文档库 最新最全的文档下载
当前位置:文档库 › 现场设备、管道热处理

现场设备、管道热处理

现场设备、管道热处理
现场设备、管道热处理

现场压力容器和压力管道焊接热处理

摘要:本文着重阐述了化工现场检修中对压力容器、压力管道进行焊接热处理的基本要求、工艺参数及热处理设备概况等,指导现场热处理工作。

关键词:热处理、压力容器、压力管道

1前言

现场300#、700#、900#和1700#等位号的压力容器和压力管道在检修中总是伴随着焊接作业,由于各位号工艺不同,所使用的材料种类和性能也不同,对焊接及热处理要求也不同,所以了解掌握焊接热处理知识,对保证检修焊接质量和装置运行安全具有非常重要的意义。

2热处理类别

在压力容器和压力管道现场焊接全过程中的热处理工作有焊前预热、后热消氢处理和焊后热处理。

预热是在焊接之前,对焊件的全部或局部进行加热的一种焊接热处理工艺,应根据母材的化学成分、焊接性能、厚度、焊接接头的拘束程度、焊接方法和焊接环境等综合考虑是否进行焊前预热。

后热处理是对有冷裂纹倾向的低合金钢和拘束度大的焊件,在焊接工作结束后,立即将焊件加热到一定温度并保温一定时间,使焊件缓慢冷却下来,以加速氢逸出的一种焊接热处理工艺。

焊后热处理,广义地讲就是在工件焊完之后对焊接区域或焊接构件进行热处理,其内容包括消除应力退火、完全退火、固熔、正火、正火加回火、回火、低温消除应力等。狭义地讲焊后热处理仅指消除应力退火,即为了改善焊接区的性能和消除焊接残余应力,减少脆性破坏和疲劳破坏等有害影响,从而对焊接区及有关部位在金属相变温度点以下均匀而又充分地加热,并保持一定的时间,然后又均匀冷却的过程。此处只介绍焊后消除应力热处理。

3材料及其热处理工艺要求

检修现场常用材料的化学成分和性能如表1所示。

3.1预热工艺

3.1.1预热方式有局部预热和整体预热。电加热适用于整体预热和局部预热;火焰加热适用于现场局部预热。当

管子D0≥219mm或δ≥20mm时,应采用电加热方式预热。

3.1.2预热宽度从对口中心开始,每侧不小于焊件厚度的3倍,且不少于100mm。

3.1.3需要热处理的焊件在整个焊接过程中应不低于预热温度。

3.1.4按要求应该预热的焊件返修和重新焊接时应重新预热,预热温度较原焊缝可适当提高。

3.1.5特殊情况下的焊前预热要求:

a)当焊接温度低于0℃时,所有钢材的焊缝应在始焊处大于100mm范围内预热到15℃以上。

b)异种钢焊接时,预热温度应按照焊接性能较差或合金含量较高的一侧选择,即按预热温度要求高的钢号

选取。

c)在0℃及以下的低温环境下壁厚不小于6mm的耐热钢管子、管件和厚度不小于34mm的板件焊接时,预热

温度可以按表1的规定值提高30℃~50℃。

d)在-10℃及以下低温下,壁厚小于6mm的耐热钢管子和壁厚大于15mm的碳素钢管子焊接时应适当预热,

温度控制在50℃~70℃,可采和氧-乙炔加热。

e)接管座和主管焊接时,应以主管规定的预热温度为准。

f)非承压和承压件焊接时,预热温度应按承压件一侧选择。

3.1.6常用材料的焊前预热的条件和预热温度见表2。

3.2后热工艺

3.2.1后热温度一般在200~400℃,保温时间与焊缝厚度有关,一般为2~4h,最低不低于0.5h,使焊件缓慢冷

却。

3.2.2后热应在焊后立即进行,加热宽度应不小于预热时的宽度或焊后热处理时的宽度。

3.2.3若焊后立即进行焊后消应力热处理可不做后热。

3.3焊后消应力热处理

3.3.1焊后热处理温度选择原则:

a)不能超过Ac1,一般应在Ac1以下30℃~50℃。

b)调质钢应低于调制处理时的回火温度。

c)异种钢应按焊接性能较差的一侧或焊后热处理要求高的一侧钢号选择,但是温度不应高过另一侧钢号的下

临界点Ac1。例如12Cr1MoVG与20G的焊接热处理温度按前者确定,但是不应高于20G的Ac1温度。

d)压力容器常用钢的焊后热处理温度与恒温时间见表3所示,压力管道热处理温度与恒温时间见表4。

表3 压力容器常用钢去应力退火规范

表4 压力管道焊后热处理规范

3.3.2Larson-Miller 参数P

焊接去应力退火后的残余应力消除可用保温时间与保温温度之间的下列函数关系表示:

3

+

=t

T

P

?

(lg-

)

10

20

式中: T——加热保温温度,K

t——加热保温时间,h

由P的定义可知,在较低温度下保持较长时间与较高温度下保持较短时间可以得到相同的P值,即两者可达到同样的消除应力程度。该参数可作为制定应力退火热处理工艺和考虑热处理温度对工件影响时的参考。

3.3.3加热宽度与保温宽度

承压管道及其返修件加热范围为焊缝每侧不小于焊缝厚度的3倍,且不小于60mm;压力容器补焊和筒体环焊缝局部热处理时,焊缝每侧加热带宽度不得小于容器厚度的2倍,接管与容器相焊的整圈焊缝热处理时,宽度不得小于壳体厚度的6倍。

