文档库 最新最全的文档下载
当前位置:文档库 › 123D Design建模学习

123D Design建模学习

123D Design建模学习
123D Design建模学习

123D Design实例教程:初识123D 基本操作

3D打印要先用三维制图软件建模,就是画三维图,几款有名的三维制图软件相当强大,也就是相当难学的意思。对于非专业人士来说实在没必要为了体验3D而去啃。今天给大家介绍一个超级棒的软件:AUTO DESK 123D。

方法/步骤1

第一讲:认识界面:菜单,工具条,学会移动物体,放大缩小物体,旋转物体,拉出几个现成的零件。

1、认识界面

打开程序:点下方的Start a New Preject,开始新项目。

Tips:打开程序,就会出现一个简明教程,建议浏览一下,不想它下次再出现,就勾选左下角Don’t show,想看随时可以点右上角的“?”,点Quick Start tips。界面就是这样,上面一行图标,右边一条图标,中间一个淡蓝色的坐标(pan,托盘,就是工作台),有X轴和Y轴,坐标,相当简洁。

菜单在哪?对不起,没有我们熟悉的菜单,就是上面的图标。工具栏在哪?就是右边的一条图标。

方法/步骤2

2、放入物体

开始工作,放几个物体到台上:

点击红色选框:这是基本图元(Primitives),左边五个立体的,右边四个平面的。点中左边任一个,在蓝色的台上(pan)再点一下,就进来了,把立体的一个个点进来。如下图:

点进来的物体,都放在台上,都是贴紧台面放的。糟糕,放的乱七八糟的,那个圆环还放歪了,没在台面!

3、移动物体:

没关系,你可以点击拖动物体。好看多了,站在一条直线上了。

真的站在一条直线上了?不一定!记住,我们现在是画三维图,可是电脑屏幕是平面的(二维),所以我们看到的只是一个角度,这个角度是站在一条直线,换个角度就不一定了。不信你看其实是这样的:

4、工作面操作

怎么会这样?你是怎么看的?这就要学会工作面的操作,很简单:

1、按住中键拖动鼠标,就能平移台面,

2、按住右键,拖动鼠标,就能改变视角,

3、滚动滚轮,就能缩放视图!

顺便告诉你,右边工具栏上也有这三个功能,不过在我看来是多余的,可能是为没中键的用户设计的吧。

Tips:这个工具栏主要是用来调整视角,显示或隐藏物体和轮廓线等。参看菜单祥解P。

可是我还是不知道是否在正上方观察的,说不定还是歪的。没关系,你注意工具条上面有个小方块,标明了top(顶视),left(左视),front(前视),点一下顶视就行了。注意:光标移到这个小方块上,左上角还会出现一个有用的按钮home(回到默认视图),点下试试。

老师,那个圆环还是歪的!

5、全方位移动物体:

说的是,不但是歪的,而且悬在空中,我们要把它拉到台面,并且平躺。

默认,我们只能在台的平面移动物体(X、Y轴),不能上下移动(Z轴)。为了说明问题,我们把所以物体都删除(点中物体,按键盘上的delete),留下一个圆环。

在物体上点击,下面出现一个菜单(如果没出现,先在空白处点击鼠标):点击第一个(Move移动)后变成这样:

上面有三个大箭头,拖动它分别可以沿X、Y、Z轴移动,还三个小圆点,圆点上有两个小箭头,拖动它,就可以分别在三个面上转动物体了。这样,你就可以随心所欲地改变物体的位置和方向了。终于放好了:

这个物体太小,我想大一点,怎么办?

6、放大缩小物体:

删除所有物体,我们再放进一个正方体。

在物体上点击,下面出现一个菜单:

点击第二个Scale(缩放),物体上会出现一个箭头,左右移动,就能缩放物体了。

果然是放大了,可是,我只想拉高一点,不要整个放大!

