纳米颗粒材料(粒径<100nm )是纳米材料中最重要的一种,可广泛用于纳米复合材料制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。粒径(或粒度)是纳米颗粒材料的一个非常重要的指标。测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000个以上颗粒的粒径)方法来得到颗粒粒径,比较烦琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。激光光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。因此,上述两种纳米材料的测试方法各有优缺点。本实验选用激光光散射法测试纳米材料的粒径及粒径分布。所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。 图1为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802微处理器和计算机组成。 图1 N4 Plus 型激光粒度测试仪的测量单元组成图 N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光谱(Photon Correlation Spectroscopy, PCS)现象。在溶液中,粒子由热导致与溶剂分子发生随机碰撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。在恒定温度及某一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程: d 3T k D B πη= (1) 式中k B 为玻尔兹曼常数(1.38×10-16 erg/?K),T 为温度(?K),η为分散介质(或稀释剂)粘度(poise),

化学与生活知识点总结

化学与生活知识点总结 专题一洁净安全的生存环境 第一单元空气质量的改善 一、空气质量报告 (一)、空气质量评价包括:二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物 空气污染指数:根据空气中二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物等污染物的浓度计算出来的数值。首要污染指数即位该地区的空气污染指数 (二)、大气主要污染物及其危害 1、温室效应 (1)原因:①全球化石燃料用量猛增排放出大量的CO2;②乱砍乱伐导致森林面积急剧减少,吸收CO2能力下降。 2、主要危害:(1)冰川熔化,使海平面上升(2)地球上的病虫害增加(3)气候反常,海洋风暴增多(4)土地干旱,沙漠化面积增大。 3、控制温室效应的措施 (1)逐步调整能源结构,开发利用太阳能、风能、核能、地热能、潮汐能等,减少化石燃料的燃烧;(2)进一步植树造林、护林、转化空气中的CO2 2、酸雨 (1)原因:酸性氧化物(SO2、NO2)SO2+H2O H2SO3 2H2SO3+O2==2H2SO4(2)防止方法:①开发新能源(太阳能、风能、核能等)②减少化石燃料中S的含量 钙基脱硫CaCO3==CaO+CO2CaO+SO2==CaSO3 2CaSO3+O2==2CaSO4 ③吸收空气中的SO2④加强环保教育 3、机动车尾气污染:尾气净化装置2NO+2CO N2+2CO2 4、CO 能和人体的血红蛋白结合使能中毒 5、可吸入颗粒物:静电出尘 6、居室空气污染物:甲醛、苯及其苯的同系物、氡等 危害:甲醛对人体健康的影响(肝功能异常等) 7、白色污染的危害:①破坏土壤结构②降低土壤肥效③污染地下水④危及海洋生物的生存第二单元水资源的合理利用

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容和所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易和其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们和旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错和晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

纳米材料

纳米材料的制备方法 真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 机械球磨法 采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 物理法:粉碎法----- “粉碎”一词是指块体物料粒子由大变小过程的总称,它包括“破碎”和“粉磨”。前者是由大料块变成小料块的过程,后者是由小料块变成粉末的过程。粉碎过程就是在粉碎力的作用下固体物料或粒子发生形变进而破裂的过程。当粉碎力足够大时,力的作用又很迅猛,物料块或粒子之间瞬间产生的引力大大超过了物料的机械强度。因而物料发生了破碎。粉碎作用力的类型主要有如右图所示几种。可见物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。常借助的外力有机械力、流能力、化学能、声能、热能等。主要由湿法粉碎和干法粉 一般的粉碎作用力都是几种力的组合,如球磨机和振动磨是磨碎和冲击粉碎的组合;雷蒙磨是压碎、剪碎和磨碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。 物料被粉碎时常常会导致物质结构及表面物理化学性质发生变化,主要表现在: 1、粒子结构变化,如表面结构自发的重组,形成非晶态结构或重结晶。 2、粒子表面的物理化学性质变化,如电性、吸附、分散与团聚等性质。 3、受反复应力使局部发生化学反应,导致物料中化学组成发生变化。 几种典型的粉碎技术:球磨、振动球磨、振动磨、搅拌磨、胶体磨、纳米气流粉碎气流磨 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎 构筑法 构筑法是由小极限原子或分子的集合体人工合成超微粒子 蒸发凝聚法