焊接热处理的保温宽度从焊缝坡口边缘算起,每侧不得少于管子壁厚的5倍,且每侧应比加热器的安装宽度增加不少于100mm。保温厚度以40-60mm为宜。

3.3.4焊后热处理工艺

a)焊件温度在300℃以下时可不控制速率。

b)温度高于300℃时,加热速率不应大于5000/δPWHT℃/h,且压力容器不得大于200℃/h,管道不得大于300℃

/h。

c)升温期间,压力容器在加热区内任意长度为5m内的温差不得大于120℃;承压管道在加热区内任意两点的

温度差应小于50℃。例如气化炉下椎体环焊缝长12m,在热处理升温阶段一周范围内的温差应予以控制。

d)保温期间,加热区内最高与最低温度差应低于65℃。

e)恒温后的冷却速率不应大于6500/δPWHT℃/h,且不超过260℃/h,300℃以下可不控制,自然冷却即可。

3.3.5采用氩弧焊或低氢型焊条,焊前预热和焊后适当保温缓冷的下列不见可免作焊后热处理:

a)壁厚≤10mm,管径≤108mm的15CrMo、12Cr2Mo钢管;

b)壁厚≤6mm,管径≤108mm的12Cr1MoV钢管。

3.3.6冷拉焊接接头所用加载工具,必须待焊接热处理完毕后,方可拆除。

4热处理设备概况

现场热处理时可用的温控设备有便携式温控仪DJK-30和智能电脑温控柜DWK-C-360型等,其中DWK-C-360型控制柜输出功率最大可大360Kw,同时可设置6路工艺曲线,共有12个测温点。

配备规格为130×200~600×250的履带式陶瓷加热器和不同长度绳型加热器,可对外径>φ30以上的压力管道焊缝、压力容器焊缝进行整体或局部消应力热处理。

5热处理实例

6参考文献

1. GB 150-1998 钢制压力容器

2. GB 50236-1998 现场设备、工业管道焊接工程施工及验收规范

3. JB/T 4709-2000 钢制压力容器焊接规程

4. GB/T 20801-2006 压力管道规范—工艺管道

5. 压力容器用材料及热处理,化学工业出版社,2004.11

6. DL/T 819-2002 火力发电厂焊接热处理技术规程

热处理过程控制

热处理过程控制 热处理过程中的质量控制,实际上是贯彻热处理相关标准的过程,包括热处理设备及仪表哦那个之、工艺材料及槽液控制、工艺过程控制等,只有严格执行标准,加强工艺纪律,才能将热处理缺陷消灭在质量的形成过程中,获得高质量的热处理零件。 1、相关热处理工艺及质量控制要求标准 GB/T16923-1997 钢的正火与退火处理;GB/T16924-1997 钢的淬火和回火处理;GB/T18177-1997 钢的气体渗氮;JB/T3999-1999 钢件的渗碳与碳氮共渗淬火回火;JB/T4155—1999 气体氮碳共渗;JB/T9201—1999 钢铁件的感应淬火回火处理 JB/T6048—1992 盐浴热处理;JB/T10175—2000 热处理质量控制要求 2、加热设备及仪表要求: 2.1、加热设备要求: 2.1.1加热炉需按有效加热区保温精度(炉温均与性)要求分为六类,其控温精度、仪表精度和 允许用修改量程的方法提高分辨力 温仪表。其中一个仪表应具有报警的功能。 2.1.3 每台加热炉必须定期检测有效加热区,检测方法按GB/T9452和JB/T6049的规定,其保温精度应符合表7要求。应在明显位置悬挂带有有效加热区示意图的检验合格证。加热炉只能 记录表热电偶的热距离应靠近。校验应在加热炉处于热稳定状态下进行,当超过上述允许温度

2.1.5保护气氛炉和化学热处理炉的炉内气氛应能控制和调节。进入加热炉的气氛不允许直接冲刷零件。 2.1.6 对气体渗碳(含碳氮共渗)炉,渗氮(含氮碳共渗(软氮化))炉,在有效加热区检验合格后还应进行渗层深度均匀性检验,试样放置位置参照有效加热区保温精度检测热电偶布点位置,检验方法按GB/T9450和GB/T11354的规定。气体渗碳炉、渗氮炉中有效硬化层深度偏差,见表11和表12: 2.1.7 炉内的加热介质不应使被加热工件表面产生超过技术文件规定深度的脱碳、增碳、增氮和腐蚀等现象。 2.1.8 感应热处理加热电源及淬火机床: 2.1.8.1 感应加热电源输出功率及频率必须满足热处理要求,输出功率控制在±5%,或输出电压在±2.5%范围内。感应热处理机床和限时装置应满足工艺要求。 2.1.8.3限时装置:感应加热电源或淬火机床应根据需要装有控制加热、延迟、冷却时间的限时 2.2 淬火槽要求: 2.2.1 淬火槽的设置应满足技术文件条件对工件淬火转移时间的规定。 2.2.2淬火槽的容积要适应连续淬火和工件在槽中移动的需求。 2.2.3淬火过程中,油温一般保持在10——80℃,水温一般保持在10——40℃。 2.2.4 淬火槽一般应有循环搅拌和冷却装置,可选用循环泵、机械搅拌或喷射对流装置。必要时,淬火槽可配备加热装置。 2.2.5 淬火槽应装有分辨力不大于5℃的测温。 2.3 仪表要求: 2.3.1 现场使用的控温和记录仪表等级应符合表7要求,检定周期按表9执行。 2.3.2 现场系统校验用的标准电位差计精度应不低于0.05级,分辨力不低于1Uv,检定周期为6个月。

热处理变形控制及校正方法在实际生产中的应用

内容提要 在热处理过程中,工件变形是一种不可避免的现象。变形量保持在一定的要求范围内不影响工件的使用,但变形过大、以至于超出公差要求范围则工件报废,不能使用,造成浪费。 本文通过对多年实际操作经验的总结,从理论上阐述了工件热处理产生变形的原因,并联系生产实际,介绍了在热处理各个环节中产生变形的因素并极具针对性的介绍了控制各种产生变形的因素,诸如:分级淬火、等温淬火、预冷淬火等热处理控制变形方法及其他确实有效的变形控制方法。并以实际生产中的产品为例,对比证明了相关控制并减小热处理变形的方法。以及实际生产过程中,在产生较大变形的情况下,针对不同的产品特性所采取的校型方法。