可以的。Scale的意思:规模、比例,所以默认是各方向按同一比例变化的。

大家仔细看一下点中缩放后的工具,其实是有选项的:

Uniform(统一),

Non-uniform(不统一)。

选中不统一后,就会出现三个箭头,可以分别拉长、拉宽、拉高。明白了吧。

使用123D Design制作一个简易杯子123D design 是auto desk公司的入门级3D建模软件

1、选择一个圆柱体放到工作台上,将其改变为合适大小。使用修改命令中的“抽壳”指令进行抽壳操作

2、抽壳过程中选择合适的壳厚度,为了方便3D打印机打印一般不低于2mm。然后拖动一个面包圈放到工作台上

3、将面包圈调整到合适大小作为杯把手,然后使用吸附指令将其放到杯体上。

4、使用平移指令将把手插入杯体,并放到杯体的合适位置。如图所示本人喜欢中间

5、将杯体和把手的相对位置及其相对大小调整到位以后,选择结合指令。然后将杯体内部多余的把手部分删除。

6、使用修改指令集中的倒圆角指令,对杯体的边缘以及把手和杯体的结合处进行修饰处理,使之光滑好看。

7、对物理状态修饰好的杯子进行进一步的上色修饰

犀牛鞋类建模终极教程(转)

1.4主要研究内容 以犀牛3D建模软件为工具来研究NURBS自由曲面在表现鞋类3D效果图方面的应用。通过对几个常见款式的建模法的归纳总结,得出一套基于NURBS自由曲面的适合于鞋类建模的方法。 2 建模部分 2.1 建模前的准备 2.1.1 建模场景的优化 在Rhino3D中,除了等参数线和边界线外,其他都是不可见的,为了显示NURBS 曲面为可见的曲面,要把它转化为可渲染的多边形网格物体。这就存在一个转换精度的问题。精度越高,所生成的多边形网格物体就越逼近原始NURBS曲面。如果转换精度不高,可能看到的NURBS曲面就不平滑,如图2.1所示: 图2.1 由于转换精度低造成显示不够平滑 遇到这种情况,并不是由于曲面不够平滑,而是NURBS曲面转换为可渲染的多边形物体的精度不够高。用鼠标右击打开渲染设置,在Render mesh选项卡里调高精度即可显示为平滑的曲面。如图2.2,2.3所示:

图2.2 调整Render mesh选项卡 图2.3提高转换精度后显示平滑 虽然提高Render mesh转换精度可以达到高质量的显示和渲染效果。但是转换精度越高,所需要的计算时间就越长,这会造成显示慢的后果。在视觉质量允许的范围内,尽量减少转换精度能大大的提高工作效率。这就要求对Render mesh的设置进行优化,方法如下:右击按钮,调出渲染属性面板。将各数值按照图2.4所示的参数重新进行设置。

图2.4 优化参数设置 其中,Max angle是一个绝对数值,它不会随着模型的大小变化而改变显示精度,而Min edge length和Max distance,edge to srf则是相对数值,如果模型的尺寸越小,那么显示精度就越低,产生的面数就越少,模型的尺寸越大,显示精度就越高,产生的面数就越多。因此,这两个参数需要根据模型的大小进行设置。一般来说,它们的大小为模型的1/100时,显示就已经基本可以达到很平滑的效果了,而且面数也不会过多,属于一个最优化的参数设置。我在本文鞋子的建模中一般长度为10cm左右,10的1/100既0.01,按此标准在建模前进行设置即可达到理想的显示精度和精简的面数平衡值。 2.1.2三视图的备制与导入 我们在建立一个物体的模型时通常需要准备好这个物体的三视图或四视图。这样,才能建出比例比较标准的模型。如下图2.5所示是甲壳虫汽车的四视图: 图2.5

史上最强的Rhino教程集合贴

一、前辈经验 我们来看看犀牛建模到底有哪些技巧1(先说切块思想) https://www.wendangku.net/doc/6614427949.html,/thread-25541-1-1.html 我们来看看犀牛建模到底有哪些技巧2(构建分模线与构建装饰条) https://www.wendangku.net/doc/6614427949.html,/thread-25649-1-1.html 我们来看看犀牛建模到底有哪些技巧3(曲面无法组合的原因) https://www.wendangku.net/doc/6614427949.html,/thread-25858-1-1.html 我们来看看犀牛建模到底有哪些技巧4(产品形体分析1) https://www.wendangku.net/doc/6614427949.html,/thread-31042-1-1.html 我们来看看犀牛建模到底有哪些技巧5(形体分析2曲面分析) https://www.wendangku.net/doc/6614427949.html,/thread-38472-1-1.html 我们来看看犀牛建模到底有哪些技巧6(Rhino倒角全析) https://www.wendangku.net/doc/6614427949.html,/thread-42311-1-1.html 我们来看看犀牛建模到底有哪些技巧7(如何把握产品细节1) https://www.wendangku.net/doc/6614427949.html,/thread-57098-1-1.html 【苏浪】学习Rhino(犀牛)容易走进的误区 https://www.wendangku.net/doc/6614427949.html,/thread-25342-1-1.html 三维建模思维培养九种拆面方式 https://www.wendangku.net/doc/6614427949.html,/thread-287-1-1.html 总结犀牛建模重点:不是对命令的了解 https://www.wendangku.net/doc/6614427949.html,/thread-37751-1-1.html 二、理论基础 我眼中的犀牛常用的命令(不断更新ing)131楼有新命令.. https://www.wendangku.net/doc/6614427949.html,/thread-43715-1-1.html 犀牛曲面建模的原理性思考 https://www.wendangku.net/doc/6614427949.html,/thread-24205-1-1.html G1.G2.G3.G4.曲率連接分析方法(共享) https://www.wendangku.net/doc/6614427949.html,/thread-11520-1-1.html