超微细纳米研磨技术在纳米科技上应用与研讨

超微细纳米研磨技术在纳米科技上应用与研讨 传统型之研磨机因受限于研磨室内之热交换只靠研磨室表面之热夹套层来做热交换,因此当研磨室之大小从实验型放大到量产型时,热交换面积之放大比例因无法与研磨室体积之放大比例均一,导致无法将实验型研磨机所得到之结果等比例地放大到量产型之机台。同时,对于对温度较敏感或纳米级材料之应用,往往因热交换面积无法随研磨室之体积等比例放大,导致其量产型研磨机之产能无法等比例放大,甚至质量因研磨室内所承受之动力密度不够而无法达到要求。本文所介绍之新一代双缸型设计之研磨机则将研磨室之体积缩小,并增加热交换面积且使其与研磨室之体积成固定比例,如此不管研磨室之体积大小为何,其热交换面积与研磨室大小成固定比例,可使单位研磨室体积之动力密度不受研磨室大小之影响,达到实验型研磨机之研发结果与量产型研磨机在同一品质下之产能等比例放大之目的,同时对于较难分散研磨或对温度较敏感之应用及纳米级材料之分散研磨皆能运用无碍。 关键词:传统型研磨机(Conventionalfullspaceagitationmills)、放大(Scale-up)、纳米级材料(Nano-sizematerial)、动力密度(Powerdensity)、新一代双缸型设计之研磨机(Doublecylindricalannulargapmills) 引言 随着3C产品之轻、薄、短小化及纳米尺度材料应用之白热化,如何将超威细研磨技术应用于纳米材料之制作及分散研磨已成为当下之重要课题。传统产业所需之染料、涂料及油墨之产品粒径需求只到微米级,所需之分散研磨技术门坎较低,同时因为该产品之单价较低,所以研发较不受到重视。但目前国内上述大部分之传统产业业者已逐渐将其产品从传统之微米级尺寸产品应用领域转型到高科技所需之之纳米级尺寸产品所需之材料,如薄膜型液晶显示器(TFTLCD)所需之彩色光阻(colorresist)、打印机所需之喷墨(jetinks)、被动组件、光电产业及生化产业所需之纳米级材料等,因上述高科技所需之纳米级尺寸之材料单价较高,每公斤约为数千到数万元,且不同产品或厂家所需之规格亦不同,所以研发便成为产业转型之重要课题。 但由于传统型设计之单缸型研磨机受限于热交换只来自于研磨室表面之热夹套层,故对于不同研磨室体积之研磨机之产能无法满足线性放大之需求。相反地,本文所介绍之新一代双缸型设计之研磨机则将研磨室之体积缩小,并增加热交换面积且使其与研磨室之体积成固定比例,如此不管研磨室之体积大小为何,其热交换面积与研磨室大小成固定比例,可使单位研磨室体积之动力密度不受研磨室大小之影响,达到实验型研磨机之研发结果与量产型研磨机在同一质量下之产能等比例放大之目的,同时对于较难分散研磨或对温度较敏感之应用及纳米级材料之分散研磨皆能运用无碍,本文将详细地对上述之论点做一报告并以实例来说明之。

最新人教版四年级语文下册《纳米技术就在我们身边》知识点

统编版四年级语文下册第7课 《纳米技术就在我们身边》知识点 知识点 课文主题归纳: 这是一篇介绍纳米、纳米技术的文章。作者以通俗易懂的语言向我们介绍了纳米技术的神奇,以及纳米技术在我们生活中的应用,告诉我们在不远的将来纳米技术将改变我们的生活。 全文共分三部分: 第一部分(1):写21世纪是纳米的世纪。 第二部分(2~4):具体介绍什么是纳米技术,以及纳米技术的应用。第三部分(5):写在不远的将来,纳米技术将改变我们的生活。 课内重点词语: 纳米拥有冰箱除臭蔬菜钢铁 隐形健康细胞疾病预防病灶 需要功能材料深刻 多音字: 臭:chòu臭味xiù 乳臭未干 率:lǜ 概率shuài 率领

