文档库 最新最全的文档下载
当前位置:文档库 › 第五章啤酒发酵

第五章啤酒发酵

第五章啤酒发酵
第五章啤酒发酵

第五章啤酒发酵

§5-1啤酒酵母

一、啤酒酵母的类型

发酵类型:分为上面酵母与下面酵母

凝聚性:分为凝聚性酵母与粉末性酵母

(一)上面酵母与下面酵母

原因:两种酵母在发酵液中的物理特性有差异。

这两种酵母鉴别的主要特征是,对棉子糖的发酵。

上面酵母细胞仅有转化酶,所以只能发酵1/3棉子糖;下面酵母有转化酶和蜜二糖酶,所以能全部发酵棉子糖。

(二)凝聚性酵母与粉末性酵母

二、啤酒酵母的主要特性要求

1.细胞和菌落形态

不同菌株的啤酒酵母有着不同的形态。优良健壮的啤酒酵母细胞,具有均匀的形状和大小,平滑而薄的细胞膜,细胞质透明均一。

啤酒酵母在麦芽汁固体培养基上菌落呈乳白色至微黄褐色,表面光滑但无光泽,边缘整齐或呈波状。

2.主要生理特性要求

(1)凝聚性凝聚性不同,酵母的沉降速度不同,发酵度也有差异。啤酒生产一般选择凝聚性比较强的酵母。

(2)发酵度反映酵母对麦芽汁中各种糖的利用情况,正常的啤酒酵母能发酵葡萄糖、果糖、蔗糖、麦芽糖和麦芽三糖等。一般啤酒酵母的真正发酵度应为50%~68%左右。

(3)酵母死灭温度是指一定时间内使酵母死灭的最低温度,可作为鉴别菌株的内容之一。一般啤酒酵母的死灭温度在52~53℃,若死灭温度增高,则说明酵母变异或污染野生酵母。

(4)产孢能力一般啤酒酵母生产菌种都不能产生孢子或产孢能力极弱,而某些野生酵母能很

好产孢。根据此特性,可判别啤酒酵母是否混入野生酵母。

三、啤酒酵母扩大培养

啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程,这一过程又分为实验室扩大培养阶段和生产现场扩大培养阶段。

1.实验室扩大培养阶段

(1)斜面试管一般为工厂自己保藏的纯粹原菌或由科研机构和菌种保藏单位提供。

(2)试管培养试管装入10mL优级麦汁,灭菌、冷却备用。接入纯种酵母在25~27℃保温箱中培养2~3天,每天定时摇动。平行培养2~4管,供扩大时选择。

(3)三角瓶培养取500~1000mL的大三角瓶,加入250~500mL优级麦汁,加热煮沸30min,冷却备用。在无菌室中将试管中的酵母液接入,在20℃保温箱中培养2~3天。

(4)卡氏罐培养卡氏罐容量一般为10~20L,放入约半量的优级麦汁,加热灭菌30min后,在麦汁中加入1L无菌水,补充蒸发的水分,冷却备用。再在卡氏罐中接入1~2个三角瓶的酵母液,摇动均匀后,置于15~20℃下保温3~5天,即可进行生产用菌扩大培养,或可供1000L麦汁发酵用。

2.生产现场扩大培养阶段

卡氏罐培养结束后,酵母进入现场扩大培养。啤酒厂一般都用汉生罐、酵母罐等设备来进行生产现场扩大培养。

(1)麦汁杀菌取麦汁200~300L加入杀菌罐,通入蒸汽,在0.08~0.10MPa汽压下保温灭菌60min,然后在夹套和蛇管中通入冰水冷却,并以无菌压缩空气保压。待麦汁冷却至10~12℃时,先从麦汁杀菌罐出口排出部分沉淀物,再用无菌压缩空气将麦汁压入汉生罐内。(2)汉生罐空罐灭菌在麦汁杀菌的同时,用高压蒸汽对汉生罐进行空罐灭菌1h,再通无菌压缩空气保压,并在夹套内通冷却水冷却备用。

(3)汉生罐初期培养将卡氏罐内酵母培养液以无菌压缩空气压入汉生罐,通无菌空气5~10min。然后加入杀菌冷却后的麦汁,再通无菌空气10min,保持品温10~13℃,室温维持13℃。培养36~48h左右,在此期间,每隔数小时通风10min。

(4)汉生罐旺盛期培养当汉生罐培养液进入旺盛期时,一边搅拌,一边将85%左右的酵母培养液移植到已灭菌的一级酵母扩大培养罐,最后逐级扩大到一定数量,供现场发酵使用。(5)汉生罐留种再扩培在汉生罐留下的约15%左右的酵母培养液中,加入灭菌冷却后的麦汁,待起发后,准备下次扩大培养用。保种酵母的室温一般控制在2~3℃,罐内保持正压(0.02~0.03MPa),以防空气进入污染。

在下次再扩培时,汉生罐的留种酵母最好按上述培养过程先培养一次后再移植,使酵母恢复活性。

汉生罐保存的种酵母,应每月换一次麦汁,并检查酵母是否正常,是否有污染、变异等不正常现象。正常情况下此种酵母可连续使用半年左右。

生产现场扩大培养的注意点

①每一步扩大后的残留液都应进行有无污染、变异的检查;

②每扩大一次,温度都应有所降低,但降温幅度不宜太大;

③每次扩大培养的倍数约为5~10倍。

3.啤酒酵母的质量检验

(1)形态检验

液态培养中的优良健壮的酵母细胞应具有均匀的形状和大小,平滑而薄的细胞壁,细胞质透明均一;年幼少壮的细胞内部充满细胞质;老熟的细胞出现液泡,内贮细胞液,呈灰色,折光性强;衰老细胞中液泡多,内容物多颗粒,折光性较强。

生产上使用的酵母一般死亡率应在3%以下,新培养的酵母死亡率应在1%以下。镜检中,

不应有杂菌污染。

(2)发酵度检验

在正常情况下,外观发酵度一般为75%~87%,真正发酵度为60%~70%,外观发酵度一般比真正发酵度约高20%,可按下式粗略换算:wr=wa×0.819。淡色啤酒发酵度的区分可按表5-5来划分。

发酵度反映酵母对各种可发酵性糖的利用程度。

发酵度测定方法:取1g泥状酵母接种于盛有150mL麦汁(12%~13%)的250mL三角瓶中,于25℃保温箱中发酵,每8h摇动一次,3~4天后取出,滤去酵母,测发酵液中残留的浸出物浓度,按下式计算外观发酵度:

另外还有凝聚性、发酵速度、死灭温度、出芽率、耐酒精度、产酸、产酯等生理特性检验。

四、啤酒活性干酵母的应用方法(以“安琪”牌啤酒活性干酵母为例)

1.低温发酵

发酵起始温度为9℃或更低(7~8℃),主发酵最高温度控制在11~12℃。啤酒活性干酵母必须活化1.5~2h,用量为0.5‰。

复水活化材料要求:容器必须洁净、可密封;活化用水必须是无菌水;麦汁必须经煮沸后取用。

复水活化步骤:

取煮沸后的10~12oBx的麦汁,加等量的凉开水,迅速冷却至30~32℃,加入可密封的洁净容器中,制成4~6oBx麦汁:

取所需用量的啤酒活性干酵母加入到4~6oBx麦汁中,麦汁用量为啤酒活性干酵母用量的5~10倍。

复水活化过程中,每隔10min摇动2min,活化1.5~2h。

该工艺发酵4~5天可开始保压,此时糖度在4.5oBx左右。

2.中温发酵

发酵起始温度为11℃,主发酵最高温度为13~14℃。

啤酒活性干酵母用量为0.4‰,复水活化方法同上述低温发酵。

发酵48~72h可开始保压,糖度在4.5oBx左右。

其他控制条件根据工艺要求而定。

3.高温发酵

发酵起始温度为17℃,主发酵最高温度控制在为19~20℃。

在此温度下,啤酒活性干酵母可不活化直接入罐,用量为0.3‰。

发酵36~48h可开始保压,糖度在4.5oBx左右。

§5-2、啤酒发酵机理

一、主要物质变化

1、糖的变化

在啤酒发酵过程中,可发酵糖;

约有96%发酵为乙醇和CO2,是代谢的主产物;

1.5%~

2.0%作为碳骨架合成新酵母细胞;

2.0%~2.5%转化为其他发酵副产物;

发酵副产物主要有:甘油、高级醇、羰基化合物、有机酸、酯类、硫化合物等。

2、含氮物质的变化

在正常的发酵过程中,麦汁中含氮物约下降1/3,主要是部分氨基酸和低分子肽为酵母所同化。酵母分泌出的含氮物的量较少,约为酵母同化氮的1/3。

啤酒中残存含氮物质对啤酒的风味有重要影响。含氮物质高(>450 mg/L)的啤酒显得浓醇,含氮量为300~400 mg/L的啤酒显得爽口,含氮物质量<300 mg/L的啤酒则显得寡淡。3、其他发酵产物

(1)高级醇类

高级醇(俗称杂醇油)是啤酒发酵代谢产物的主要成分,对啤酒风味有重大影响,超过一定含量时有明显的杂醇味。对于一般的啤酒,多量的高级醇是不受欢迎的。啤酒中的绝大多数高级醇是在主发酵期间酵母繁殖过程中形成的。

(2)酯类

啤酒中的酯含量很少,但对啤酒风味影响很大,啤酒含有适量的酯,香味丰满协调,但酯含量过高,会使啤酒有不愉快的香味或异香味。酯类大都在主发酵期间形成。

(3)连二酮

连二酮(丁二酮)是双乙酰和2,3-戊二酮的总称,其中对啤酒风味起主要作用的是双乙酰。双乙酰被认为是衡量啤酒成熟与否的决定性指标,双乙酰的味阈值为0.1~0.15 mg/L,在啤酒中超过阈值会出现馊饭味。

淡爽型成熟啤酒,双乙酰含量以控制在0.1mg/L以下为宜;高档成熟啤酒最好控制在0.05mg/L以下。

影响双乙酰生成的因素

①菌种还原能力:强壮>幼、衰老、营养不良、代数多者。

②麦汁成分中氨基酸的种类和含量:α-氨基氮↑或Val↑,α-乙酰乳酸生成↓,双乙酰↓。

③巴氏灭菌前α-乙酰乳酸的含量:↑,则高温杀菌时,双乙酰↑

④染菌↑

⑤酵母自溶↑

双乙酰的控制与消除方法

①菌种:采用双乙酰产量低者;提高接种量,还原期≥7×106个/100ml。

②麦汁成分:α-氨基氮:180~200mg/L有利于酵母增殖,并有适宜的Val含量有反馈抑制。溶解O2 26~9mg/LO↑,加速α-乙酰乳酸氧化分解,锌0.15~0.20mg/L微量锌对降低啤酒中双乙酰有利。