汽车犀牛建模教程

汽车造型设计 【预览效果】 图5.5.1预览效果 【知识点】 【Scale NU】不等比例缩放 【Properties】编辑物体属性 【NetworkSrf】空间曲线形成曲面 【Analyze direction】分析曲线或曲面法线方向 【难点分析】 (1)两曲面衔接的平滑处理,可调整生成曲面的曲线使其与已有曲面相切来实现。 (2) 生成曲面的网格数量与曲线法线方向的控制。曲线法线方向不同,生成曲面的效果就不同。通常曲线的数量越少,生成的曲面就越光顺。不规则曲面的形成主要是通过构造曲线来生成。 (3)曲线可以对曲面修剪,曲面可以对实体修剪,但曲线不可以修剪实体。 【制作步骤】 5.5.1车身 1)新建图层 单击,在对话框中新建如图5.5.2所示的6个图层,选择车身表面为当前图层。 图5.5.2设置图层 2)绘制车身骨架曲面 (1)绘制平面曲线。单击,结合三视图绘制三条平面曲线,如图5.5.3所示。 图5.5.3绘制平面曲线 (2)绘制汽车框架曲线。在【Top】视图沿垂直方向和水平方向对三条平面曲线分别进行复制。如图5.5.4所示。 图5.5.4绘制框架曲线 (3)绘制平面曲线。激活【Top】视图,单击,绘制平面曲线,如图5.5.5所示。 图5.5.5绘制平面曲线 (3)一轨成型生成曲面。单击,以图5.5.5绘制曲线为轨迹一轨成型生成曲面,对话框设置为rebuild with 10 control points,生成半个粗略车身侧面。如图5.5.6所示。 (4) 提取曲面结构线。激活【Top】视图,单击,选择车身侧面曲面,在车身侧面曲面上提取多条结构线。如图5.5.7 所示。 图一轨成型生成曲面图提取曲面结构线 (5) 删除车身侧面曲面及图与图所绘曲线。如。 图5.5.8 提取后的曲线 (6) 重建曲线控制点。单击,框选所有曲线,重建曲线控制点。对话框设置如图5.5.9所示。 图5.5.9 对话框设置 (7)调整曲线控制点。单击,打开曲线控制点,结合三视图调整曲线控制点所示。 图5.5.10 调整曲线控制点 (8)放样曲线成曲面。单击,框选所有曲线,对话框设置为rebuild with 10 control points,生成车身侧面。如图5.5.11所示。(此处生成的曲面若不理想,可重新返回上一步重新调整曲线控制点,反复操作直到调出满意曲面) 图5.5.11 放样生成曲面 (9)选择所有曲线,按【Delete】删除。(此步是为方便以后操作,读者也可选择将其隐藏) 3)绘制发动机罩

(完整版)系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

犀牛建模入门教程

目录 前言1 第一章我的建模观2 为什么选犀牛3 软件分类5 与Nurbs6 第二章Rhino界面和基础操作9 界面构成9 如何使用工具面板11 自定义工具集13 视窗14 视窗基本操作14 在底部显示视图标签15 视窗显示模式16 工作平面18 观看物体20 物体基本操作20 选择物体20 建模辅助设置22 第三章第三章绘制2D物体24 中的对象介绍24 点物体线物体25 面物体26 网格28 点物体的绘制29 曲线绘制31 直线绘制31 曲线绘制35 其他封闭几何体37 第四章2D编辑和NURBS深入理解41 曲线编辑41 曲线的分割和修剪41 编辑曲线上的点46 曲线编辑工具48 对nurbs曲线的深入理解52 何谓nurbs?52 有理”和“无理”52 均匀”和“非均匀”60 曲线的“阶”63 第五章曲面构建65 构建曲面65 创建方形平面68 绘制简单曲面69