形近字: 蔬(蔬菜)疏(亲疏)钢(钢铁)刚(刚才)健(健康)建(建筑) 生字组词: 纳:纳米接纳容纳吐故纳新 拥:拥有拥抱拥挤蜂拥而至 箱:冰箱信箱邮箱箱子 臭:除臭臭气臭味遗臭万年 蔬:蔬菜果蔬时蔬瓜果菜蔬 碳:低碳碳酸二氧化碳 钢:钢铁钢笔钢琴百炼成钢 隐:隐蔽隐藏隐患若隐若现 健:健康强健健身健忘 康:健康康乐小康康庄大道 胞:细胞胞衣胞兄侨胞同胞 疾:疾病顽疾疾驰疾恶如仇 防:预防防御国防防微杜渐 灶:灶台灶王病灶另起炉灶 需:需要必需军需各取所需

词语解释: 【无能为力】用不上力量;没有能力或能力达不到。 【特性】某人或某事物所特有的性质。 【造福】给人带来幸福。 【杀菌】用日光、高温、过氧乙酸、酒精抗生素等杀死病菌。【癌症】生有恶性肿瘤的病。 【预防】事先防备。 【病灶】机体上发生病变的部分。 近义词: 特性——特征神奇——奇妙 结实——牢固灵敏——灵活 反义词: 普通——特别先进——落后 吸收——释放降低——增加

纳米知识点与答案(DOC)

第一章 1、纳米科学技术概念 纳米科学技术是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。 2、纳米材料的定义 把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。“功能”概念,即“量子尺寸效应”。 3、纳米材料五个类(维度) 0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料 4、0、1、2维材料定义、例子 0维材料—尺寸为纳米级(100 nm)以下的颗粒状物质。 富勒烯、胶体微粒、半导体量子点 1维材料—线径为1—100 nm的纤维(管)。 纳米线、纳米棒、纳米管、纳米丝 2维材料—厚度为1 —100 nm的薄膜。 薄片、材料表面相当薄的单层或多层膜 5、纳米材料与传统材料的主要差别 尺寸:第一、这种材料至少有一个方向是在纳米的数量级上。 比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。 性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。 比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。 6、金属纳米粒子随粒径的减小,能级间隔增大 7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比 8、纳米材料的四大基本效应 尺寸效应,介电限域效应,表(界)面效应,量子效应 9、什么是量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 10、什么是小尺寸效应 当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。 11、什么是表(界)面效应 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的化学活性,催化活性,吸附活性。表面效应是指纳米粒子表(界)面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 12、什么是宏观量子隧道效应

二年级数学上册《认识时间·解决问题》教学设计

二年级数学上册《认识时间解决问题》教学设计 一、教学目标 (一)知识与技能 学会用“几时几分”的知识分析生活中相关联事件发生的时间。 (二)过程与方法 经历用时间的有关知识解决简单的实际问题的过程,形成初步的推理能力。 (三)情感态度和价值观 感受数学就在身边,提高学习数学的兴趣,并养成珍惜时间,合理安排时间的良好习惯。 二、目标解析 本节课是让学生通过语言描述生活中相关联事件发生的时间,再通过合情推理,推算出时间可能是多少。教材通过两个小朋友的对话,引出问题“明明可能在下面哪个时间去踢球?”,让学生在经历“合情推理──演绎推理”的过程中获取数学结论,发现数学方法。同时,教师应注重让学生对结论进行检验。 三、教学重难点 教学重点:能合理推测事件发生的时间。 教学难点:培养学生的推理能力。 四、教学准备 课件