1、热处理变形产生的原理及危害 工件淬火中引起的变形(宏观或微观)是操作中一种常见庛病,碳素钢薄板类工件在淬火前采用综合工艺可以在不同程度控制变形,对于模具钢、高速钢、量具钢可以结合分级淬火、等温淬火、预冷淬火减小变形量。 热处理的各个环节,都存在导致产生变形的因素。物体的“热胀冷缩”是众所周知的一种现象,钢材同样也是如此,淬火时当高温工件放入淬火冷却剂时,遇冷工件必然会产生收缩。工件截面上各部分的冷却是有先后的,因此各部分发生收缩也就有了先后,工件表面先冷却、先发生收缩,工件中心后冷却,还没有发生收缩。这样表面的收缩就必然要受到中心部分的牵制。这种由于工件表里热胀冷缩的不一致(即有温差)而造成的内应力称热应力。钢在淬火冷却过程中还要发生奥氏体向马氏体组织的转变过程,由于奥氏体的比容较马氏体小得多,所以在奥氏体向马氏体转变的同时,也就伴随着发生体积的膨胀。由于工件截面上各部分的冷却速度不一致,因此发生组织的转变和体积的膨胀也就不一致。工件表面先冷到Ms点,先发生转变和膨胀,而此时中心部分却尚未(或正在)开始发生转变和膨胀,这样表面的体积必然要受到中心部分的约束。这种由于工件表里组织转变的不一致而造成的内应力称组织应力。对每一个淬火工件来讲,既有热应力,又有组织应力,问题在于这两种应力综合的结果如何。当这两种应力的综合结果超过了钢材的屈服强度(δs)时,则引起变形,当这两种内应力综合的结果超过了钢材的强度极限(δb)时,则将引起钢材发生开裂的危险。 2、变形的控制方法 2.1 热处理过程中控制变形的方法 2.1.1 加热控制法 2.1.1.1 对于形状复杂的重要零件及薄板件或工具,可在加热淬火前进行一次或两次预热,这样可以减少工件表里的温差所造成的热应力。 2.1.1.2 在保证硬度的前提下选正常淬火温度下限和采用冷却能力较为缓慢的淬火冷却剂。

焊缝整平设备

在线内焊缝整平设备 1、概况 不锈钢焊管在材质和力学性能方面都优于不锈钢无缝管,但不锈钢管内外焊缝余高特别是内焊缝余高的去除问题一直困扰着不锈钢焊管生产企业。虽有内置刮刀或内磨装置等解决方案,但效果都不理想。这严重阻碍了不锈钢焊管应用领域的进一步拓展。目前,石油、化工、核电、锅炉、食品、医药等行业主要是用不锈钢无缝管。 2、设备组成 内整平不锈钢机械设备组成由内外焊缝整平机架、液压气动系统、带PLC控制的全自动电液气控制系统、还包括模具和轧制液循环设备。 3、设备技术特点 不锈钢焊管内外焊缝整平装置是一个内置芯棒并利用轧辊对不锈钢焊管进行滚压的往复式自动滚压装置,通过控制滚压强度和道次以达到使不锈钢焊管内外焊缝整平、彻底去除内外焊缝余高且与母材平齐的要求。通俗的讲,就是实现不锈钢焊管的无缝化。 4、工作流程 带有内外焊缝余高的不锈钢焊管经过水平辊滚压后,余高被去除,焊管截面变成一个水平椭圆,芯棒在焊管内被卡住跟着焊管走;再经立辊滚压,焊管截面变成一个正圆,芯棒跟焊管分离在机架返回时被气缸拉回适当位置,再进行第二个滚压循环。 不锈钢酸洗钝化膏 产品功能: 是呈乳白色膏状物,主要用于清洗不锈钢表面、焊缝及热压封头的氧化皮。适用于化工机械、食品机械、印染机械、制药机械、压力容器及干燥设备、化工、、环保设备及化工设备安装等行业使用,并能使不锈钢表面得到均匀美观的银白色本貌,而且提高了表面的光洁度,增强了抗腐蚀能力,延长了使用寿命。 使用说明: 1). 焊缝氧化物的清洗:先将焊缝上的焊渣及油污清理干净,再用毛刷将本品均匀涂在待处理的表面上,涂层厚度1-2mm,滞留1小时左右,即用纱布或抹布将清洗面上的残渣擦净(如用清水冲洗更佳)直至光洁铮亮。

铬钼管道焊接及热处理方案

中原石化乙烯原料路线改造(MTO)项目厂际外管工程热处理工程施工技术方案 编制: 审核: 审批: 濮阳市中原石化工程有限公司 2011年6月15日

目录

一、工程概述 本工程是中原乙烯从国电新敷设一条DN400中压蒸汽管线(材质20#,长度约900m),一条DN300高压蒸汽管线(材质P11,长度约900m;从MTO界区引一条DN25仪表风管线(材质:镀锌无缝钢管20#,长度约70m)到中、高压蒸汽的调节阀处;从龙宇化工一条氮气管线从中原乙烯南围墙引入,均沿厂际外管廊(第五段管廊)作为MTO项目厂外公用工程管线。本方案仅适用于厂际外管项目高压蒸汽(铬钼钢P11)管道焊接工程,施工的焊接及热处理工作。 二、编制依据 2.1、厂际外管Y-10035项目设计图纸; 2.2、《工业金属管道工程施工及验收规范》GB50235-97; 2.3、《现场设备工业管道焊接工程施工及验收规范》GB50236-98; 2.4、《石油化工有毒、可燃介质管道施工及验收规范》SH3501-2002; 2.5、《石油化工铬钼耐热钢焊接规程》SH/T3520-2004; 2.6、《石油化工金属管道工程施工质量验收规范》GB50517-2010; 2.7、《石油化工建设工程施工安全技术规范》GB5048-2008; 2.8、《工程建设交工技术文件规定》SH/T 3503-2007; 2.9、《工程建设交工过程技术文件规定》SH/T 3543-2007; 三、焊接施工准备 3.1材料要求:

3.1.1施工现场应配有符合要求的固定焊条库或流动焊条库; 3.1.2焊材必须具有质量证明书或材质合格证,焊材的保管、烘干、发放、回收严格按《压力管道质量手册》中有关规定执行,焊条的烘干工艺按生产厂家说明书提供的参数进行,如无则按焊接工艺指导书给定的参数执行(焊接作业指导书11PQR-ZYSH-03;)3.1.3焊丝使用前,应去除表面的油脂、锈等杂物; 3.1.4保温材料性能应符合预热及其处理要求。 3.2机具要求: 3.2.1焊机为直流焊机,焊机完好、性能可靠,双表指示灵敏,且在校准周期内; 3.2.2预热及热处理的设备完好,性能可靠,检测仪表在校准周期内,且符合《压力管道质保手册》中的计量要求; 3.2.3焊工所用的焊条保温筒,刨锤、钢丝刷齐全。 3.3作业条件 3.3.1人员资格: 焊工必须持有有效期内相应材质(A355 P11)、相应位置的《锅炉压力容器压力管道焊工考试与管理规则》合格证或《现场设备、工业管道焊接施工及验收规范》合格证或设计规定的其它合格证及MTO项目合格焊工证。 3.3.2环境条件: 施焊前应确认环境符合下列要求: 风速:手弧焊小于8m/s;氩弧焊小于2m/s; 相对湿度:相对湿度小于90%;无雨、雪天气。 当环境条件不符合上述要求时,必须采取挡风、防雨等有效防护措施。

热处理变形的原因

热处理变形的原因 在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。 一、热处理变形产生的原因 钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。淬火应力分为热应力和组织应力两种。由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。 1.热应力 在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。表里温差增大应力也增大。 2.组织应力 组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。由于奥氏体比容最小,淬火冷却时必然发生体积增加。淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。 二、减少和控制热处理变形的方法 1.合理选材和提高硬度要求 对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。 2.正确设计零件 零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。避免较深的不通孔。长形零件避免截面呈横梯形。 3.合理安排生产路线,协调冷热加工与热处理的关系

搅拌轴热处理变形的控制

龙源期刊网 https://www.wendangku.net/doc/6614723021.html, 搅拌轴热处理变形的控制 作者:苟选祥 来源:《科技创新与应用》2013年第21期 摘要:反应罐中的搅拌轴具有自身特点,加工工艺也比较特殊,对此,文章根据搅拌轴 的热处理问题,并且运用在生产加工,现已经取得良好加工效果。 关键词:搅拌轴;热处理;变形控制;加工 在生产加工过程中使用的长轴是指工件长度和直径的比值在20-25范围之上的轴类零部件,我们称之为细长轴。并且在切削力,重力以及顶紧力三个方向力的作用下,横放置的细长轴会出现弯曲现象。所以做好细长轴的精加工问题,在精确度方面打好坚实的基础,对于控制工艺加工中细长轴的受热变形有很大的帮助。反应罐的搅拌轴就是同样的原理,本文根据实际经验,工艺生产着手,对搅拌轴的热处理其弯曲变形的对应措施进行简要的分析。 1 控制在搅拌轴变形的措施 1.1 搅拌轴的工序尺寸的控制,以及余量的合理应用 搅拌轴的材质一般是2CR13或者是3CR13,由于搅拌轴作为反应罐的主要配件,机械运转对于其要求比较高,因此锻钢作为普遍选择的材料,正确合理的选择毛坯料会在很大程度上减少工艺中的粗加工的工作量。生产中的工序加工的余量是指在某一表面上的工序操作对金属所进行切割的金属层的厚度。工序加工的余量是前道工序和后道工序的差额数,前道工序的尺寸如果偏大,就会引起后道工序的余量超出,切削力也就会增大,此时的工件就会产生弯曲;但是前道工序的尺寸过小,就会引起后道工序就会有生产缺陷和误差。对此,各个工序的日常监管工作显得尤为重要,对工序的尺寸监督要谨慎严格,避免细长轴的弯曲。 1.2 搅拌轴的传统工艺和热处理 搅拌轴的硬度应该控制在850之内,渗透度的深度应该大于0.50mm,其脆性级别指数应该在1-2级范围内,这是搅拌轴在热处理的氮化工艺要求,并且格外规定搅拌轴的全长的变形量应该控制在0.05mm范围内。 我国在搅拌轴的初期应用上,按照传统的加工制造方式和流程有着独自的工艺线路以及热处理的方法。工艺线路是:锻坯,退火,调质,粗车,稳定回火,精车等直至精磨后成为成品工艺产品。传统的热处理采用的二段氮化的工艺方法,氮化后按照标准进行工艺检验,有以下的检验结果: 第一,维式的表面硬度为HV150g-945,离表面的距离是0.05mm,硬度是HV150g-910,离表面相距0.60mm处的硬度为HV150g-348。

设备焊接与热处理方案

设备焊接与热处理方案 目录一、概述二、编制依据三、施工程序四、施工方法、技术措施、施工准备分段设备组对检验焊接坡口制备设备组对要求设备组对焊接焊接检验焊缝热处理加固焊缝热处理五、工程质量目标及质保措施、质量控制点六、劳动力需用计划及技术能要求七、主要机具、计量工具一览表八、雨季、暑季施工技术措施九、职业安全卫生与环境管理十、文明施工措施设备组对焊接与热处理方案设备组对焊接与热处理方案 1

一、概述中国石化股份公司安庆分公司化肥原料结构调整及炼油化工资源优化工程,按照大件设备吊装组对方案分段数据统计如下表所示:设备位号设备名称第一段C2201 H2S吸收塔第二段第三段第一段C2202 CO2吸收塔第二段第三段第一段C2204 再吸收塔第二段第三段第一段C2205 热再吸收塔第二段第三段根据设计图纸要求现场组对焊缝焊后需进行消除应力热处理。二、编制依据《石油化工钢制塔、容器现场组焊施工工艺标准》SH3524-1999 《钢制压力容器》GB150-1998 《钢制塔式容器》JB4710-92 《钢制压力容器焊接工艺评定》

JB4708-2000 《钢制压力容器焊接工艺规程》JB/T4709-2000 设备组对焊接与热处理方案 2 公称直径φ3400 φ3400 φ3400 φ4000 φ4000 φ4000 φ3900 φ3900 φ3900/φ2600 φ3700 φ3700 φ3700 壁厚δ=48 δ=48 δ=48 δ=55 δ=55 δ=55 长度材质控制重量90000 90000 90000 165000 150000 155000 90000 70000 65000 65000 55000 65000 15400 09MnNiDR 15400 09MnNiDR 16700 09MnNiDR 25781 09MnNiDR 18831 09MnNiDR 21628 09MnNiDR δ=24/20 25010 09MnNiDR δ=20/16 20513 09MnNiDR δ=16/12 29658 09MnNiDR δ=16 δ=16 18550 17000 20R 20R 20R