③酿造用水:残余碱度<1.78mmol。

④还原温度:适当提高。

⑤控制酵母增殖:降低繁殖温度。

⑥外加α-乙酰乳酸脱羧酶:使发酵液中的α-乙酰乳酸还原→乙偶姻

(4)硫化物

挥发性硫化物对啤酒风味有重大影响,这些成分主要有硫化氢、二甲基硫、甲基硫醇、乙基硫醇、二氧化硫等。其中硫化氢、二甲基硫对啤酒风味的影响最大。啤酒中的挥发性硫化氢大都是在发酵过程中形成的。啤酒中的硫化氢应控制在0~10μg/L的范围内;啤酒中二甲基硫浓度超过100μg/L时,啤酒就会出现硫磺臭味。

(5)乙醛乙醛是啤酒发酵过程中产生的主要醛类,乙醛是酵母代谢的中间产物。当啤酒中乙醛浓度在10mg/L以上时,则有不成熟的口感、腐败性气味;当乙醛浓度超过25mg/L,则有强烈的刺激性辛辣感。成熟啤酒的乙醛正常含量一般<10mg/L。

4、苦味物质

发酵过程中,麦汁中近1/3的苦味物质损失掉。主要原因是由酵母细胞的吸附、泡盖吸附等原因造成的。

5、pH值的变化

麦汁发酵后,pH值降低很快。下面发酵啤酒,发酵终了时,pH值一般为4.2~4.4。pH值下降主要是由于有机酸的形成,同时也由于磷酸盐缓冲溶液的减少。

§5-3啤酒发酵技术

古代啤酒均为自然发酵

19世纪逐步走向纯种发酵(上面发酵)

19世纪中叶,下面发酵

近代,各种发酵方法在互相靠拢,界限淡化。

一、传统啤酒发酵

传统的下面发酵,分主发酵和后发酵两个阶段。主发酵一般在密闭或敞口的主发酵池(槽)中进行,后发酵在密闭的卧式发酵罐内进行。

(一)主发酵(以敞口12°BX麦汁发酵为例)

1.一般工艺过程(约需8~10d)

(1)麦汁冷却至接种温度(6℃左右),流入增殖槽,将所需的酵母量(为麦汁量的0.5%(V/V)左右)加入,混合均匀。通入无菌空气,使溶解氧含量在8mg/L左右。

(2)酵母经繁殖20h左右,待麦汁表面形成一层泡沫时,将增殖槽中的麦汁泵入发酵槽内,进行厌氧发酵。

(3)发酵2~3天左右,温度升至发酵的最高温度(7.5~9℃),维持最高温度2~3天。以后控制发酵温度逐步回落主酵结束时,发酵液温度控制在4.0~4.5℃。

(4)主发酵最后一天急剧冷却,使大部分酵母沉降槽底,然后将发酵液送至贮酒罐进行后发酵。

2.主发酵过程的现象和要求

①酵母繁殖期麦芽汁添加酵母8~16h以后,液面上出现二氧化碳小气泡,逐渐形成白

色、乳脂状的泡沫,酵母繁殖20 h以后立即进入主发酵池,与增殖槽底部沉淀的杂质分离。

②起泡期入主发酵池4~5h后,在麦汁表面逐渐出现更多的泡沫,由四周渐渐向中间扩散,泡沫洁白细腻,厚而紧密,如花菜状,发酵液中有二氧化碳小气泡上涌,并将一些析出物带至液面。此时发酵液温度每天上升0.5~0.8℃,每天降糖0.3~0.5oP,维持时间1~2 天,不需人工降温。

③高泡期发酵后2~3天,泡沫增高达25~30cm ,并因发酵液内酒花树脂和蛋白质-单宁复合物开始析出而逐渐变为棕黄色,此时为发酵旺盛期,需人工降温,但是不能太剧烈,以免酵母过早沉淀,影响发酵。高泡期一般维持2~3天,每天降糖1.5oP左右。

④落泡期发酵5天以后,发酵力逐渐减弱,二氧化碳气泡减少,泡沫回缩,酒内析出物增加,泡沫变为棕褐色。此时应控制液温每天下降0.5℃左右,每天降糖0.5~0.8oP,落泡期维持2天左右。

⑤泡盖形成期发酵7~8天后,泡沫回缩,形成泡盖,应及时撇去泡盖,以防沉入发酵液内。此时应大幅度降温,使酵母沉淀。此阶段可发酵性糖已大部分分解,每天降糖0.2~0.4oP。(二)后发酵

主发酵结束后的发酵液称嫩啤酒。

后发酵的目的:

残糖继续发酵;促进啤酒风味成熟;增加CO2的溶解量;促进啤酒的澄清。

后发酵的工艺要求和操作

1.下酒将嫩啤酒输送到贮酒罐的操作称下酒。多用下面下酒法。贮酒罐可一次装满,也可分

2、3次装满。如是分装,应在1~3天内装满。入罐后,液面上应留出10~15cm空距,有利于排除液面上的空气,尽量减少与氧的接触。如果嫩啤酒含糖过低,不足以进行后发酵,可添加发酵度为20%的起泡酒,促进发酵。

2.密封升压

下酒满罐后,正常情况下敞口发酵2~3天,以排除啤酒中的生青味物质。以后封罐,罐内二氧化碳气压逐步上升,压力达到50~80kPa时保压,让酒中的二氧化碳逐步饱和。

3.温度控制

后发酵多控制先高后低的贮酒温度。前期控制3~5℃,而后逐步降温至-1~1℃,降温速度根据啤酒的不同类型而定。有些新工艺,前期温度控制范围很大(3~13℃),以保持一定的高温尽快还原双乙酰,促进啤酒成熟。

后发酵室温度的控制:前期3~5℃,后期0~1℃。一般控制在2~3℃较容易实现。

4.后发酵时间

淡色啤酒一般贮酒时间较长,浓色啤酒贮酒时间较短;原麦汁浓度高的啤酒较浓度低的啤酒贮酒期长;低温贮酒较高温贮酒的贮酒时间长。

5.贮酒期的控制

酒龄:从封罐开始到酒成熟的天数。传统:60~90d,改进后缩短15~30d。

影响因素:酒的成熟度、保质期、酵母、贮酒罐的特点等。

6.后处理

后酵和贮酒期间可采取一些工艺措施,如添加添加剂等操作,以达到改善啤酒质量、加速啤酒成熟的目的。

⑴高温双乙酰还原后快速冷却法⑵单宁、蛋白质澄清法

⑶酶制剂法:蛋白酶、果胶酶、葡聚糖酶等

⑷吸附多酚法:聚酰胺树脂、聚乙烯吡咯烷酮等

⑸还原剂法:VC、SO2类物质⑹人工充CO2

⑺添加酒花油、异α-酸法⑻添加Zn2+、低聚糖、藻酸酯法等。

其他方法:后酵的CO2洗涤法、后发酵循环冷处理法等。

二、啤酒大型发酵罐发酵

(一)发酵方法

国内多数厂采用一罐发酵法,国外及国内少数重质量的厂家采用两罐法(多用上述两罐法2)(二)圆柱锥底发酵罐

1、特点

(1)底部为锥形,便于生产过程中随时排放沉集于罐底的酵母。

(2)罐身设有冷却装置,便于发酵温度的控制。罐体外设有保温装置,可将罐体置于室外,减少建筑投资,节省占地面积。

(3)采用密闭发酵,便于C02洗涤和C02回收;既可用作发酵罐,也可用作贮酒罐。

(4)罐内发酵液由于液体高度而产生C02梯度,并通过冷却方位的控制,可使发酵液进行自然对流,罐体越高对流越强。有利于酵母发酵能力的提高和发酵周期的缩短。

(5)发酵罐可采用仪表或微机控制,操作、管理方便。可采用CIP自动清洗系统,清洗方便。

(6)设备容量大,国内采用的罐容一般为100~600m3。

2、基本结构

①罐顶:CO2、CIP管道,防真空阀、过压阀、压力传感器等

②罐体:冷却装置和保温层、测温和测压元件等

③锥底:冷却层、进出管道、阀门、视镜、测温和测压的传感器等。

3、主要结构参数

①径高比:圆筒部分:1∶(3~4);

②罐容量:有效体积:80%

③锥角:60~90℃,一般60~75℃。

④冷却夹套与冷却面积:二次冷媒冷却。

啤酒冰点:-2.7~-2.0℃,冷媒温度:-3℃左右。一次冷媒NH3;二次冷媒:20~30%酒精水或20%的丙二醇水。

冷却面积:不锈钢0.35~0.40m2/m3,碳钢:0.50~0.62 m2/m3.