放样75 扫琼80 旋转命令83 边界曲面、闭合线曲面、镶面的区别84 第六章曲面编辑87 点的编辑87 分割和修剪94 曲线作为分割边界94 曲面作为分割边界95 还原分割和修剪97 链接曲面97 延伸曲面97 曲面倒角99 偏移工具101 混接曲面102 合并曲面105 衔接曲面106 几何学上的G0、G1和G2连续109 第七章Rhino实体和网格112 基本几何体创建112 实体工具118 布尔运算118 抽面工具122 实体倒角123 对象124 第八章高级工具集129 从物件建立曲线129 曲线投影到曲面130 从曲面提取边界线133 从曲面提取轮廓线133 从曲面提取UV线133 生成相交线133 生成等分线134 生成剖面线135 物件变动工具136 处理物件空间位置的工具136 特殊位置工具143 套用UV、沿曲面流动、沿曲线流动143 定位至曲面151 定位曲线至曲面边缘和定位垂直曲线152 特殊变形工具154 曲面理解158 第九章Rhino辅助工具162

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

犀牛rhino跑车建模教程

(3)在两条轮廓线之间,用arcdir命令加入一些弧线,作为定义侧面曲面的截面线,如图4所示。 图4 用arcdir命令加入一些弧线 (4)将上面的那条轮廓线复制一条,放在两条轮廓线的中间,适当调整控制点,如图5所示。 图5 在两条轮廓线中间做出一条曲线 (5)选择所有曲线,执行networksrf命令,生成曲面,如图6所示。

在这个教学里,将简单介绍用rhino制作跑车的基本方法。 图1 用rhino制作的跑车 (1)在侧面视图里,绘制出侧面的两条轮廓线,如图2所示。 图2 画出两条车体的轮廓线 (2)在上视图里,打开两条轮廓曲线的控制点,适当调整控制点,如图2所示。在调整控制点的同时,可以根据需要,用insertknot命令给曲线加入控制点。

图3 在上视图里面调整控制点 6)用mirror命令镜象出另外半边的曲面,执行mergesrf命令,将两个曲面合而为一,如图7所示。 图7 用mergesrf命令将两个曲面合而为一 (7)如图8所示,画出一序列的曲线。

图8 画出一序列的曲线 (8)执行sweep2命令,产生曲面,注意选择上一步骤画出的一序列的曲线的中间那条U字形的曲线和前面产生的曲面的边界作为rail的路径线,然后选择出的围绕在U字形曲线的一序列的曲线作为cross section的截面线,产生曲面,如图9所示。 图9 用sweep2命令产生曲面 9)执行matchsrf命令,选择刚才用sweep2产生的曲面,然后再选择它下面的曲面,进行曲面匹配,在match surface 对话框里面,选择Tangency和Refine match其他都不要选,如图10所示。

系统动力学模型

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

机械系统动力学仿真软件ADAMS培训教程

机械系统动力学仿真软件ADAMS培训教程(1周时间) 一机械系统动力学方程基础 以闭环矢量法为例,介绍平面机构的运动学方程推导,瞬态动力学方程求解,方程组装及在Matlab/simulink模块中的实现,让学生对动力学求解有一个感性的认识。 教学内容: 1.1 机构动力学分析。四杆机构,杆长分别为L1,L2,L3和L4, 其中,L3为机架,L1为匀速转动的原动件,杆L4受到一恒定的扭矩T的作用。求各杆的运动和受力。(图中的杆均为均质杆,质量为mi,转动惯量为Ii,i=1,2,3….) 1.2 画出上式的Matlab/Simulink仿真框图(10分) 1.3 编写S函数,并在Simulink中调试实现 使用知识:超越方程的求解,牛顿—莱布尼兹迭代法,相容性检测(位移,速度),任意点的运动信息输出 练习:曲柄滑块机构,从方程推导、矩阵方程组装,流程图,编程实现