五、教学过程 (一)创设情境,激发经验 1.谈话引入 (1)课件出示一组钟面(时间分别为6:30、7:40、9:35、11:30),先请学生读出钟面上的时间。 (2)说一说这些时间是按什么顺序排列的。 (3)这是老师周一上午的作息时间安排,你们猜一猜在这些时间里老师分别在干什么? 2.唤醒已有经验 (1)说一说你们一般会怎样安排事情的先后。 (2)学生交流后汇报。 (3)明明和他的好朋友在星期天也有自己的时间安排,今天我们将去帮他们解决一些关于时间的问题。(板书课题) 【设计意图】学生对时间的认识和理解离不开情境的支撑。由复习旧知入手,感受时间的运动方式,再结合学生感兴趣的生活情境——教师作息时间安排,引导学生说一说自己生活中对事情先后顺序的安排,唤起学生的生活经验,为学习新知做好了准备。 (二)教学互动,探索新知 1.呈现主题图,尝试解决问题 (1)课件出示例3主题图,引导学生观察图片,获取信息。 (2)学生汇报。 (3)共同分析关键词“可能”。

纳米润滑添加剂分散性研究进展

311 润滑油中加入纳米添加剂可以改善润滑油在摩擦副中的摩擦学性能,主要是在摩擦副之间形成摩擦膜来改善润滑油的抗磨减摩性能,进而减少机械部件等的磨损[1]。由于纳米材料的本身较大的表面能和比表面积,所以粒子相互之间极易形成团聚,那么在润滑油中不能够很好的分散,成为了纳米材料在润滑油中使用的阻碍,从而影响其摩擦效果[2]。为了克服纳米材料的分散稳定性的问题,研究者们利用对纳米材料的表面进行改性的方法。 纳米材料的表面改性的方法可分为表面物理和化学修饰两种:一是添加分散剂,利用分散剂的作用让纳米材料均匀稳定地分散在润滑油中,但分散剂或许会使纳米材料的在润滑油中的摩擦学性能有一定的影响;二是将纳米材料进行表面改性,让它在润滑油中的分散稳定性能够一定提升。纳米材料的表面改性主要通过与无机纳米材料复合或者利用有机物的接枝对其改性等方式提高了纳米材料的分散稳定性[3]。 本文探讨了纳米材料在润滑油中分散方法的研究进展,并对纳米润滑添加剂未来的发展趋势作出了展望。 1?纳米润滑添加剂物理改性 表面物理改性其实是改性剂与纳米材料的表面之间不会发生化学反应,改性剂通过氢键、范德华力等作用力吸附在纳米材料的表面,即不会有共价键或者离子键的结合。方法主要包括有:吸附包覆改性法、表面活性剂法和表面沉积改性法[4]。 1.1?吸附包覆法 吸附包覆法是较早的改性方法,主要是通过将有机高分子、无机物或者生物大分子等在纳米材料表面发生包覆现象来达到改性的过程。就到现在为止所采用的包覆方法主要有:(1)在溶液中让改性剂沉积在或者吸附在纳米材料的表面,去除溶液后形成一种包覆膜;(2)主要针对高分子材料,单体通过吸附在纳米材料的表面上,然后再聚合形成高分子,最后形成包覆膜。纳米材料被包覆以后也就是我们通常称为的“核壳”结构,并将具有新的特性和功能,尤其是对提升纳米材料的分散性有很好的效果。 1.2?表面活性剂法 该方法是利用相关的表面活性剂来处理纳米材料,使其吸附在纳米材料的表面,因为表面活性剂的存在会使纳米材料的粒子之间存在排斥力,从而可以阻止粒子之间的团聚,使纳米材料可以分散到溶液中。上海海事大学顾彩香等人[5]选择吐温20等作为表面 活性剂使CeO 2和CaCO 3纳米材料在混合溶液中的分散性和稳定性得到了明显的改善。 1.3?表面沉积改性法 该方法为利用沉淀的反应将其生成物经过沉积到纳米材料的表面,形成一层甚至多层的无化学结合的异质包覆层,进而改变纳米材料的某些特性。例如在纳米二氧化钛(TiO 2)表面形成一层氧化铝(Al 2O 3)的包覆层,可以增多纳米TiO 2的表面的正电荷,提高纳米TiO 2的亲油性,进而可以更好的分散在润滑油中提升它的摩擦学性能。Won?等人[6]研究了在大气压下沉积在块状Cu基底上的几层石墨烯涂层的耐久性和退化机理,在干滑动条件下,在几mN的正常载荷下对抗表面。 2?纳米润滑添加剂表面化学改性法 化学改性的方法是通过改性剂与纳米材料之间的发生化学反应,在纳米材料的表面在一定条件下引入改性剂,从而提升纳米材料的某些特性来达到改性的目的[7]。 2.1?纳米润滑添加剂表面接枝有机小分子 有机小分子利用纳米材料的表面的含氧官能团(主要为羟基)与有机小分子的化合物发生化学的反应,使纳米材料的表面接枝上有机的小分子。有机小分子大多为广泛用的偶联剂,这些有机小分子结构简单明确、反应活性较高,接枝在纳米材料表面的工艺很简单,能够很好的提升在润滑油中的分散稳定性。王滨等人[8]研究了通过液相还原法制备出了油酸改性的铜纳米粒子,所合成的改性的纳米粒子在润滑油中可以较好的分散。 2.2?纳米润滑添加剂表面接枝高分子材料 纳米材料表面接枝高分子是通过化学反应将高分子化合物在一定条件下接枝到纳米材料的表面。接枝后的材料可以最大的发挥纳米材料和有机高分子两者的特性,起到1+1>2的效果。在润滑油或者其他有机溶剂中的分散性也可以得到很好的改善。 蒋正权等[9]采用油胺(OM)和马来酸酐十二烷基酯(MADE)作为表面改性剂以制备OM/MADE接枝在二硫化钨(WS 2)纳米颗粒上。结果表明,OM接枝WS 2纳米粒子对DIOS基础油的摩擦学性能几乎没有影响。OM/MADE接枝的WS 2纳米颗粒以2.0?wt?%?的浓度添加在相同的基础原料中,然而,表现出良好的分散性并导致摩擦学性能大大提高。原因在于,在含有极性基团和含OM配位基团的MADE进行表面封端后,添加在基础油中的OM/MADE接枝WS 2颗粒很好地吸附在钢-钢触点的滑动表面上,从而得到化学吸附膜具有低 纳米润滑添加剂分散性研究进展 黄威1?赵萍萍1?黄港滨2?晏金灿2?王广健1 1.?淮北师范大学?安徽?淮北?235000 2.?中山大学惠州研究院?广东?惠州?516000 摘要:纳米材料作为润滑添加剂可改善润滑油的摩擦学性能,但是纳米材料在润滑油中的分散性极差,导致应用受限。本文综述了改善纳米润滑添加剂分散性的方法。 关键词:纳米润滑添加剂?分散性?摩擦学性能