⑤隔热层与防护层:

隔热层:聚酰胺树脂、自熄式聚苯乙烯泡沫塑料、聚氨基甲酸乙酯、膨胀珍珠岩粉、矿渣棉等。厚度150~200mm。

防护层:铝合金、马口铁:0.7~1.5mm;不锈钢:0.5~0.7mm瓦楞板等。

⑥罐压:安全阀与真空阀的作用。下酒时注意背压。

⑦罐数:罐数=发酵周期×每天糖化次数÷罐容麦汁的批次数+3

(三)工艺参数及要求

①周期:12~24d。与产品类型、质量要求、酵母性能、接种量、发酵温度、季节等有关。

②接种量:与酵母性能、代数、衰老情况、产品类型等有关。接种量:0.6%~0.8%(满罐体积);发酵开始:(1~2)×107个/mL;旺盛时:(6~7)×107个/ml;排放酵母后:(6~8)×106个/ml;贮酒时:(1.5~3.5)×106个/mL。

③发酵最高温度和双乙酰还原温度:

低温发酵:8℃;中温发酵:10~12℃;高温发酵:15~18℃。我国一般:9~12℃。VDK还原温度:≥发酵温度。

④罐压:最高0.07~0.08MPa。最高罐压=(最高温度÷100)MPa。

CO2(%,质量分数)=0.298+0.04×罐压-0.008×品温

⑤满罐时间:12~24h,最好<20h。

⑥真正发酵度:

低发酵度:48~56%;中发酵度:59~63%;高发酵度:≥65%;超高发酵度(干啤

酒)≥75%。

工艺要求

①注意原料的质量和糖化效果:每批次组成应均匀。

②罐容与麦汁量相适应;最好16h内满罐。

③麦汁温度有序:四批:9.0,9.3,9.5,9.7℃

④麦汁溶氧适度:≥8ppM。8~9,8~9,5~6mg/L第四批为自然溶氧量

⑤发酵温控稳定

⑥尽量回收CO2并综合利用

⑦注意罐的清洗:喷洗压力0.39~0.49MPa。

(四)酵母的回收(p229、247)

特点:

①降温至6~7℃后可随时排放酵母。

②回收方式:酵母回收泵和计量装置、加压与充氧装置。

③贮存方式:不洗涤,贮存温度易调节。

回收过程:

降温至6~7℃→锥底阀酒精灭菌→85℃热水30min、0.25%消毒液10min→排放→清水冲洗5min→85℃热水灭菌20min。定期85℃NaOH洗涤20min。

回收要点:

要除去上、下层酵母,回收中层强壮酵母;

①注意备压和贮存温度(2~4℃)及时间(<3d )

②及时除杂:2~3倍0.5~2.0℃无菌水洗,并80~100目筛杂、漂洗。每天换水1~2次,饲养1~3d。

③酸洗:5%磷酸调pH2.2~2.5搅匀后静置≥3h,去上层酸水。(此法除菌)

酵母使用次数:一般2~4代(<7代)。

要求:死亡率≤5%,>10%不可使用。

(五)罐的清洗与消毒

⑴微生物的控制

污染途径:麦汁冷却、输送管道、阀门、接种、发酵空罐等。

检验:洗涤残水细菌总数<5个/ml,每周一次厌氧微生物检测。

⑵杀菌剂的选择:ClO2、双氧水、过氧乙酸、甲醛等。

⑶洗涤方法的选择:

①清水→碱水→清水

②清水→碱水→清水→杀菌剂(ClO2、双氧水、过氧乙酸)

③清水→碱水→清水→消毒剂→无菌水

④清水→稀酸(磷酸、硝酸、硫酸除啤酒石)→清水→碱水→清水→杀菌剂→无菌水(六)异常发酵现象和处理方法

1.发酵液翻腾现象

产生原因:冷却不当

对策:中上部温度不要太高,保持罐压稳定。

2.发酵罐结冰

啤酒冰点:=-(酒精度×0.42+原麦汁浓度×0.04+0.02)= -2.7~-2.0℃

对策:冷媒温度-4~-2.5℃等。

3.酵母自溶

产生原因:罐底温度高,维持时间长等。

对策:及时排放酵母泥;贮酒期上、中、下温度保持在-1~1℃;冷媒温度-4℃等。

4.啤酒上头

产生原因:高级醇≥120ppM,异丁醇>10ppM,异戊醇>50ppM。

5.双乙酰还原困难

产生原因:α﹣氨基氮低,高温快速发酵法、主酵后酵母沉降过早或酵母质量差、活性差。6.双乙酰回升——发酵结束时双乙酰合格,经低温贮酒或过滤后或杀菌后含量上升。

产生原因:前体多,滤酒后吸氧,后期染菌等。

对策:尽量减少吸氧;抗氧化剂;CO2背压;灌酒时防止窜沫;满罐贮酒等。

7.发酵中止现象

产生原因:酵母凝聚性强而絮凝;发酵力弱;麦汁成分、质量差等。

§5-4发酵工艺简介

(一)一罐法发酵工艺

(1)酵母添加

分次追加满罐。满罐时间一般为12~24h,最好在20h以内。

酵母接种量要比传统发酵法大些,接种温度一般控制在满罐时较

拟定的主发酵温度低2~3℃。一般边加麦汁边加酵母。

(2)通风供氧

冷麦汁溶解氧的控制可根据酵母添加量和酵母繁殖情况而

定,一般要求混合冷麦汁溶解氧不低于8mg/L即可。

(3)主发酵温度

各厂采用的主发酵温度是不一样的。多数厂采用低温(6~7℃)接种,前低温(9~10℃)后升温(12~13℃)的发酵工艺,主要是为了既不形成过多的代谢产物,又有利于加速双乙酰的还原。为了加速发酵,缩短酒龄,国际上有提高发酵温度的倾向。

(4)双乙酰还原

双乙酰还原是啤酒成熟和缩短酒龄的关键。酵母在接近完成主酵时提高发酵温度一段时间,不会影响啤酒正常风味物质的含量,而有利于双乙酰的还原。

双乙酰还原温度一般控制在10~14℃左右,使连二酮浓度降至0.08mg/L以下时,即开始降温。

(5)冷却降温

当双乙酰还原到要求指标时,酒液开始冷却降温。降至5~6℃时,保持24~48h,减压回收酵母。最后再降温至0~-1℃,贮酒7~14天。

回收的酵母如可作为下一次发酵用的种子,则需进行处理。回收酵母吸附了较多的苦味物质、单宁、色素等,回收后应通入无菌空气,以排除酵母泥中的CO2,再以无菌水洗涤数次。回收酵母饲养在低温无菌水中,只能保存2~3天。也可在2~4℃下低温缓慢发酵,以保存酵母。

(6)罐压控制

发酵开始,采用无压发酵;二氧化碳回收时,采用微压(0.01~0.02 MPa);至发酵后期,外观发酵度达70%以上时,封罐,逐渐升压至0.07~0.08 MPa,减少由于升温所造成的代谢副产物过多的现象,有利于双乙酰的还原,并使二氧化碳逐渐饱和酒内。

一罐法发酵工艺曲线

(二)连续发酵

特点:

发酵效率高;操作方便、设备利用率高;生产周期短;啤酒损失少;酵母繁殖量少等优点。连续发酵的形式

(1)多罐式连续发酵目前这种连续发酵方式已很少采用。

(2)塔式连续发酵塔式连续发酵要求采用高凝聚型酵母,以便保持较高的酵母浓度,在塔底部分形成一个浓集的塞柱。生产中要经常在塔底通入CO2,以使酵母层(塞柱部分)保持多孔流动性。

(3)固定化酵母连续发酵固定化酵母连续发酵时具有酵母浓度高、活性强、酵母可长时间连续使用、设备利用率高、发酵条件(温度、pH、发酵时间、发酵终点)易于控制、发酵速度快等优点。酵母固定化的方法有吸附法、包埋法等。

(三)高浓度麦汁发酵法

浓醪发酵: 1967年开始应用于生产。是采用高浓度麦汁进行发酵,然后再稀释成规定浓度成品啤酒的方法。它可在不增加或少增加生产设备的条件下提高产量。原麦汁浓度一般为16°P 左右。

特点:

在不增加设备的基础上大幅度提高产量,提高设备利用率,并且可以降低生产成本,提高啤酒的风味和非生物稳定性。

不足之处是糖化的原料利用率低、酒花利用率低。

稀释方法:麦汁稀释法、前稀释法、后稀释法。后者对稀释用水的要求高。

高浓度啤酒稀释系统:脱氧机和混合器两部分组成,微机控制。高浓度啤酒稀释水处理系统

是高浓度啤酒稀释中不可缺少的关键设备,其中最关键的是稀释水的脱氧问题。要求稀释水中含氧量应小于0.3mg/L。水脱氧的方法有:热法真空脱氧、C02置换法、冷却真空脱氧等。

操作

杀菌(80~85℃,5min)→充CO2备压(0.05~0.10MPa)→调无菌水→脱氧并充CO2(真空度-0.095~-0.090MPa)→取样测试O2含量(≤0.30mg/L)→准备碳酸水(CO2≥0.40%质量分数,水温1~3℃)→计算并自动混水→结束(先关啤酒阀)。

加水比

加水比=(高浓啤酒的浓度-成品啤酒的浓度)÷成品啤酒的浓度

第四篇 第五章发酵过程泡沫的形成与控制

发酵过程泡沫的形成与控制 发酵过程起泡的利弊:气体分散、增加气液接触面积,但过多的泡沫是有害的 一、泡沫形成的基本理论 泡沫的定义:一般来说:泡沫是气体在液体中的粗分散体,属于气液非均相体系 美国道康宁公司对泡沫这样定义:体积密度接近气体,而不接近液体的“气/液”分散体。 (一)泡沫形成的原因 1、气液接触 (1)气体从外部进入液体,如搅拌液体时混入气体 (2)气体从液体内部产生。气体从液体内部产生时,形成的泡沫一般气泡较小、较稳定。 2、含助泡剂 在纯净的气体、纯净的液体之外,必须存在第三种物质,才能产生气泡。对纯净液体来说,这第三种物质是助泡剂。当形成气泡时,液体中出现气液界面,这些助泡剂就会形成定向吸附层。与液体亲和性弱的一端朝着气泡内部,与液体亲和性强的一端伸向液相,这样的定向吸附层起到稳定泡沫的作用。 3、起泡速度高于破泡速度 起泡的难易,取决于液体的成分及所经受的条件;破泡的难易取决于气泡和泡破灭后形成的液滴在表面自由能上的差别;同时还取决于泡沫破裂过程进行得多快这一速度因素。 高起泡的液体,产生的泡沫不一定稳定。体系的起泡程度是起泡难易和泡沫稳定性两个因素的综合效果。 4、发酵过程泡沫产生的原因 (1)通气搅拌的强烈程度 (2)培养基配比与原料组成 (3)菌种、种子质量和接种量 (4)灭菌质量 (二)起泡的危害 1、降低生产能力 在发酵罐中,为了容纳泡沫,防止溢出而降低装量 2、引起原料浪费 如果设备容积不能留有容纳泡沫的余地,气泡会引起原料流失,造成浪费。 3、影响菌的呼吸 如果气泡稳定,不破碎,那么随着微生物的呼吸,气泡中充满二氧化碳,