二ADAMS软件工程介绍及机构动力学仿真 介绍ADAMS软件的功能,几何模型建立方法和第三方CAD模型导入技巧,材料属性配置,运动副、驱动和载荷的创建,仿真计算参数设置及计算结果后处理。介绍弹簧模型、接触模型和轮胎路谱模型(如果有车辆专业学员的话),凸轮副,齿轮模型等常用模型的仿真。 准备内容:机构三维几何模型,最好还有凸轮,齿轮等常用运动副。 介绍模型的构成,建模方法(含几何模型导入技巧),各种运动副、载荷的施加,接触模型参数设置,学会常见机构动力学分析,结果后处理,包括常用的各种测量的使用。 练习:常规运动,接触,轮胎路谱模型的应用,结果后处理。 三模型参数化,灵敏度分析及优化设计研究 介绍ADAMS的设计变量定义,常用函数的使用,模型形状、尺寸、材料参数化和位置方向参数化,建立各种状态变量、约束和目标函数的测量,进行灵敏度分析和优化设计研究,改进模型的设计。 参数优化几何建模,参数化材料特性、单元属性,本构关系参数。目标函数,约束的建立,灵敏度分析、优化求解参数设定。 练习:机构优化;减振系统优化;

犀牛鞋类建模终极教程

1、4主要研究内容 以犀牛3D建模软件为工具来研究NURBS自由曲面在表现鞋类3D效果图方面的应用。通过对几个常见款式的建模法的归纳总结,得出一套基于NURBS自由曲面的适合于鞋类建模的方法。 2 建模部分 2、1 建模前的准备 2.1.1 建模场景的优化 在Rhino3D中,除了等参数线与边界线外,其她都就是不可见的,为了显示NURBS 曲面为可见的曲面,要把它转化为可渲染的多边形网格物体。这就存在一个转换精度的问题。精度越高,所生成的多边形网格物体就越逼近原始NURBS曲面。如果转换精度不高,可能瞧到的NURBS曲面就不平滑,如图2、1所示: 图2、1 由于转换精度低造成显示不够平滑 遇到这种情况,并不就是由于曲面不够平滑,而就是NURBS曲面转换为可渲染的多边形物体的精度不够高。用鼠标右击打开渲染设置,在Render mesh选项卡里调高精度即可显示为平滑的曲面。如图2、2,2、3所示:

图2、2 调整Render mesh选项卡 图2、3提高转换精度后显示平滑 虽然提高Render mesh转换精度可以达到高质量的显示与渲染效果。但就是转换精度越高,所需要的计算时间就越长,这会造成显示慢的后果。在视觉质量允许的范围内,尽量减少转换精度能大大的提高工作效率。这就要求对Render mesh的设置进行优化,方法如下:右击按钮,调出渲染属性面板。将各数值按照图2、4所示的参数重新进行设置。

图2、4 优化参数设置 其中,Max angle就是一个绝对数值,它不会随着模型的大小变化而改变显示精度,而Min edge length与Max distance,edge to srf则就是相对数值,如果模型的尺寸越小,那么显示精度就越低,产生的面数就越少,模型的尺寸越大,显示精度就越高,产生的面数就越多。因此,这两个参数需要根据模型的大小进行设置。一般来说,它们的大小为模型的1/100时,显示就已经基本可以达到很平滑的效果了,而且面数也不会过多,属于一个最优化的参数设置。我在本文鞋子的建模中一般长度为10cm左右,10的1/100既0、01,按此标准在建模前进行设置即可达到理想的显示精度与精简的面数平衡值。 2.1.2三视图的备制与导入 我们在建立一个物体的模型时通常需要准备好这个物体的三视图或四视图。这样,才能建出比例比较标准的模型。如下图2、5所示就是甲壳虫汽车的四视图: 图2、5

工作特征模型

工作特征模型 什么是工作特征模型 工作特征模型,也称作五因子工作特征理论 ,它是工作丰富化的核心。模型认为我们可以把一个工作按照它与核心维度的相似性或者差异性来描述,于是按照模型中的实施方法丰富化了的工作就具有高水平的核心维度,并可由此而创造出高水平的的心理状态和工作成果。 工作特征模型的内容 工作特征模型的核心内容(维度)是: 1)技能的多样性(skill V ariety):也就是完成一项工作涉及的范围。包括各种技能和能力。 2)工作的完整性任务同一性(task I dentity):即在多大程度上工作需要作为一个整体来完成---从工作的开始到完成并取得明显的成果。 3)任务的重要性(task S ignificance):即自己的工作在多大程度上影响其他人的工作或生活---不论是在组织内还是在工作环境外。 4)主动性(A utonomy):即工作在多大程度上允许自由、独立,以及在具体工作中个人制定计划和执行计划时的自主范围。 5)反馈性(F eedback):即员工能及时明确地知道他所从事的工作的绩效及其效率。 理查德·哈克曼(Richard Hackman)和格雷格·奥尔德汉姆(Greg Oldham)设计的动机与五因子的关系方程为: 根据这一模型,一个工作岗位可以让员工产生三种心理状态即:感受到工作的意义,感受到工作的责任和了解到工作的结果。这些心理状态又可以影响到个人和工作的结果即:内在工作动力、绩效水平、工作满足感、缺勤率和离职率等,从而给以员工内在的激励,使员工以自我奖励为基础的自我激励产生积极循环。工作特征模型强调的是员工与工作岗位之间的心理上的相互作用,并且强调最好的岗位设计应该给员工以内在的激励。