热处理设备的使用与维护保养

1.目的: 使设备有效性的能力维持在最佳状态,从而达到设备寿命周期最大经济化。2.范围: 包括公司所有直接或间接用于热处理的设备。 3.职责: 3.1车间生产人员负责设备的日常点检、运行维护保养。 3.2机电人员负责设备的维护保养的指导、定期检查、大/中修等工作。 3.3热处理技术员负责设备的定期检查.和校验。 3.4实验员负责产品硬度的校验,对实验数据进行记录,并出具产品实验报告。 4.流程:无 5.作业内容: 5.1设备操作 a.开机前,必须熟悉热处理炉传动系统和结构,各开关的功用。 b.升温前首先由机电工对电器.热电偶进行检查,确认正常后,操作工对照《设备日常点检卡》中规定的项目(包括各项报警项目)进行点检,正常后进行操作。c.先开淬火槽循环和水冷却,然后按照升温工艺进行升温。 d.淬火炉温度升到300℃时开启网带传动。 e.当淬火炉升温到600℃,开启回火炉进行升温;当回火炉温度升到设定温度后才开启网带传动(先开网带传送,然后拧涨紧螺杆)。 f. 温度设定:通过温度仪表的上下按键对温度设定值进行调节。 g. 网带速度设定:通过变频器的旋转钮左右旋转对网速进行调节。 5.2 设备运行 a.设备运行过程中操作工应每30分钟巡视一次设备,若发现异常应当即通知机电工进行排异。 b. 设备运行过程中遇设备故障或其它紧急情况,请按照《热处理通用规定》执行。 c. 淬火槽温度接近70℃时开启油冷却对油进行降温,油温接近50℃时关闭油冷却。 5.3 设备停止 a.炉内产品走完后关闭加热电源,(淬火加热炉的网带传动.淬火槽循环.回火炉风扇.水冷却必须开,其它可关。回火炉开始降温后必须停网带,并把涨紧螺杆松开,防止网带拉长变形)。 b. 停炉后必须继续通入甲醇,等淬火炉炉温低于700℃后方可关闭甲醇。 c. 淬火加热炉温低于300℃后才能停网带传动,低于200℃后关闭淬火槽循环泵。回火炉温度低于200℃后可停风扇。 d. 炉温冷却后关闭冷却水。 5.4 日常维护保养

管道焊后热处理方案

管道焊后热处理方案

陕西陕化煤化工节能减排技改项目管道焊缝热处理方案 施工单位:陕西化建 编制人: 审核人: 批准人: 陕西化建陕西陕化煤化工有限公司节能减排技改项目项目经理部 2011-05-25

目录 1.适用范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.编制目的.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3.编制依据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 4.工程概况。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 5.责任和义务。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 6.施工准备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 7.热处理施工流程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 8. 质量保证措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 9. 安全注意事项。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 10.劳动力安排。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 11主要施工措施用料一览表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 12主要施工机械设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10

金属材料热处理变形原因及防止变形的技术措施

金属材料热处理变形原因及防止变形的技术措施 摘要:在金属加工制造行业中,对热处理技术进行应用,能够从根本上实现对金属物理性质、化学性质的提升,满足了当前各项工业生产、制造事宜。在调查中发现,当前金属材料的热处理工作,主要山金属加热、保温和冷却等儿项工作流程所构成,但山于金属热处理工艺对于整体的工作环境、技术应用有着较高标准的要求,所以在实际操作的过程中,材料时常会发生变形的问题,这就需要相关工作人员在传统金属加工制造的基础上,实现热处理工艺技术的高效化应用,提升我国金属材料加工制造的整体质量与水平,进而推动社会的发展。 关键词:金属材料;热处理变形原因;防止变形 对于金属工件而言,基本的变形问题主要集中在尺寸变形以及形状变形两方面,但是,无论是哪种变形情况,都和热处理过程导致的工件内部应力息息相关。结合内应力的相关因素对问题因素进行分析,从而制定具有针对性的监督和管控措施,就能从根本上减少金属材料热处理变形和开裂导致的工件质量缺失性问题。 1金属材料性能分析 在当前的社会生产生活中,金属材料的应用范圉十分的广泛。曲于金属材料具有韧性强、塑性好以及高强度的特点,因此其在诸多行业中均有所应用。当前常用的金属材料主要包括两种:即多孔金属材料以及纳米金属材料。纳米金属材料:一般情况下,只有物质的尺寸达到了纳米的级别,那么该物质的物理性质和化学性质均会发生改变。在分析与研究金属材料性能的过程中,主要分析金属材料的如下两种性能:其一,硬度。一般情况下,金属材料的硬度主要指的是金属材料的抗击能力。其二,耐久性。耐久性能和腐蚀性是金属材料需要着重考虑的一对因素。在应用金属材料的过程中不可避免的会受到各种物质的腐蚀,山此就会导致金属材料出现缝隙等问题。 2金属材料热处理变形的影响因素 在对金属材料热处理变形的影响因素进行探究时,工作人员需要对金属材料热处理过程中各项工艺技术特点,进行全面化的掌握,并在此基础上,釆取一些具有针对性的改善措施,进而才能实现对金属材料变形的有效控制,也为金属材料热处理过程中变形控制工作的开展,起到了一定的促进作用。在对金属材料进行热处理的过程中,山于材料自身的密度构成、结构特点,以及在外界因素的影响下,材料本身可能会出现不等时性、冷热分布不均匀的问题。在金属材料受热的过程中,温度会发生较为明显的变化,这就会使金属材料内部结构的受力情况发生改变,金属材料变形的儿率增大,而这种山于内部应力分布所导致的变形,被称之为是内应力塑性变形。这种变形的特征性较为明显,会表现岀一定的方向性,且发生的频率较高,每一次对金属材料进行热加工,都会对其内部应力结构造成改变,进行热处理的频率越高,内部应力的变化情况越明显。在一般情况下, 金属材料的内应力一般被分成热应力和组织应力变形着两类,在相应的温度条件下,对金属材料展开加热、冷却操作后,可以获得纯热应力变形,组织应力变形和金属材料自身的性能、形状,以及加热冷却方式有着紧密的关联。从实际的操作流程中可以了解到,要想对金属材料的使用性能进行高效化的提升,整个热处理工序将会包含较多的工艺内容,并且在操作过程中,需要根据金属材料的种类、操作规范展开适当的调整,收集各项参数内容。但是在实际执行过程中,山于我国在温度控制、监测精度方面具备局限性,所以温度监测精度难以得到有效的把控,一旦在热处理过程中对温度的控制未能合理实现,那么就会导致比容变形的问题发生,增加金属材料变形儿率。 3金属材料热处理变形控制时需要遵循的原则