而且又不能与空气中氧进行交换,这样就影响了菌的呼吸。 4、引起染菌 由于泡沫增多而引起逃液,于是在排气管中粘上培养基,就会长菌。随着时间延长,杂菌会长入发酵罐而造成染菌。大量泡沫由罐顶进一步渗到轴封,轴封处的润滑油可起点消泡作用,从轴封处落下的泡沫往往引起杂菌污染。 (三)泡沫的性质 泡沫体系有独特的性质,研究泡沫的性质,是解决消泡问题的基础。 1、气泡间液膜的性质 泡沫中气泡间的间距很小,仅以一薄层液膜相隔,研究液膜的性质很有代表意义,又因为,只有含有助泡的表面活性剂,才能形成稳定的泡沫,所以应当首先研究表面活性剂与液膜的关系 表面活性剂示意图 溶液中当表面活性剂的浓度低于临界胶束浓度时,以第一种情况为主;表面活性剂浓度高于临界胶束浓度时出现第二种情况。在泡沫不断增加时,表面活性剂会从胶束中不断转移到新产生的气液界面上 2、泡沫是热力学不稳定体系 热力学第二定律指出:自发过程,总是从自由能较高的状态向自由能较低的状态变化。起泡过程中自由能变化如下: △G=γ△A △G——自由能的变化 △A——表面积的变化 γ——比表面能 起泡时,液体表面积增加,△A为正值,因而△G为正值,也就是说,起泡过程不是自发过程。另一方面,泡沫的气液界面非常大。显然,液体起泡后,表面自由能比无泡状态高得多。泡沫破灭、合并的过程中,△A是一个绝对值很大的负数,也就是说泡沫破灭、合并的过程,自由能减小的

啤酒发酵实验

实验室啤酒发酵 一、实验目的:熟悉静止培养操作,观察啤酒发酵过程,掌握发酵过程中一些指标的 分析操作技能。 二、实验原理:啤酒酵母将麦芽汁发酵,产生酒精等发酵产物(啤酒)。 三、实验器材: ⑴. 100升发酵罐。 ⑵. 0~10O BX糖度表。 (3).10℃-30℃可调生化培养箱。 培养基: ⑴. 麦芽汁发酵培养基10Plato, 50升,糖化制取。 ⑵. 麦芽汁琼脂培养基:麦芽汁加2%琼脂,自然pH。 ⑶. 麦芽汁液体培养基:酵母扩大培养用。 菌种:啤酒生产用酵母菌株。 四、实验步骤: (1)麦汁制备 (2)酵母菌种分离纯化与质量鉴定

(3)菌种扩大培养 (4)啤酒主发酵:麦汁50升,10O BX ,11℃→接种量×107个细胞/mL →主发酵,11℃,5~7天→至时结束(嫩啤酒)。在主发酵过程中,每天测定下列项目:糖度、细胞浓度、出芽率、染色率、酸度、α-氨基氮、还原糖、酒精度、pH、双乙酰。然后以时间为横坐标,这些指标为纵坐标,叠画于方格纸上。 (5)后发酵 五、作业要求 (1). 画出发酵周期中上述上述指标的曲线图,并解释它们的变化。 (2). 记下操作体会与注意点。 实验一协定法糖化试验 一、实验目的:协定法糖化试验是欧洲啤酒酿造协会(EBC)推荐的评价麦芽质量的标准方法,我们用该法进行小量麦芽汁制备,并借此评价所用麦芽的质量。 二、实验原理:利用麦芽所含的各种酶类将麦芽中的淀粉分解为可发酵性糖类,蛋白质分解为氨基酸(具体参见理论部分第二节)。 三、实验器材和试剂: 1 实验室糖化器:由水浴和500~600 mL的烧杯组成糖化仪器,杯内用玻棒搅拌或用100℃温度计作搅拌器(此时搅拌应十分小心,以免敲碎水银头)。实验时杯内液面应始终低于水浴液面。最好采用专用糖化器:该仪器有一水浴,水浴本身有电热器加热和机械搅

产10万吨啤酒工厂发酵车间设计课程设计任务

产10万吨啤酒工厂发酵车间设计课程设计任务

课程设计说明书题目:年产10万吨啤酒工厂发酵车间设计

专业课程设计任务书 设计题目:年产10万吨啤酒工厂发酵车间设计 学号:学生姓名:专业: 指导教师姓名:系主任: 一、主要内容及基本要求 主要内容: 1.拟在湘潭市西郊羊牯塘选择厂址新建年产10万吨啤酒工厂 2.设计范围:以发酵车间为主体设计,只做初步设计。 3.以生产工艺(流程)设计为主导,为其它配套专业(如全厂总平面、土建、采暖通风、水电、环保、行政管理、技术经济与概算等单项工程设计)提供设计依据和提出要求,兼顾非工艺设计。 基本要求: 生产方案和平面布局合理,工艺流程设计和设备选择及生产技术经济指标具有先进性与合理性,工艺计算正确,绘图规范,综合指标达到同类工厂先进水平,“三废”环保符合国家有关规定。 二、重点研究的问题 生产工艺流程的选择和设计;物料衡算;发酵主车间布置设计以及专业设备选型。三、进度安排(指导教师填写)

四、应收集的资料及主要参考文献(指导教师填写) [1]管敦仪主编,啤酒工业手册(上)[M]. 轻工业出版社,1985:69-346 [2]管敦仪主编,啤酒工业手册(中)[M]. 轻工业出 版社,1985:33-108 [3]管敦仪主编,啤酒工业手册(下)[M]. 轻工业出 版社,1985:12-207 [4]张学群、张柏青,啤酒工艺控制指标及检测手册[M]. 中国轻工业出版社,1993 [5]刘芳,啤酒工业废水治理技术研究[J]. 酿酒科技,

1999,(9):47-51 [6]吴延东,啤酒工厂糖化设备的组合比较[J]. 酿酒科 技,2002,(1):33-37 [7]李大勇,啤酒工厂糖化工艺选择[J]. 酿酒科技,2002,(3):22-30 [8]王坚,啤酒高浓度发酵工艺技术要点[J]. 山西食品 科技,2000(5):58-63 [9]乔玉胜,啤酒麦汁一段冷却新技术[J]. 酿酒科技,2001, (2):20-24 [10]无锡轻工业学院,轻工业部上海轻工业设计院组 编,食品工厂设计基础[M]. 中国轻工业出版社,1992:8-262 [11]中国食品发酵工业研究院,中国海诚工程科技股份有限公司,江南大学主编.食品工程全书(第三卷)食品工业工程[M]. 中国轻工业出版社,2005 [12]P.F.斯坦伯里,A.惠特克.发酵工艺学原理[M]. 中国医药科技出版社,1992

啤酒发酵实验

发酵工程与设备实验实验名称: 啤酒发酵 组别: 成员: 报告撰写人: 年月日

啤酒发酵 一、实验目的 1、学习啤酒生产中麦芽汁的生产方法,掌握工艺流程。 2、掌握发酵过程中一些指标的分析操作技能。 3、掌握啤酒发酵的主发酵和后发酵的工艺,了解发酵各阶段的变化特征。 二、实验原理 啤酒发酵过程是啤酒酵母在一定的条件下,利用麦汁中的可发酵性物质而进 行的正常生命活动,其代谢的产物就是所要的产品--啤酒。 麦芽汁浸出物中糖类占90%,其中葡萄糖和果糖占糖类的10%,蔗糖占5%,麦芽糖占40~50%,麦芽三糖占10~15% 低聚寡糖20~30%,少量的戊糖、戊聚 糖等3~5%。啤酒酵母的可发酵糖和发酵顺序:葡萄糖>果糖>蔗糖>麦芽糖> 麦芽三糖。啤酒酵母发酵可发酵糖类经EMP途径生成丙酮酸,丙酮酸无氧酵解 产生酒精和CO2、同时还形成高级醇、挥发酯、醛类和酸类、连二酮类(VDK)、含硫化合物等一系列代谢产物,构成啤酒特有的香味和口味。 三、实验材料及器材: 1、麦芽、啤酒酵母、灭菌水 2、烧杯、锥形瓶、水浴锅、恒温培养箱、冰箱、电炉、玻璃棒、糖度仪 四、实验方法: 1、啤酒生产过程主要分为:制麦、糖化、发酵、罐装四个部分。 基本流程:粉碎→糖化、糊化→麦汁过滤→高温煮沸、加啤酒花→澄清冷却→加入酵母发酵→硅藻过滤→包装成品 2、具体实验步骤: (1)将麦芽打磨成粉,称取100克装入大烧杯中。 (2)往大烧杯中加入400%水。 (3)水浴55℃搅拌1h,约5分钟搅拌一次。 (4)水浴65℃搅拌1h,约5分钟搅拌一次。 (5)纱布过滤出液体于锥形瓶中。 (6)加入体积万分之一酒花,煮沸0.5h。 (7)测糖度记录后,灭菌,冷却。 (8)取上清液到烧杯中,稀释到糖度12~15 Bx于锥形瓶中,接种2%酵母,密封。 (9)恒温14℃发酵7天。 (10)取上清于另一锥形瓶中,4℃保存。