机械系统动力学

《机械系统动力学》是清华大学出版社出版,杨义勇编著的机械专业书籍。全书共9章。介绍了机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,讲述了刚性机械系统的动力学分析与设计,含弹性构件的机械系统的动力学,含间隙副机械的动力学,含变质量机械系统动力学以及机械动力学数值仿真数学基础与相关软件。本书可作为高等院校机械工程专业本科和研究生教材,也可作为从事机械工程研究和设计的技术人员的参考书籍。 《机械系统动力学》内容是集20多年的课程教学经验,在唐锡宽和金德闻1984年编写的《机械动力学》一书的基础上进行体系变更、内容更新、扩充和改写后编著而成的。全书共9章:第1章绪论,介绍了机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,是学习后面内容的基础;第2、3章讲述刚性机械系统的动力学分析与设计,包括机构惯性力平衡的原理与方法;第4章和第5章是含弹性构件的机械系统的动力学,后者内容为含柔性转子机械的平衡原理与方法;第6章是含间隙副机械的动力学;第7章是含变质量机械系统动力学;第8、9章介绍机械动力学数值仿真数学基础与相关软件,并给出了仿真实例。书后附有103道练习题。《机械系统动力学》可作为高等院校机械工程专业本科和研究生教材,也可作为从事机械工程研究和设计的技术人员的参考书籍。 机械动力学课程在清华大学的开设已有20多年历史。 近几年,杨义勇在中国地质大学(北京)也开设了机械系统动力学这

一学位课程。上述课程所使用的教材均以 唐锡宽、金德闻编写的《机械动力学》(高等教育出版社19 84年出版)为基础,加上多种补充教材和讲义。在多年的教学过程中,随着对课程地位、学生学习的目的和课程体系的不断探索,金德闻先后编写了《高速转子的振动与平衡》、《机械动力学设计》等补充教材和研究生学位课程讲义《现代机械设计理论与方法》中的“机械动力学”部分,金德闻、唐锡宽还配套编写了《机械动力学习题、作业实验汇编》;杨义勇则编写了《机械系统动力学》讲义。作者在对上述教材和讲义进行体系变更、内容更新、扩充和改写的基础上,写成了这本新的《机械系统动力学》。 机械动力学是应用力学基本理论解决机械系统中的动力学问题的一门学科,其核心问题是建立机械系统的运行状态与其内部参数、外界条件之间的关系,从而找到解决问题的途径。该学科是机械性能设计的重要部分,在高速机械和精密机械中,机械动力学性能的分析与设计中是不可缺少的,有时甚至是至关重要的。机械动力学课程教学的目的就是使学生了解机械系统中动力学问题的类型和掌握应用力学的基础知识解决这些问题的基本方法和途径。机械系统千变万化,但它们存在的动力学问题有一定规律性,解决这些问题的方法也有共性。 本书对机械动力学的内容和体系的安排有以下特点: (1)按照系统的组成和运行条件将机械系统分为刚性系统和考虑构件弹性的系统两大部分,以便根据它们不同的性质分别讲述处理动力