减小和控制热处理变形的有效措施(1)

热处理变形产生的原因及控制方法 学院:化学化工学院班级:09材料化学姓名:张怡群学号:090908050 摘要:热处理变形是热处理过程中的主要缺陷之一,对于一些精密零件和工具、模具,常常会因为热处理变形超差而报废。为此,本文对热处理变形产生的原因进行了阐述,并总结了减少和控制热处理变形的几种方法。 关键词:热处理变形、产生原因、控制方法 前言:金属热处理是将金属工件在适当的温度下通过加热、保温和冷却等过程,使金属工件内部组织结构发生改变,从而改善材料力学、物理、化学性能的工艺。热处理是改善金属工件性能的一种重要手段。在工件制造中选取合适的材料后,为了达到工艺要求而经常采用热处理工艺,但是热处理除了具有积极作用外,在处理过程中也不可避免地会产生形变。在实际生产中,热处理产生的变形,对后续工序的影响是至关重要的,有些贵重材料和一些机器中的重要零部件,因变形过大而导致报废。钢件在热处理过程中由于钢中组织转变时比容变化所造成的体积膨胀,以及热处理所引起的塑性变形,使钢件体积及形状发生不同程度改变。变形是热处理较难解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。 正文:1热处理变形的原因在生产实际中,热处理变形的表现形式多种多样,有体积和尺寸的增大和收缩变形,也有弯曲、歪扭、翘曲等变形,就其产生的根源来说, 可分为内应力造成的应力塑性变形和比容变化引起的体积变形两大类。 (1) 内应力塑性变形 热处理过程中加热冷却的不均匀和相变的不等时性, 都会产生内应力, 在一定塑性条件的配合下, 就会产生内应力塑性变形。在加热和冷却过程中, 零件的内外层加热和冷却速度不同造成各处温度不一致,致使热胀冷缩的程度不同, 这样产生的应力变形叫热应力塑性变形。在加热和冷却过程中, 零件的内部组织转变而发生的时间不同, 这样产生的应力变形叫组织应力变形塑性变形。 (2) 比容变形在热处理过程中, 各种相结构的组织比容不同,在相变时发生的体积和尺寸变化为比容变形。比容变形一般只与奥氏体中碳和金元素的含量、游离相碳化物、铁素体的多少、淬火前后组织比容变化差和残余奥氏体的多少和钢的

常用变形铝合金退火热处理工艺规范标准

常用变形铝合金退火热处理工艺规 1 主题容与适用围 本规规定了公司变形铝合金零件退火热处理的设备、种类、准备工作、工艺控制、技术要求、质量检验、技术安全。 2 引用文件 GJB1694变形铝合金热处理规 YST 591-2006变形铝及铝合金热处理规 《热处理手册》91版 3 概念、种类 3.1 概念:将变形铝合金材料放在一定的介质加热、保温、冷却,通过改变材料表面或部晶相组织结构,来改变其性能的一种金属热加工工艺。 3.2 种类 车间铝合金零件热处理种类:去应力退火、不完全退火、完全退火、时效处理。 4 准备工作 4.1 检查设备、仪表是否正常,接地是否良好,并应事先将炉膛清理干净; 4.2 抽检零件的加工余量,其数值应大于允许的变形量; 4.3工艺文件及工装夹具齐全,选择好合适的工夹具,并考虑好装炉、出炉的方法; 4.4 核对材料与图样是否相符,了解零件的技术要求和工艺规定; 4.5在零件的尖角、锐边、孔眼等易开裂的部位,应采用防护措施,如包扎铁皮、石棉绳、堵塞螺钉等; 5 一般要求 5.1 人员: 热处理操作工及相关检验人员必须经过专业知识考核和操作培训,成绩合格后持证上岗5.2 设备 5.2.1 设备应按标准规要求进行检查和鉴定,并挂有合格标记,各类加热炉的指示记录的仪表刻度应能正确的反映出温度波动围; 5.2.2 热电温度测定仪表的读数总偏差不应超过如下指标: 当给定温度t≤400℃时,温度总偏差为±5℃; 当给定温度t>400℃时,温度总偏差为±(t/10)℃。 5.2.3 加热炉的热电偶和仪表选配、温度测量、检测周期及炉温均匀性均应符合QJ 1428的Ⅲ类及Ⅲ类以上炉的规定。 5.3 装炉 5.3.1 装炉量一般以装炉零件体积计算,每炉零件装炉的有效体积不超过炉体积一半为准。 5.3.2 零件装炉时,必须轻拿轻放,防止零件划伤及变形。 5.3.3堆放要求: a.厚板零件允许结合零件结构特点,允许装箱入炉进行热处理,叠放时允许点及较少的线接触,避免面接触,叠放间隙不小于10mm. b.厚度t≤3mm的板料以夹板装夹,叠放厚度≤25mm,零件及夹板面无污垢、凸点,零件间、零件与夹板间应垫一层雪花纸,以防止零件夹伤。 5.3.4 装炉后需检查零件与电热原件,确定无接触时,方可送电升温,在操作过程中,不得随意打开炉门; 5.3.5 加热速度:变形铝合金退火的加热速度约13℃~15℃/秒,例如加热到410℃设定时间为0.5小时。