造型材料与工艺知识点总结

包括:金属、塑料、陶瓷、玻璃、木材、涂料、胶粘剂 加工成型和表面处理工艺 1.金属材料 (1)钢铁及其合金,不锈钢(2)铜及其合金(3)铝合金 2.非金属材料 (1)塑料(2)木材(3)橡胶(4)胶粘剂(5)涂料 (6)玻璃(7)陶瓷(8)先进陶瓷 3.复合材料 (1)金属-金属不锈钢复合管(2)金属-非金属塑铝板 (3)非金属-非金属 4.纳米材料 1、密度单位体积的质量 视密度、容量、产品的重量 2、熔点。固转液的温度 注塑与铸造 3、比热容。一千克材料升高一摄氏度,为该材料的比热 4、热导率。温差,长度,能量,散热 5、热胀系数。关系到材料的失效和精率,结构稳定性。大桥桥板的接口 6、强度。抗破坏性 7、弹性和塑性。变形能力 8、脆性与韧性。 9、硬度。抗局部变形的能力 10、耐磨性 11、导电性与电绝缘性 12、材料的化学性能抗腐蚀抗氧化耐候性 质感设计的作用 A、提高整体设计的实用性 B、提高工业产品装饰性,弥补形态,色彩等不足 C、替代和补救自然质感 D、提高产品的真实性和价值性 造型材料应具备的特性 1、感觉物性质感形态色彩 2、环境耐侯性 3、加工成型性 4、表面工艺性 金属 金属是一种具有光泽(即对可见光强烈反射)、富有延展性、容易导电、导热等性质的物质。金属的上述特性都跟金属晶体内含有自由电子有关。 金属材料是广泛应用的一种材料