犀牛建模常用技巧

1.1 用设置 1.设置公差: 一般工业设计建模的图纸选用为:【小物件-mm】,【公差值】为:“0.001”。公差值的设定在【Option】/【units】 2.图层管理 在建模开始前要设定好图层,将不同的物件随时分类。一般分类为:红色-curves,白-backup,其它图层放置实体。 3.临时关闭捕捉 在绘图时,按住【Alt】键,可以暂时关闭Snap 4.图层管理 在建模开始前要设定好图层,将不同的物件随时分类。一般分类为:红色-curves,白-backup,其它图层放置实体。 5.鼠标中键 鼠标中键的设定:先【Tools】/【Toolbarlayout】/【File】/【Open】,再选择要导入的工具列。然后【Option】/【mouse】,在如图选择。 1.2 技巧整理 首先要理解一些基本概念,这是高阶建模必须要掌握的基本理论知识。 ?首先大概知道NURBS技术与其他建模方式的区别,现在出现一个在Rhino 下多边形概念的NURBS犀牛建模插件“T-splines”。 ?曲面质量的评价标准。 ?曲面连续性的含义。 ?涉及连续性的工具。 ?曲面面片划分的思路。 6.绘制曲线 1.标准圆为 4 条圆弧,曲线圆为一条曲线。因为标准圆为有理曲线,所以一般建模 作圆时,选用曲线圆。 2.画一段弧线时,超出90 度,自动变成2 段,超出180 度,变成3 段,同理, "Join"会影响物体的属性。 3.学会常查看物体的属性。 4.按一下【Tab】键,在画线时锁定斜率。(这个在画与其它线保持连续性时很有用) 5.最精简曲线:Degree=3,4 个控制点。同理。每增加一个控制点,就多一个节点 6. 2 条曲线在连接处的各自 2 个控制点,影响G1。3 个控制点,影响G2 7.这个为移动+复制"命令",很有用的一个命令,大家具体按F1 看看 8.Blend 出的线为Degree=5 的最精简曲线。 9.Rebuild 曲线后,控制点和节点距离变均匀,曲线变光滑。 10.多段线Join 后,在连接处存在节点,其实还是多段线。但是在进一步Rebuild后, 就变成一条线。 11.Adjustable Blend 是比较人性化的命令,建议在Blend 两条曲线时使用。

第4章+拉伸和旋转特征建模

第4章 拉伸和旋转特征建模 【教学提示】 拉伸特征是三维设计中最常用得特征之一,具有相同截面、可以指定深度的实体都可以用拉伸特征建立。旋转特征是有截面绕一条中心轴转动扫过的轨迹形成的特征,旋转特征类似于机械加工中得车削加工,旋转特征适用于大多数轴和盘类零件。 【教学要求】 掌握拉伸特征的概念与建立方法 掌握旋转特征的概念与建立方法 通过本章学习能够准确分析零件的特征,灵活运用拉伸和旋转特征建立三维模型。 4.1 拉伸特征 拉伸特征是SolidWorks模型中最常用的建模特征。 4.1.1 拉伸特征的分类及操作 按照拉伸特征形成的形状以及对零件产生的作用,可以将拉伸特征分为实体或薄壁拉伸、凸台/基体拉伸、切除拉伸、曲面拉伸,如图4-1所示。 图4-1拉伸的分类 建立【拉伸】特征的操作步骤如下: (1)生成草图。 (2)单击拉伸工具之一: ①单击【特征】工具栏上的【拉伸凸台/ →【凸台/基体】→【拉伸】命令。

② 除】→【拉伸】命令。 ③ 面】→【拉伸】命令。 (3)出现【拉伸】属性管理器,如图4-2所示,设定以下选项,然后单击【确定】按 钮。 图4-2 【拉伸】属性管理器 4.1.2确定拉伸特征的选项 1.反向 单击【反向】按钮以与预览中所示方向相反的方向延伸特征。 2.拉伸方向 【拉伸方向】。在图形区域中选择方向向量拉伸草图。 3.设定拉伸特征的开始条件 设定拉伸特征的开始条件,拉伸特征有4种不同形式的开始类型,如图4-3所示。 (1)【草图基准面】从草图所在的基准面开始拉伸。 2

(2)【曲面/面/基准面】从这些实体之一开始拉伸。为【曲面/面/基准面】选择有效 的实体。 (3)【顶点】从选择的顶点开始拉伸。 (4)【等距】从与当前草图基准面等距的基准面上开始拉伸。在【输入等距值】中设定等距距离。 图4-3 各种开始条件及其结果 4.设定拉伸特征的终止条件 设定拉伸特征的终止条件,拉伸特征有7种不同形式的终止类型,如图4-3所示。 (1)【给定深度】从草图的基准面拉伸特征到指定的距离。 (2)【完全贯穿】从草图的基准面拉伸特征直到贯穿所有现有的几何体 (3)【成形到顶点】从草图的基准面拉伸特征到一个与草图基准面平行,且穿过指定顶点的平面。 (4)【成形到下一面】从草图的基准面拉伸特征到相邻的下一面。 (5)【成形到一面】从草图的基准面拉伸特征到一个要拉伸到的面或基准面。 (6)【到离指定面指定的距离】从草图的基准面拉伸特征到一个面或基准面指定距离平移处。 (7)【两侧对称】从草图的基准面开始,沿正、负两个方向拉伸特征。 3