啤酒发酵

1发酵过程中麦汁的变化 pH值的下降(ph下降,一般在酵母对数生长期,前快后慢麦汁的pH值一般在5.2-5.6,发酵液的pH值一般在4.2-4.4),含氮物的减少,氧化还原势RH的下降,啤酒色泽变浅,苦味物质和多酚物质的析出,酵母的凝聚(发酵代谢产物使啤酒pH值下降,接近酵母蛋白质的等电点,使酵母带电也趋于零,不能使酵母相互排斥分开,从而产生凝聚。),啤酒清亮度的增加(浊度下降),啤酒中的CO2溶解,草酸钙的形成(草酸是糖代谢的中间产物,与Ca2+结合后形成草酸钙)。2pH值下降的影响 蛋白质和多酚物质的析出,苦味物质的析出,色度,后熟速度加快,啤酒泡沫特性,啤酒口味细腻,生物稳定性提高,有利于酵母凝聚 3pH值下降的原因 挥发性及不挥发性有机酸的形成,CO2的形成,一级磷酸盐被酵母消耗,释放出H离子,NH2离子被酵母吸收,钾离子被酵母吸收,并释放出H离子 4影响pH值下降的因素 麦汁的性质,酵母的种类,酵母添加量和通风强度,发酵状况,微生物状况酵母自溶。 5含氮物减少的原因 酵母吸收麦汁中的可同化氮,高分子蛋白质物质的沉降析出,吸附于酵母细胞表面,被CO2带于泡盖中 6RH值:麦汁、发酵液、啤酒中许多的氧化性和还原性物质相互作用,达到平衡时,反映在电极电位上的数值称rH值。rH是表示溶液的氧化还原电势 rH值大,氧化性强,还原性弱;rH值小,还原性强,氧化性弱 麦汁的rH值为20-26麦汁通氧后,氧含量较多,rH值较高,发酵液的rH值为8-10(随着酵母的繁殖,氧很快被酵母消耗,因而rH值逐渐降低,RH值大小,影响酵母的生理活动,能改变酵母的发酵产物。对啤酒质量的影响,rH值越小,啤酒质量越好,啤酒色泽越浅、氧化感越小。 7色泽变浅(一般浅色啤酒下降:1.5-2.5EBC) 原因:随着发酵温度、pH值的变化,麦汁中色素物质析出进入泡盖。通过酵母细胞壁的吸附作用,色素物质被沉淀物吸附后一起沉降 8苦味物质和多酚物质析出的原因(发酵后约1/3的苦味物质损失,多酚物质约减少25%,对啤酒苦味的纯正性和非生物稳定性有利。) pH值的下降,CO2带入泡盖,酵母吸附 9影响啤酒澄清的因素 混浊物的特性和数量,澄清时的酒液温度,酒液的运动情况,啤酒的pH值 后酵贮酒设备的形状和酒液高度,澄清时间,酒液的粘度 传统发酵方式的发酵技术 10主发酵操作(主要的发酵过程,70%的糖在此阶段发酵) 酵母添加,酵母的繁殖和倒池,发酵过程,下酒,酵母的回收,清洗和杀菌 11酵母添加:酵母添加的原则:确保(在添加温度5-6℃时)添加酵母12-16小时后起发酵开始。 酵母添加量:酵母泥:0.5升浓酵母泥/hl 12°P麦汁;酵母数:12-15×106个/ml麦汁 决定酵母添加量的因素:酵母的生理状态,酵母泥的稠度,麦汁浓度,麦汁中FAN 量,发酵时间,添加温度,麦汁溶氧量

实验室啤酒发酵

实验室啤酒发酵 摘要目的学习实验室摇瓶法啤酒发酵及其后发酵。方法用糖锤度计测定麦芽汁糖度,应用摇瓶法发酵啤酒,并测定发酵产物中的酒精度。结果发酵产物中酒精度不足,不能达到摇瓶发酵的基本要求。结论本实验结果并不理想,但我们已经对啤酒发酵有了整体的认识。 关键词啤酒发酵;摇瓶法;酒精度测定 1.材料与方法 1.1啤酒酵母的扩大培养 1.1.1培养基的配制取协定法制备的麦芽汁滤液加水定容至糖度为10BX,取50 mL装入250 mL三角瓶中,每个小组三瓶,包上瓶口布后,0.05Mpa灭菌30分钟。 1.1.2菌种扩大培养取麦汁斜面菌接种到麦汁平板上,在28℃条件下培养两天。镜检后挑去单菌落3个接种到50ml麦芽汁三角瓶中。在20℃条件下培养两天,每天摇动三次。接种到550ml麦汁三角瓶中,在15℃条件下培养三天,每天摇动三次。注意无菌操作。 1.2麦芽汁糖度测定取100mL麦汁或除气啤酒,放于100mL量筒中,放入糖锤度计,待稳定后,从糖锤度计与麦汁液面的交界处读出糖度,同时测定麦汁温度,根据校准值,计算20℃时的麦汁糖度。若糖度较低,糖度计不能浮起来,可多加一些麦汁,直至糖度计浮在液体中。 1.3啤酒主发酵在1000 mL三角瓶中进行啤酒主发酵小型试验。具体方法如下:将麦汁加水,使糖度达到10 Bx,0.05 Mpa灭菌30分钟。冷却后摇动充氧,沉淀。将50mL酵母菌种接入,在10℃生化培养箱中发酵,每天观察发酵情况。主发酵:10℃,7天→至4.0 plato时结束(嫩啤酒)。一般主发酵整个过程分为酵母繁殖期,起泡期、高泡期、落泡期和泡盖形成期等五个时期。仔细观察各时期的区别。 1.4酒精度测定 1.4.1蒸馏称取试样100克,全部移入500ml已知质量的蒸馏瓶中,加水50ml和数粒玻璃珠,装上蛇形冷凝器(或冷却部分的长度不短于400mm的直型冷凝器),开启冷却水,用已知质量的100ml容量瓶接收馏出液(外加冰浴),缓缓加热蒸馏(冷凝管出口水温不得超过20℃),收集约96ml馏出液(蒸馏应在30-60分钟内完成),取下容量瓶,调液温至20℃,然后补加水,使馏出液质量为100克(此时总质量为100+容量瓶质量),混匀(注意保留蒸馏后的残液,可供做真正浓度用)。 1.4.2测量A 将附温比重瓶洗净,干燥,称量,反复操作,直至恒重,得C。将煮沸冷却至15℃的水注满恒重的比重瓶中,插上带温度计的瓶塞(瓶中应无气泡),立即浸于20℃ 1℃的水浴中,待内容物温度达20℃,并保持5min不变后取出,用滤纸吸去溢出支管的水,立即盖好小帽,擦干后,称量得A。 1.4.3测量B 将水倒去,用试样馏出液反复冲洗比重瓶三次,然后装满,按测量A同样操作,得B。 1.5啤酒后发酵当发酵罐中的糖度下降至4.0~4.5BX时,开始封罐,并将发酵温度降至2℃左右,8~12天后,罐压升至0.1Mpa,说明已有较多CO2产生并

啤酒发酵论文

啤酒发酵过程的研究 专业班级: 作者: 学号: 指导老师:

啤酒是人类最古老的酒精饮料,是水和茶之后世界上消耗量排名第三的饮 料。啤酒于二十世纪初传入中国,属外来酒种。啤酒以大麦芽﹑酒花﹑水为主 要原料﹐经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒。 啤酒一般典型特征表现在多方面。在色泽方面﹐大致分为淡色﹑浓色和 黑色3种﹐不管色泽深浅﹐均应清亮﹑透明无浑浊现象﹔注入杯中时形成泡 显﹐且酒体爽而不淡﹐柔和适口﹐而浓色啤酒苦味较轻﹐具有浓郁的麦芽香 味﹐酒体较醇厚﹔含有饱和溶解的CO2﹐有利于啤酒的起泡性﹐饮用後有一 种舒适的刺激感觉﹔应长时间保持其光洁的透明度﹐在规定的保存期内﹐不 应有明显的悬浮物。 啤酒发酵过程是指啤酒酵母在一定条件下,利用麦汁中的可发酵性物质而 进行的正常生命活动,而啤酒就是啤酒酵母在生命活动之中所产生的产物。由 于酵母菌类型的不同,发酵的条件和产品要求、风味等的不同,造成发酵方式 也不相同。 1、啤酒发酵的过程方法和注意事项 1.1 酵母扩大培养的目的 啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程。酵母扩培 的目的是及时向生产中提供足够量的优良、强壮的酵母菌种,以保证正常生产 的进行和获得良好的啤酒质量。一般把酵母扩大培养过程分为二个阶段:实验 室扩大培养阶段(由斜面试管逐步扩大到卡氏罐菌种)和生产现场扩大培养阶 段(由卡氏罐逐步扩大到酵母繁殖罐中的零代酵母)。扩培过程中要求严格无 菌操作,避免污染杂菌,接种量要适当。 1.2 啤酒酵母扩大培养的方法 1.2.1实验室扩大培养阶段 斜面原菌种 --→斜面活化 --→ 10ml液体试管 --→ 100ml培养 瓶 --→ 1L培养瓶 25℃,3~4天25℃,24~36h 25℃, 24h 20℃,24~36h --→ 5L培养瓶 --→ 25L卡氏罐 16~18℃,24~36h 14~16℃,36~48h ⑵生产现场扩大培养阶段 25L卡氏罐→ 250L汉生罐→ 1500L培养罐→ 100hL培养 罐→ 20m3繁殖罐 12~14℃,2~3天 10~12℃,3天 9~11℃,3 天 8~9℃,7~8天 --→0代酵母 1.2.2酵母扩培要求: 酵母扩培是基础,只有培养出来高质量的酵母,才能生产出好的啤酒。扩培必须保

啤酒发酵罐课程设计教程文件

生物反应器课程设计 -----啤酒露天发酵罐设计 姓名:张小燕 班级:生工112 学号:3110402212 露天发酵罐设计

1、啤酒发酵罐的化工设计计算 ㈠、发酵罐的容积确定 设计需要选用V 有效=22.5m 3的发酵罐 则V 全=V 有效/φ=22.5m 3/75%=30m 3 ㈡、基础参数选择 1.D ∶H :选用D ∶H=1∶4 2.锥角:取锥角为90° 3.封头:选用标准椭圆形封头 4.冷却方式:选取槽钢盘绕罐体的三段间接冷却 5.罐体所承受的最大内压:2.5㎏/cm 3 外压:0.3㎏/cm 3 6.锥形罐材质:A3钢材外加涂料,接管均用不锈钢 7.保温材料:硬质聚氨酯泡沫塑料,厚度200㎜ 8.内壁涂料,环氧树脂 ㈢、D 、H 确定 由D ∶H=1∶4,则锥体高度H 1=D/2tan35°=0.714D 封头高度 H 2=D/4=0.25D 圆柱部分高度 H 3=(4-0.714-0.25)D=3.036D 又因为V 全=V 封+V 锥+V 柱 =323124 2443H D D H D ??∏+?∏+??∏ =0.187D 3+0.131D 3+2.386D 3=30m 3 得D=2.23m

查JB1154-73《椭圆形封头和尺寸》取发酵罐直径D=2400mm 再由V 全=30m 3 D=2.4m 得径高比 D ∶H=1:3.72 由D=2400mm 查表得 椭圆形封头几何尺寸为: h 1=600mm h 0=40mm F=6.52m 2 V=2.00m 3 筒体几何尺寸为: H=6614mm F=49.84㎡ V=29.9m 3 锥体封头几何尺寸为: h 0=40mm r=280mm H=1714mm F=πd 2/4[(0.7+0.3cos α)2/sin α+0.64]=10.64㎡ V=πd 3/24[(0.7+0.3cos α)2/tan α+0.72]=3.60m 3 则锥形罐体总高:H=600+40+6614+40+1714=9008mm 总体积:V 全=2.00+29.9+3.60=35.5m 3 实际充满系数ψ=22.5/35.5=63.3% 罐内液柱高: H ′=[22.5-3.75/(3.14×1.22)/4] ×102+(1714+40)=3413㎜ ㈣、发酵罐的强度计算 ⑴罐体为内压容器的壁厚计算 ①.标准椭圆封头 设计压力为1.1×2.5=2.75㎏/㎝2 S=[]C P PDg t +-?σ2