设备焊接与热处理方案

因现在山西长治,身边无图纸及有关资料,本方案仅供参考,请修改完善,多谢。 目录 一、概述 二、编制依据 三、施工程序 四、施工方法、技术措施、 4.1.施工准备 4.2.分段设备组对检验 4.3. 焊接坡口制备 4.4设备组对要求 4.5.设备组对焊接 4.6.焊接检验 4.7.焊缝热处理加固 4.8.焊缝热处理 五、工程质量目标及质保措施、质量控制点 六、劳动力需用计划及技术能要求 七、主要机具、计量工具一览表 八、雨季、暑季施工技术措施 九、职业安全卫生与环境管理

十、文明施工措施 设备组对焊接与热处理方案 一、概述 1.1中国石化股份公司安庆分公司化肥原料结构调整及炼油化工资源优化工程, 按照大件设备吊装组对方案分段数据统计如下表所示:

1.2.根据设计图纸要求现场组对焊缝焊后需进行消除应力热处理。 二、编制依据 2.1《石油化工钢制塔、容器现场组焊施工工艺标准》SH3524-1999 2.2《钢制压力容器》GB150-1998 2.3《钢制塔式容器》JB4710-92 2.4《钢制压力容器焊接工艺评定》JB4708-2000 2.5《钢制压力容器焊接工艺规程》JB/T4709-2000 2.6《压力容器安全技术监察规程》 2.7《压力容器无损检测》JB4730-94 2.8设计提供的设备图纸及技术资料 三、施工程序 制作安装临时平台→按照大件设备吊装方案将分段设备在空中就位→组对卡具制作安装→对口方位调整→用经纬仪(或细钢丝)检查铅直度并调整→用组对卡具调整对口间隙及错边→组对固定后检查→点焊→正式焊接→焊缝外观检查→无损检验→750T吊车稳固热处理焊缝上段→稳固检查→焊缝热处理→焊缝硬度检测 四、施工方法、技术措施、 4.1.施工准备 4.1.1焊接工艺评定 焊接工艺评定试验在于测定焊件具有要求的使用性能。本工程中设备材质:20R 、09MnNiDR按《钢制压力容器焊接工艺评定》JB4708-2000进行评定。 4.1.2.焊工技能评定 焊工技能评定在于测定焊工具有熔敷优质焊缝金属的能力。施工单位选派具有相应合格项目的焊工,这些焊工均获得国家质量技术监督局颁发的锅炉压力容器压力管道特种设备焊工操作资格证。 4.1.3焊材的验收、保管、烘烤、发放管理 4.1.4严格按照公司有关焊接材料管理的专项规定进行焊材管理。 4.1.5焊材应符合相应标准要求,焊材质量证明书中应包括以下内容: 焊材型号、牌号、规格; (1)批号、数量及生产日期; (2)熔敷金属化学成份检验结果; (3)熔敷金属对接接头各项性能检验结果;

《热处理设备》复习题共28页文档

热处理设备复习题 第一单元综合训练题答案 一、填空题 1.常用耐火材料有(粘土砖、高铝砖、耐火混凝土制品及各种耐火纤维),它们的最高使用温度分别为 (1350℃、1500℃、600~1460℃、1100~1600℃)。 2.荷重软化开始点是指在一定压力条件下,以一定的升温速度加热,测出样品开始变形量为 0.6% 的温度。 a.0.2% b.0.6% c.1.2% 3.抗渗碳砖是Fe 2O 3含量 a 的耐火材砖。 a. <1% b.>1% c.>2% 4.常用隔热材料有(硅藻土、蛭石、矿渣棉、石棉以及珍珠岩制品),其中最低使用温度及材料是 石棉 、 500℃ 。 5.传热的基本方式有 传导 、 对流 、 辐射 ,综合传热为 同时具有两种或两种以上的单一传热 。 6.电阻丝对炉墙的传热是 b ,炉墙对车间的传热是 b ,电阻丝对炉墙对车间的传热包括了 e ,通过炉墙的传热是 a ,上述四者中传热量较大或热阻较小(可忽略不计)的是 h 、 热阻较大的是 k ;燃气对工件的传热是 b 。 a.传导 b.对流+辐射 c.辐射+传导 d.辐射 e.辐射+传导+对流 g.传导+对流 h.电阻丝对炉墙的传热 i.炉墙对车间的传热 k.通过炉墙的传热 7.影响“黑度”的因素有 b 、d 、e 、g 、f 。 a.时间 b.表面粗糙度 c.传热面积 d.温度 e.物体的材料 f.物体的形状 g.物体的颜色 h.角度系数

8.增强传热(含炉温均匀性)有 a 、s 、d 、g 、h 、k 、n 、o ,削弱传热有d 、e 、f 、i 、j 、l 、m 、p 。 a.加大温差 b.增加传热面积 c.增加风扇 d.加大气孔率 e.减小热导率 f .增加隔板 g.增加导风系统 h .箱式炉膛改圆形炉膛 i.圆形炉膛改箱式炉膛 j .炉壳外刷银粉比砖墙或一般金属外壳 k.增加黑度(如工件或炉壁表面涂覆高黑度磷化处理层或CO 2红外涂料) l.降低黑度 m.工件表面不氧化(真空、可控、保护、中性气氛加热) 比工件表面氧化 n.高速燃气烧嘴比低速燃气烧嘴 o.燃气炉比空气炉 p.空气炉比燃气炉 三、简答题 1.比较重质砖、轻质砖以及硅酸铝耐火纤维的主要性能,说明它们在热处理炉中的应用及应注意的问题。试选择电阻丝搁板所用材料,并说明选择的依据。 答:重质砖使用温度高于同材质的轻质砖,硅酸铝耐火纤维兼有耐火及保温性能,新型耐火纤维的使用温度高于重质砖。重质砖多在炉底支撑砖,轻质砖多用于炉侧墙或炉顶,硅酸铝耐火纤维使用温度不要过高以防损坏。电阻丝搁板通常选择高铝砖或刚玉材料,并说明选择的依据。 2.比较三种基本传热方式的异同。 答:三种传热均与温差、传热面积、传热系数、传热时间成正比。不同的材料的传热系数差别很大,对流传热还与流体的流速、温度、黏度有关,辐射传热还与材料的黑度、角度系数、表面粗糙程度有关。 3.写出单层稳定态传导传热计算公式。 答:φ = S t t λδ ) (21- 或 q = λδ)(21t t - 4.有一双层炉墙,第一层是重质耐火粘土砖厚113mm ,第二层为硅藻土砖厚

合金钢管道焊接热处理要点

合金钢管道焊接热处理要点

————————————————————————————————作者: ————————————————————————————————日期: ?