系统动力学模型

1.1 海洋资源可持续开发研究综述 海洋可持续发展包括三层含义,即海洋经济的持续性、海洋生态的持续性和社会的持续性,海洋的可持续发展以保证海洋经济发展和资源永续利用为目的,实现海洋经济发展与经济环境相协调,经济、社会、生态效益相统。运用海洋可持续发展理论和海域承载力理论研究海洋资源开发的可持续性,从我国的海洋产业入手,分析我国海洋资源开发利用的状况,从海洋产业结构和产业布局、海洋管理和海洋开发技术等方面总结我国海洋开发的问题,并针对这些问题,提出切实可行的实现海洋可持续发展的途径和措施。国外学者对海洋资源的发展和研究进行研究,建立相应的模型,认为技术在海洋资源发展过程中起到极其重要的作用。国内学者则以具体省份为例研究海洋资源可持续发展,对辽宁省所拥有的海洋资源进行概述后,分析了辽宁海洋资源开发与海洋生态环境保护之间的关系,提出开展海域资源价值折损评估,采用政策调控和市场机制保护海洋生态环境。利用我国重要海洋产业数据,分析我国海洋资源开发利用的状况,并从海洋产业结构和布局及管理等角度总结海洋资源开发存在的问题,提出实现海洋资源可持续发展的途径。学者从海洋资源与环境保护角度分析,研究开发海洋的过程中,存在着海洋环境污染、海洋渔业资源衰退等问题。 1.2 系统动力学模型研究综述 到20 世纪70 年代初系统动力学被用来解决很多领域的问题,成为比较成熟的学科,系统动力学到20 世纪70 年代初所取得的成就使人们相信它是研究和处理诸如人口、自然资源、生态环境、经济和社会等相互连带的复杂系统问题的有效工具。基于市场均衡论和信用风险理论,完善运用于分析代际消费计划的系统动力学机制模型,并提出可替换选择。国内学者将系统动力学运用于研究资源与

系统动力学模型案例分析

系统动力学模型介绍 1、系统动力学的思想、方法 系统动力学对实际系统的构模与模拟就是从系统的结构与功能两方面同时进行的。系统的结构就是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能就是指系统中各单元本身及各单元之间相互作用的秩序、结构与功能,分别表征了系统的组织与系统的行为,它们就是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系与相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,就是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识与理解程度,其中也包含着大量的实际工作经验,就是属定性方面的信息。因此,系统动力学对系统的结构与功能同时模拟的方法,实质上就就是充分利用了实际系统定性与定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2、建模原理与步骤 (1)建模原理

用系统动力学方法进行建模最根本的指导思想就就是系统动力学的系统观与方法论。系统动力学认为系统具有整体性、相关性、等级性与相似性。系统内部的反馈结构与机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就就是针对实际应用情况,从变化与发展的角度去解决系统问题。系统动力学构模与模拟的一个最主要的特点,就就是实现结构与功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只就是实际系统某些本质特征的简化与代表,而不就是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量与确定系统边界。系统动力学模型的一致性与有效性的检验,有一整套定性、定量的方法,如结构与参数的灵敏度分析,极端条件下的模拟试验与统计方法检验等等,但评价一个模型优劣程度的最终标准就是客观实践,而实践的检验就是长期的,不就是一二次就可以完成的。因此,一个即使就是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化与新的目标。 (2)建模步骤 系统动力学构模过程就是一个认识问题与解决问题的过程,根据人们对客观事物认识的规律,这就是一个波浪式前进、螺旋式上升的过程,因此它必须就是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验与模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都就是交叉、反复进行的。 第一步系统分析的主要任务就是明确系统问题,广泛收集解决系统问题的有关数据、资料与信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量与信息反馈机制。 第三步模型建立就是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验就是借助于计算机对模型进行模拟试验与调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用就是在已经建立起来的模型上对系统问题进行定量的分析研究与做各种政策实验。 3、建模工具 系统动力学软件VENSIM PLE软件 4、建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系就是用因果链来连接的。因果链就是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。 a.正向因果链A→+B:表示原因A的变化(增或减)引起结果B在同一方向上发生变化(增或减)。

相关文档