啤酒发酵工艺流程

实验一单细胞蛋白(SCP)的生产 一、实验目的 1.了解单细胞蛋白的开发优势及技术现状。 2.掌握单细胞蛋白的液体深层培养法及工艺控制规律。 3.了解发酵过程中菌体浓度及生物量的一般检测方法。 二、实验原理 所谓SCP(SingleCellProtein)就是指那些工厂化大规模培养、作为人类食品和动物饲料的蛋白质来源的酵母、细菌、放线菌、霉菌、藻类和高等真菌等微生物的干细胞。SCP工业,主要是饲料酵母工业。酵母是一种单细胞微生物,生长繁殖快,菌体营养丰富。饲料酵母是一种营养价值很高的蛋白饲料,成品呈微黄色粉末状,具有酵母特殊香味。酵母蛋白质含量一般都在70%左右,比大豆高1倍。与肉蛋白、鸡蛋蛋白、大豆蛋白相比,单细胞蛋白所含的氨基酸组分齐全,有18-20种氨基酸,尤其是谷物中所缺乏赖氨酸含量较高。此外,维生素含量也十分丰富。每千克酵母类单细胞可使奶牛的产奶量增加6-7㎏,用含有10%单细胞蛋白饲料养鸡,产蛋提高21%-35%。1吨单细胞蛋白可节约5-7吨饲料粮,可产1.5吨鸡肉或3万枚鸡蛋。我国单细胞蛋白(酵母)年产量近3万吨,多用于医药、面包生产和饲料。用于生产饲料酵母的原料来源广泛,有矿物资源(如石油、甲烷、泥炭等)、纤维资源(如秸杆、木屑等)、糖类资源(如糖蜜、红薯等)、石油二次制品、废弃资源(包括有机废水、废渣、动物粪便等)。从我国目前的情况出发,生产饲料酵母等单细胞蛋白值得优先开发的原料有废糖蜜、薯干、纸浆废液,豆制品厂、味精厂、淀粉加工厂的废液等,用这些原料生产饲料酵母,首先是产品无毒性,另外也有利于解决工厂和城市的污染问题。 酵母细胞的发酵特点:目前,最广泛用于生产作为蛋白资源的酵母是假丝酵母,该酵母生长繁殖速度快,每2-4小时可繁殖一代,培养10小时左右就能繁殖到种子菌体量的15倍。发酵过程中,要保证罐内的液体混合良好和较适当地提供氧气,还要控制好温度和pH。采用流加间歇发酵可以保证糖被具有良好活性的酵母呼吸消耗,以达到最适产量。底物浓度过高,即使在有氧条件下,酵母也会发酵产生碳水化合物。如果酵母生长速率过快,底物也会发酵。因此,在培养过程中,底物浓度应维持在一定较低的水平,并维持一定的通风量。 酵母生物量的检测方法及分离:最普遍的检测方法是细胞干重法、显微镜记数法和光密度法。菌体的分离常采用过滤法和离心分离法。 三、实验仪器与材料 (一)仪器 10L发酵罐、恒温培养箱、超净工作台、显微镜、大容量冷冻离心机、高压灭 (二)材料

啤酒酵母发酵啤酒实验报告课件.doc

啤酒发酵实验报告 xxx 班xxx 摘要啤酒发酵过程主要包括麦芽汁糖度的测定,啤酒酵母的扩大培养,酒精度及原麦汁浓度测定,啤酒后发酵及品质评价;后发酵后对其进行品质评价。通过实验,了解啤酒发酵的过程,掌握啤酒发酵的方法和条件,学会用传统发酵的方法酿制啤酒 关键字主发酵后发酵酒精度实际浓度原麦芽汁浓度发酵度 前言啤酒是人类最古老的酒精饮料,是水和茶之后世界上消耗量排名第三的饮 料。其原料包括大麦﹑酿造用水﹑酒花、酵母以及淀粉质辅助原料(玉米﹑大米﹑大麦﹑小麦等)和糖类辅助原料等,啤酒酵母属真核生物,细胞结构类似高等 生物。在正常的营养状态下,啤酒酵母都是无性繁殖。主要以芽殖为主;大麦 提供啤酒酿造所必需的浸出物和适量的蛋白质;有独特的酒花香味和苦味﹐淡色 啤酒较明显﹐且酒体爽而不淡﹐柔和适口﹐而浓色啤酒苦味较轻﹐具有浓郁的麦 芽香味﹐酒体较醇厚﹔含有饱和溶解的CO2﹐有利于啤酒的起泡性﹐饮用後 有一种舒适的刺激感觉﹔ 啤酒发酵的原理如下: 啤酒酵母的可发酵性糖和发酵顺序是:葡萄糖>果糖>蔗糖>麦芽糖>麦芽三 糖,通过: 1.EMP—TCA 循环产生酵母繁殖所需能量 C6H12O6 + 6O2 + 38ADP + 38Pi →6CO2 + 6H2O + 38ATP + 热能(有氧呼吸)2822kJ 2. EMP—丙酮酸—酒精发酵途径(人们的目的) 由葡萄糖发酵生成乙醇的总反应式为: C6H12O6 + 2ADP + 2H3PO4 →2CH3CH2OH + 2CO2 + 2ATP + 113kJ 综上,酵母的主要代谢产物为乙醇和二氧化碳,发酵副产物为醇类、醛类、 酸类、酯类、酮类和硫化物等物质。 工业啤酒生产工艺流程可以分为制麦、糖化、发酵、包装四个工序: (1)制麦的主要过程为:大麦进入浸麦槽洗麦、吸水后,进入发芽箱发芽, 成为绿麦芽。绿麦芽进入干燥塔/炉烘干,经除根机去根,制成成品麦芽。从大 麦到制成麦芽需要10 天左右时间。 (2)糖化的步骤为:

啤酒发酵操作程序和注意事项

啤酒发酵操作程序和注意事项 1.酵母扩大培养的目的 啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程。酵母扩培的目的是 及时向生产中提供足够量的优良、强壮的酵母菌种,以保证正常生产的进行和获得良好的啤 酒质量。一般把酵母扩大培养过程分为二个阶段:实验室扩大培养阶段(由斜面试管逐步扩 大到卡氏罐菌种)和生产现场扩大培养阶段(由卡氏罐逐步扩大到酵母繁殖罐中的零代酵母)。 扩培过程中要求严格无菌操作,避免污染杂菌,接种量要适当。 2.啤酒酵母扩大培养的方法 ⑴实验室扩大培养阶段(示例) 斜面原菌种 --→斜面活化 --→ 10ml液体试管 --→ 100ml培养 瓶 --→ 1L培养瓶 25℃,3~4天25℃,24~36h 25℃, 24h 20℃,24~36h --→ 5L培养瓶 --→ 25L卡氏罐 16~18℃,24~36h 14~16℃,36~48h ⑵生产现场扩大培养阶段 25L卡氏罐→ 250L汉生罐→ 1500L培养罐→ 100hL培养 罐→ 20m3繁殖罐 12~14℃,2~3天 10~12℃,3天 9~11℃,3天 8~ 9℃,7~8天 --→0代酵母 (2)酵母扩培要求: 酵母扩培是基础,只有培养出来高质量的酵母,才能生产出好的啤酒。扩培必须保证两点: ①原菌种的性状要优良; ②扩培出来的酵母要强壮无污染。扩培在实验室阶段,由于采用无菌操作,只要能遵守操作技术和工艺规定,很少出现杂菌污染现象。进入车间后,如卫生条件控制不好,往往会出现染菌现象,所以扩培人员首先无菌意识要强,凡是接种、麦汁追加过程所要经过的管路、阀门必须用热水或蒸汽彻底灭菌,室内的空气、地面、墙壁也要定期消毒或杀菌,通风供氧用的压缩空气也必须经过0.2μm的膜过滤之后才能使用。同时充氧量要适量,充氧不足酵母生长缓慢,充氧过度会造成酵母细胞呼吸酶活性太强,酵母繁殖量过大对后期的发酵不利的。一般扩培酵母在进入培养罐前每天要通氧三次,每次20分钟。发酵后的培养,要求麦汁中溶解氧9mg/L左右。最后,每一批扩培的同时还应对酵母的发酵度、发酵力、双乙酰峰值、死灭温度等指标进行检测,以便及时、正确掌握酵母在使用过程中的各种性状是否有新的变化。 (3)酵母的添加:酵母添加前麦汁的冷却温度非常重要。各批麦汁冷却温度要求必须呈阶梯式升高,满罐温度控制在7.5℃~7.8℃之间,严禁有先高后低现象,否则将会对酵母活力和以后的双乙酰还原产生不利的影响。同时要准确控制酵母添加量,如果添加量太小,则酵母增长缓慢,对抑制杂菌不利,一旦染菌,无论从口味还是双乙酰还原都将受到影响。添加量太小会因酵母增值倍数过大而产生较多的高级醇等副产物;添加量过大,酵母易衰老、自溶等,添加量控制在7‰左右。 (4)温度控制:在发酵过程中,温度的控制十分关键。根据菌种特性,采用低温发酵,高温还原。既有利于保持酵母的优良性状,又减少了有害副产物的生成,确保了酒体口味比较纯净、爽口。如果发酵温度过高,虽然可缩短发酵周期,加速双乙酰还原,但过高的发酵温度会使啤酒口味比较淡泊,