1、机械性能 弹性 刚度 塑性 强度 硬度 动载荷、冲击特性 交变载荷 2、物理与化学性能 物理性能:比重、导热性、导电性、热膨胀性、磁性等 化学性能:抗蚀性、抗氧化性 3、工艺性能 材料适应加工和工艺处理要求的能力。 铸造性能 锻造性能 焊接性能 切削加工性能 合金的概念 纯金属的缺点:品种少,提炼困难,机械性能不能满足需求,所以要合金来补充。 合金的基本概念 一种金属加入另外一种或几种金属或非金属,经过熔合而组成,具有金属特性的材料。 合金相结构的不同分为三种类型:固溶体、金属化合物、机械混合物 铁碳合金的基本组织 铁碳合金由铁和碳两种元素组成合金——碳钢和铸铁 基本组织:固溶体,金属化合物,机械混合三种形式 1、铁素体(F)(C,-Fe ) 2、奥氏体(A)(C, -Fe ) 3、渗碳体(Fe3C ) 4、珠光体(P)(F+ Fe3C) 5、莱氏体(Ld)(A + Fe3C) 6、马氏体(A)(C, -Fe ) 过饱和 1.普通热处理: (1)退火,加热,保温,炉内冷却,接近平衡状态组织。A、完全退火>AC320-600C。B、球化退火>AC320-400C 。C、去应力退火、低温 (2)正火>AC350-1000C。空气中冷却 (3)淬火>AC350-1000C。油水、盐水、速冷—马氏体

《认识时间解决问题--用数学》公开课教学设计

《认识时间解决问题--用数学》教案 教学内容:人教版二年级数学上册第92页例3及练习二十三第4-6题。 教学目标: 1、结合生活情景,体会和判断两个时刻之间经过了哪些时刻。 2、巩固所学的知识,综合运用所学的知识。 3、合理安排时间。 教学重点:判断两个时刻之间经过了哪些时刻。 教学难点:判断时间的合理性。 教具准备:多媒体课件 教学过程: 一、复习旧知 1、钟面上一共有()个大格,每个大格分成()个小格。钟面上一共有()个小格。 2、分针走一小格的时间是1分钟,时针走一大格的时间是1小时。时针走1小时,分针正好走()分,也就是()分=1小时。 3、一节课是()分,课间休息是()分,再加上()分就是1小时。 二、引出新知 1、谈话揭示课题:让我们运用这些时间的知识来解决一些生活中的时间问题。 2、出示例3主题图 师:明明和红红是一对好朋友,今天他们约好一起玩,现在是什么时间,他们在说什么? 再看情境图:明明说:做完作业啦! 问:明明做完作业是什么时间? 你能用自己的语言完整地说一说事情的过程吗? 3、提出问题:明明可能在下面的哪个时间去踢球? 引导学生说出各个钟面上的时间(7:45 9:15 10:50)根据画面中提供的数学信息,你能推算出明明踢球的时间是

上面三个时间中的哪一个吗? 学生分小组讨论交流。 4、汇报交流 引导:要求明明哪个时间去踢球,我们要先知道什么?(板书:做完作业、看木偶剧) 踢球的时间在这两个时间中间,你能找出这两个时间吗?(板书:踢球) 指名回答,师板书如下: 9:00 ---- ? ---- 10:30 做完作业踢球看木偶剧 你是怎样解答的?(指名回答,师小结并红笔板书:9:15 )5、检验 师:我们的解答正确吗?把所选的答案9:15代到题目中看看是否合理。 学生自己尝试检验,然后集体交流。 三、巩固练习 教材练习二十三第4题。 我们生活中经常会遇到推算时间的情况,瞧,小红和妈妈就遇到了这样的问题。 师出示题目,指名说题意。 问:根据这些信息,你能推算出小红去摘西红柿的时间吗? 8:30 ——?—— 12:30 大扫除摘西红柿去小文 家玩 钟面上有4个时间可供选择,你能都读出来吗? 哪个时间较合适,为什么? 四、课堂小结 这节课我们学习了推算时间,是用什么方法推算的? 五、布置作业 教材练习二十三第5、6题。 第5题: 亮亮的活动时间表 时间 3:00—3:20 3:30—4:00 4:10—4:35 4:45—

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

相关文档