啤酒发酵的一些基本知识

原料:大麦啤酒花啤酒酿造用水 大麦是酿造啤酒的主要原料,大麦适于酿酒的主要原因为: 1 大麦便于发芽,可产生大量的水解酶类 2 大麦种植遍及全球 3 大麦的化学成分适合酿造啤酒 4 大麦是非人类食用主粮 酿造啤酒最好的原料是二棱大麦 啤酒酿造对大麦的质量要求 1感观 有光泽,淡黄;皮薄;籽粒饱满;大小均匀;发芽力(3d)≥85%;发芽率≥96% 2物理检验 (1)千粒重 (2)麦粒均匀度 (3)胚乳性质 3化学检验 (1)水分:≤13% (2)蛋白质: 9%~12% (3)浸出物:72~80% 4酿造大麦的质量标准 符合GB 啤酒花 主要成分:苦味物质:α—酸β—酸芳香物质:酒花精油 添加啤酒花的主要目的和作用 ◆赋予啤酒香味和爽口的苦味 ◆增进啤酒泡沫的持久性和稳定性 ◆在麦汁煮沸时促进蛋白质的凝固,有利于澄清 麦芽制备 ?麦芽制备把原料大麦制成麦芽,称为制麦。发芽后制得的新鲜麦芽叫绿麦芽,经干 燥和焙焦后的麦芽称为干麦芽。 ?麦芽制造的主要目的是:使大麦生成各种酶,并使大麦胚乳中的成分在酶的作用下, 达到适度的溶解;去掉绿麦芽的生腥味,产生啤酒特有的色、香和风味成分。 大麦预处理 大麦的后熟与贮藏 新收获的大麦有休眠期,发芽率低,只有经过一段时间的后熟期才能达到应有的 发芽力,一般后熟期需要6~8w。 贮藏期间,大麦水分应控制在12.5%以下,温度在15℃以下。贮藏大麦还应按

时通风,防止虫、鼠及霉变的危害,严格防潮,按时倒仓、翻堆 粗选和精选 粗选的目的是除去各种杂质和铁屑。大麦粗选使用去杂、集尘、脱芒、除铁等机械。精选的目的是除掉与麦粒腹径大小相同的杂质,包括荞麦、野豌豆、草籽和半粒麦等。 大麦精选可使用精选机(又称杂谷分离机)。 分级 ?大麦的分级是把粗、精选后的大麦,按颗粒大小分级。目的是得到颗粒整齐的大麦, 为发芽整齐、粉碎后获得粗细均匀的麦芽粉以及提高麦芽的浸出率创造条件。 ?大麦分级常使用分级筛 浸麦 浸麦目的 提高大麦的含水量,达到发芽的水分要求。麦粒含水25%~35%时就可萌发。对酿造用麦芽,还要求胚乳充分溶解,所以含水必须保持43%~48%。 通过洗涤,除去麦粒表面的灰尘、杂质和微生物。 在浸麦水中适当添加一些化学药剂,可以加速麦皮中有害物质(如酚类等)的浸出。 浸麦与通风大麦浸渍后,呼吸强度激增,需消耗大量的氧,而水中溶解氧远不能满足正常呼吸的需要。因此,在整个浸麦过程中,必须经常通入空气,以维持大麦正常 的生理需要 ◆浸麦用水及添加剂浸麦水必须符合饮用水标准。为了有效地浸出麦皮中的有害成 分,缩短发芽周期,达到清洗和卫生的要求,常在浸麦用水中添加一些化学药 剂,如石灰乳、Na2C03、NaOH、KOH、过氧化氢、甲醛、赤霉素等。 影响大麦吸水速度的因素 (1)温度浸麦水温越高,大麦吸水速度越快,达到相同的吸水量所需要的时间就越短,但 麦粒吸水不均匀,易染菌和发生霉烂。水温过低,浸麦时间延长。浸麦用水温 度一般在10~20℃之间,最好在13~18℃。 (2)麦粒大小麦粒大小不一,吸水速度也不一样。为了保证发芽整齐,麦粒整齐程度很重 要。 (3)麦粒性质粉质粒大麦比玻璃质粒大麦吸水快;含氮量低、皮薄的大麦吸水快。 (4)通风通风供氧可增强麦粒的呼吸和代谢作用,从而加快吸水速度,促进麦粒提前萌发。 浸麦方法及控制 ◆间歇浸麦法 ◆喷雾浸麦法 发芽 大麦发芽的目的 使麦粒生成大量的各种酶类,并使麦粒中一部分非活化酶得到活化增长。随着酶系统的形成,胚乳中的淀粉、蛋白质、半纤维素等高分子物质得逐步分解,可溶性的低分子糖类和含氮物质不断增加,整个胚乳结构由坚韧变为疏松,这种现象被称为麦芽溶解。 ◆发芽方法主要有地板式发芽和通风式发芽两种。

啤酒发酵实验

实验室啤酒发酵一、实验目的:熟悉静止培养操作,观察啤酒发酵过程,掌握发酵过程中一些 指标的分析操作技能。 二、实验原理:啤酒酵母将麦芽汁发酵,产生酒精等发酵产物(啤酒)。 三、实验器材: ⑴. 100升发酵罐。 ⑵. 0~10O BX糖度表。 (3).10℃-30℃可调生化培养箱。 培养基: ⑴. 麦芽汁发酵培养基10Plato, 50升,糖化制取。 ⑵. 麦芽汁琼脂培养基:麦芽汁加2%琼脂,自然pH。 ⑶. 麦芽汁液体培养基:酵母扩大培养用。 菌种:啤酒生产用酵母菌株。 四、实验步骤: (1)麦汁制备 (2)酵母菌种分离纯化与质量鉴定 (3)菌种扩大培养 (4)啤酒主发酵:麦汁50升,10O BX ,11℃→接种量×107个细胞/mL →主发酵,11℃,5~7天→至时结束(嫩啤酒)。在主发酵过程中,每天测定下列项目:糖度、细胞浓度、出芽率、染色率、酸度、α-氨基氮、还原糖、酒精度、pH、双乙酰。然后以时间为横坐标,这些指标为纵坐标,叠画于方格纸上。

(5)后发酵 五、作业要求 (1). 画出发酵周期中上述上述指标的曲线图,并解释它们的变化。 (2). 记下操作体会与注意点。 实验一协定法糖化试验 一、实验目的:协定法糖化试验是欧洲啤酒酿造协会(EBC)推荐的评价麦芽质量的标准方法,我们用该法进行小量麦芽汁制备,并借此评价所用麦芽的质量。二、实验原理:利用麦芽所含的各种酶类将麦芽中的淀粉分解为可发酵性糖类,蛋白质分解为氨基酸(具体参见理论部分第二节)。 三、实验器材和试剂: 1 实验室糖化器:由水浴和500~600 mL的烧杯组成糖化仪器,杯内用玻棒搅拌或用100℃温度计作搅拌器(此时搅拌应十分小心,以免敲碎水银头)。实验时杯内液面应始终低于水浴液面。最好采用专用糖化器:该仪器有一水浴,水浴本身有电热器加热和机械搅拌装置。水浴上有4~8个孔,每个孔内可放一糖化杯,糖化杯由紫铜或不锈钢制成,每一杯内都带有搅拌器,转速为80~100转/分,搅拌器的螺旋桨直径几乎与糖化杯同,但又不碰杯壁,它离杯底距离只有1~ 2 mm。 2 白色滴板或瓷板,玻棒或温度计。 3滤纸,漏斗,电炉。 4碘溶液,:克碘和5克碘化钾溶于水中,稀释到1000毫升。 四、实验步骤 1. 协定法糖化麦汁的制备 (1)取50g麦芽,用植物粉碎机将其粉碎。

啤酒发酵实习报告

石家庄学院 生工生产职业培训实习报告 姓名: 学号: 院系: 专业: 班级: 指导教师: 教师职称:

实习基本情况 实习单位:实习时间:2013年12月23日-2014年1月6日

啤酒发酵工艺 前言 实习时间:2013年12月23日到2014年1月6日,共2周时间。 实习地点:生工食品实验楼3楼。 实习目的:了解啤酒发酵的全过程,熟悉啤酒生产用菌种的特性、原料种类及特点;掌握啤酒生产的工艺原理和发酵机理、以及工艺过程及其控制,能选择合理的工艺流程和操作条件;了解工艺对设备的要求。 实验的主要任务是熟悉啤酒发酵的全过程,学生亲自动手操作,熟悉设备,最终酿成一罐啤酒。熟悉工厂的生产线操作流程。 工作的主要方法是通过酵母发麦汁产生酒精,最终酿成啤酒。啤酒生产大致可分为麦芽制造、啤酒酿造、啤酒灌装3个主要过程。麦芽制造有以下6道工序,大麦贮存、大麦精选、浸麦、发芽、焙燥、贮存。啤酒酿造有以下5道工序,麦芽的粉碎、糖化、糊化、发酵和贮酒后熟,主要是糖化、发酵、贮酒后熟3个过程。 取得主要成果:酿制成功一灌口感极佳的啤酒。 主体 一、啤酒的定义及啤酒生产原料的种类 (1)啤酒的定义: 以麦牙为主要原料,加酒花,经酵母酿制而成的,含有二氧化碳的、起泡的、低酒精度的发酵酒。 (2)啤酒的生产原料: 主要有大麦、大米(或玉米)、糖浆和糖类、酒花、水和酵母。 二、本啤酒生产系统主要设备构成 1.粉碎系统:包括粉碎机。 2.糖化系统:包括糊化锅、糖化锅、过滤槽、煮沸锅、旋沉槽、板式换热器、麦汁泵。 3.发酵系统:包括发酵罐。 4.CIP清洗系统:碱罐、消毒罐、洗涤泵(消毒车)。 5.制冷系统:包括制冷机组、冰水罐、冰水泵。 6.蒸汽系统:电热蒸汽发生器。

智慧树知到《啤酒酿造与文化》章节测试答案

第一章 1、考古学家多印加文明中啤酒足迹的发现地区主要在哪个国家? A.秘鲁 B.阿根廷 C.智利 D.委内瑞拉 答案: 秘鲁 2、多数历史学家认为,世界上最早的啤酒酿造始于公元前哪个时期? A.BC1000-2000年 B.BC2000-3000年 C.BC3000-4000年 D.BC4000-6000年 答案: BC4000-6000年 5、 公元8世纪德国修道士酿酒啤酒是发现了啤酒花的妙用。 A.对 B.错 答案: 对 第二章 1、浅色大麦芽最后阶段的干燥温度通常控制在: A.60-65℃ B.65-70℃

D.80-85℃ 答案: 80-85℃ 2、全世界的酒花品种大约为: A.150 B.200 C.250 D.276以上 答案: 276以上 3、水中的含盐量对啤酒酿造过程很有影响,常规指标中影响最大的是: A.总硬度 B.残余碱度 C.镁硬度 D.钙硬度 答案: 残余碱度 4、酿造淡色啤酒应用硬度较高的水。 A.对 B.错 答案: 错 5、酵母属兼性微生物,在有氧和无氧条件下都能生存。 A.对 B.错

第六章 4、 EBC欧洲酿造协会是欧洲酿造业界最大的盛会协会组织。 A.对 B.错 答案: 5、 酒标是酒的名片和身份证,已成为一种独特的啤酒文化。 A.对 B.错 答案: 6、 啤酒杯垫是展示啤酒文化的重要元素,它的基本作用不包含: A.防滑 B.付账凭证 C.吸水 D.广告宣传 答案: 7、 青岛国际啤酒节始创于哪一年? A.1989

B.1990 C.1991 D.1993 答案: 8、 世界上规模最大、最著名的啤酒节是: A.美国丹佛啤酒节 B.德国慕尼黑啤酒节 C.英国啤酒节 D.青岛啤酒节 答案: 第三章 1、下列麦芽中哪种类不具备较好的麦芽香气和颜色? A.浅色比尔森 B.巧克力麦芽 C.结晶麦芽 D.焦香麦芽 答案: 2、麦汁过滤时的洗槽水温度应该是: A.63℃一65℃ B.65℃一68℃ C.76℃一78℃

啤酒实验方案

发酵罐的清洗与消毒(四步法) 清水→氢氧化钠→清水→双氧水 (1)先在糖化锅把水烧到50℃; 用自来水冲洗糖化锅、管道、过滤槽、换热器和发酵罐,清楚可见杂质; (2)氢氧化钠配制(5%,45-50°c):先用糖化锅烧水至50°c,取100L热水倒于大桶,然后称取5.2Kg的氢氧化钠,加入,用长铁棒混匀,再用泵从正面尽侧面出来(这是泵的方向),用泵打入发酵罐,泵的侧面出液管先和发酵罐的上面进口连接好,泵的正面进液管先用碱液装满,使泵中充满液体,排出空气,再将其插入桶中,开泵,把液体吸入发酵罐,然后进液管和发酵罐底部的排污阀连接好,最后利用泵循环(20分钟)。 氢氧化钠从一个发酵罐打进另一个发酵罐里时,出罐的碱会形成负压(故可以打开上面的阀门),而进碱的罐会形成正压,(故可以从地下进,打开上部阀门) 洗完后,把发酵罐上端的进口(即泵的侧面的出口管)卸下,装进小储液罐下端进口,再将液体泵入储液罐中。 (3)排尽残留下的碱液后,再用自来水间歇冲洗十五分钟,方法同上 (4)排尽残留液后,再用浓度为0.5%的双氧水循环清洗20分钟,方法同上,将管内残留的双氧水排放干净,关闭排气阀,进出料阀和出酒阀。 啤酒生产制作 一)准备工作 A.粉碎前的准备工作 ①对糖化锅、过滤槽、换热器、发酵罐及一些常用器皿工具用自来水进行冲洗(主要是因为长期未用,集的脏物较多); ②5%NaOH溶液的配制(配瓷面铁罐1.5罐即可),用于发酵罐、常用工具器皿的消毒灭菌; ③1%双氧水溶液的配制(一瓶兑一罐),也是用来消毒灭菌; ④30%甲醇溶液的配制,用于发酵罐及麦汁输送到发酵罐时的冷却; ⑤对管道路径的熟悉; ⑥泵的使用的操作问题(弄清进口出口开关); ⑦输水管与接口处的接法; ⑧糖化搅拌,过滤耕刀,清洗泵,麦汁泵,冰水泵,制冷机,粉碎机,电加热的开关的认识及简单操作。

发酵课后题整理答案

第一章 1.发酵与酿造的概念,发酵、酿造工业与化学工业的区别 答:发酵:将提炼精制获得的成分单纯、无风味的要求的产品的生产过程称为发酵。(PPT)广义上,微生物进行的一切活动都可以称为发酵;狭义上,发酵仅仅是指厌氧条件下有机化合物进行不彻底分解代谢释放能量的过程。(书) 工业上的发酵:利用微生物生产某些产品的过程。 酿造:通常指成分复杂并对风味有特殊要求的食品或调味品的生产过程。 区别:在于发酵与酿造工业是利用生物体或生物体产生的酶进行的化学反应。 2.简述发酵与酿造技术的研究对象 答:按产业部门分类:酿酒工业、传统酿造工业、有机酸发酵工业、酶制剂发酵工业、氨基酸发酵工业、功能性食品生产工业、食品添加剂生产工业、菌体制造工业、维生素发酵工业、核苷酸发酵工业。 按产品性质分类:生物代谢产物发酵、酶制剂发酵、生物转化发酵、菌体获得。 3.简述发酵与酿造的特点 答:安全、简单;原料广泛;反应专一;代谢多样;易受污染;菌种选育。 4.简述发酵与酿造和现代生物技术的关系 答:生物技术是靠基因工程、细胞工程、发酵工程、酶工程和生化工程这五大体系支撑起来的,发酵工程常常是基因工程、酶工程的基础和必要条件。食品发酵和酿造主要是以发酵工程和酶工程为支撑,是利用微生物细胞或动植物细胞的特定性状,通过现代化工程技术,生产食品或保健品的一种技术。发酵技术的两个核心部分是生物催化剂和生物反应系统,总而言之,食品发酵和酿造与现代生物技术关系密切,传统的发酵与酿造技术只有采用现代生物技术加以改造才被赋予新的内涵,才会有新的突破性进展。(补充请翻书4、5页) 5.我国主要发酵食品有哪些 答:酒精饮料、谷类食品发酵、豆类食品发酵、蔬菜发酵。 6.新型发酵食品的生产工艺及用途 答: 第四章 1.发酵工业的特征是什么 答:①微生物菌种选育及扩大培养; ②发酵原料的选择及预处理; ③发酵设备选择及工艺条件控制; ④发酵产物的提取和分离; ⑤发酵产物的回收和利用。

实验室啤酒发酵实验讲义

实验室啤酒发酵讲义 一、实验目的:熟悉静止培养操作,观察啤酒发酵过程,掌握发酵过程中一些指标的 分析操作技能。 二、实验原理:啤酒酵母将麦芽汁发酵,产生酒精等发酵产物(啤酒)。 三、实验器材: ⑴. 100升发酵罐。 ⑵. 0~10O BX糖度表。 (3).10℃-30℃可调生化培养箱。 培养基: ⑴.麦芽汁发酵培养基10Plato, 50升,糖化制取。 ⑵.麦芽汁琼脂培养基:麦芽汁加2%琼脂,自然pH。 ⑶.麦芽汁液体培养基:酵母扩大培养用。 菌种:啤酒生产用酵母菌株。 四、实验步骤: (1)麦汁制备 (2)酵母菌种分离纯化与质量鉴定 (3)菌种扩大培养 (4)啤酒主发酵:麦汁50升,10O BX ,11℃→接种量1.5×107个细胞/mL →主发酵,11℃,5~7天→至4.0O BX时结束(嫩啤酒)。在主发酵过程中,每天测定下列项目:糖度、细胞浓度、出芽率、染色率、酸度、α-氨基氮、还原糖、酒精度、pH、双乙酰。 然后以时间为横坐标,这些指标为纵坐标,叠画于方格纸上。 (5)后发酵 五、作业要求 (1). 画出发酵周期中上述上述指标的曲线图,并解释它们的变化。 (2). 记下操作体会与注意点。 实验一协定法糖化试验 一、实验目的:协定法糖化试验是欧洲啤酒酿造协会(EBC)推荐的评价麦芽质量的标准方法,我们用该法进行小量麦芽汁制备,并借此评价所用麦芽的质量。 二、实验原理:利用麦芽所含的各种酶类将麦芽中的淀粉分解为可发酵性糖类,蛋白质分解为氨基酸(具体参见理论部分第二节)。 三、实验器材和试剂:

1 实验室糖化器:由水浴和500~600 mL的烧杯组成糖化仪器,杯内用玻棒搅拌或用100℃温度计作搅拌器(此时搅拌应十分小心,以免敲碎水银头)。实验时杯内液面应始终低于水浴液面。最好采用专用糖化器:该仪器有一水浴,水浴本身有电热器加热和机械搅拌装置。水浴上有4~8个孔,每个孔内可放一糖化杯,糖化杯由紫铜或不锈钢制成,每一杯内都带有搅拌器,转速为80~100转/分,搅拌器的螺旋桨直径几乎与糖化杯同,但又不碰杯壁,它离杯底距离只有1~ 2 mm。 2 白色滴板或瓷板,玻棒或温度计。 3滤纸,漏斗,电炉。 4碘溶液,0.02N: 2.5克碘和5克碘化钾溶于水中,稀释到1000毫升。 四、实验步骤 1. 协定法糖化麦汁的制备 (1)取50g麦芽,用植物粉碎机将其粉碎。 (2)在已知重量的糖化杯(500~600 mL烧杯或专用金属杯)中,放入50g麦芽粉,加200mL 46~47℃的水,于不断搅拌下在45℃水浴中保温30分钟。 (3)使醪液以每分钟升温1℃的速度,升温加热水浴,在25分钟内升至70℃。此时于杯内加入100 mL 70℃的水。 (4)70℃保温1小时后,在10~15分钟内急速冷却到室温。 (5)冲洗搅拌器。擦干糖化杯外壁,加水使其内容物准确称量为450g。 (6)用玻棒搅动糖化醪,并注于干漏斗中进行过滤,漏斗内装有直径20厘米的折叠滤纸,滤纸的边沿不得超出漏斗的上沿。 (7)收集约100mL滤液后,将滤液返回重滤。过30分钟后,为加速过滤可用一玻棒稍稍搅碎麦槽层。将整个滤液收集于一干烧杯中。在进行各项试验前,需将滤液搅匀。 2.糖化时间的测定 ⑴在协定法糖化过程中,糖化醪温度达70℃时记录时间,5分钟后用玻棒或温度计 取麦芽汁1滴,置于白滴板(或瓷板)上,再加碘液1滴,混合,观察颜色变化。 ⑵每隔5分钟重复上述操作,直至碘液呈黄色(不变色)为止,记录此时间。 由糖化醪温度达到70℃开始至糖化完全无淀粉反应时止,所需时间为糖化时间。 报告以每5分钟计算: 如 <10分钟 10~15分钟 15~20分钟等 正常范围值 浅色麦芽:15分钟内 深色麦芽:35分钟内 3.过滤速度的测定 以从麦汁返回重滤开始至全部麦芽汁滤完为止所需的时间来计算,以快、正常和慢等来表示,1小时内完成过滤的规定为“正常”,过滤时间超过1小时的报告为

相关文档