焊接作业指导书 (含焊接热处理工艺) 合金钢管道(15CrMoG) 编制人: 审核人: 批准人: 建设机械分公司技术质量部

目录 一、适用范围?错误!未定义书签。 1.1总则?错误!未定义书签。 二、编制依据?错误!未定义书签。 三、工程一览?错误!未定义书签。 四、对焊工及热处理工的要求?错误!未定义书签。 五、焊接材料的选择........................................................................................ 错误!未定义书签。 六、焊接设备、材料及焊接环境的要求........................................................ 错误!未定义书签。 七、主要施工机具?错误!未定义书签。 八、焊接施工.................................................................................................... 错误!未定义书签。 8.1材料验收 ................................................................................. 错误!未定义书签。 8.2焊接工艺及流程 ...................................................................... 错误!未定义书签。 九、焊接热处理................................................................................................ 错误!未定义书签。 9.1作业项目概述 ............................................................................. 错误!未定义书签。 9.2作业准备 ..................................................................................... 错误!未定义书签。 9.3作业条件?错误!未定义书签。 9.4热处理作业程序?错误!未定义书签。 9.5 质量检查与技术文件?错误!未定义书签。 十、质量检验?错误!未定义书签。 十一、安全技术措施........................................................................................ 错误!未定义书签。

影响淬火热处理变形的原因

影响淬火热处理变形的原因 淬火是将钢件加热到临界温度以上,保温适当的时间,然后以大于临界冷却速度冷却,获得马氏体或贝氏体组织的热处理工艺,它是强化钢材的最重要的热处理方法。大量重要的机器零件及各类刀具、刃具、量具等都离不开淬火处理。需要淬火的工件,经过加热后,便放到一定的淬火介质中快速冷却。但冷却过快,工件的体积收缩及组织转变都很剧烈,从而不可避免地引起很大的内应力,容易造成工件变形及开裂。由于淬火变形影响因素非常复杂,导致变形控制十分棘手。而采用校直办法纠正变形或通过加大磨削加工余量,都会增加成本,因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。 零件热处理变形原因分析 1 热应力引起的变形 钢件在加热和冷却过程中,将发生热胀冷缩的体积变化以及因组织转变时新旧相比容差而产生的体积改变。零件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。当应力超过屈服强度时,就会产生塑性变形,如果造成应力集中,并超过了材料的强度极限,就会使零件淬裂。导热性很差的高碳合金钢,如合金模具钢Cr12MoV、高速钢W18Cr4V之类的工具钢,淬火加热温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形,而且会导致零件开裂而报废。此外,铸钢件和锻件毛坯,如果表层存在着一层脱碳层,由于表层和心部导热性能不同,在淬火加热较快时,也会产生热应力而引起变形。冷却时由于温差大,热应力是造成零件变形的主要原因。 2 组织应力引起的变形 体积的变化往往与加热和冷却有关,因为它和钢的膨胀系数相关。比容的变化导致零件尺寸和形状的变化。组织应力的产生起源于体积的收缩和膨胀,没有体积的膨胀,就没有组织转变的不等时性,也就没有组织应力引起的变形,导致热处理变形的内应力是热应力和组织应力共同作用形成的复合应力,热应力和组织应力综合作用的结果是不定的,可能因冷却条件及淬火温度的不同而产生不同情况,淬火应力是由急冷急热应力及由组织转变不同时所引起的应力综合构成的。 影响淬火热处理变形的主要因素 在实际生产中,影响淬火热处理变形的因素有很多,其中主要包括钢的原始组织、含碳量、零件尺寸和形状、淬火介质的选择、淬火工艺、钢的淬透性等。 1 钢中的含碳量对零件淬火热处理变形的影响 形成显微裂纹敏感度随马氏体中碳含量增高增大。当钢中碳含量大于1.4%时,形成显微裂纹敏感度反而减小。因为钢中碳含量大于 1.4%时马氏体的形态改变了,片变得厚而短,马氏体片之间的夹角变小,撞击机会和应力都有所减小。

热处理变形

第3章热处理变形 工件的热处理变形,主要是由于热处理应力造成的。工件的结构形状、原材料质量、热处理前的加工状态、工件的自重以及工件在炉中加热和冷却时的支承或夹持不当等因素也能引起变形。 凡是牵涉到加热和冷却的热处理过程,都可能造成工件的变形。但是,淬火变形对热处理质量的影响最大。因为淬火过程中,组织的比体积变化大、加热温度高,冷却速度快,故淬火变形最为严重。此外,淬火工艺通常安排在工件生产流程的后期,严重的淬火变形往往很难通过最后的精加工加以修正,结果使工件因形状尺寸超差而报废,造成先前各道工序的人力物力的损失;即使对淬火变形的工件能够进行校正和机加工修整,也会因而增加生产成本。工件热处理后不稳定组织和不稳定的应力状态,在常温和零下温度,长时间放置或使用过程中,逐渐发生转变而趋于稳定,也会伴随引起工件的变形,这种变形称为时效变形。时效变形虽然不大,但是对于精密零件和标准量具也是不允许的,实际生产中必须予以防止。工件的热处理变形是热处理常见的主要缺陷之一。如何减小或控制热处理变形是热处理工作者的一项重要任务。 工件的热处理变形分为尺寸变化(体积变形)和形状畸变两种形式。造成这两种形式的变形原因有所不同,尺寸变形归因于相变前后比体积差引起的工件的体积改变,形状畸变则是由于热处理过程中,在各种复杂应力综合作用下,不均匀的塑性变形造成的。这两种形式的变形很少单独存在,但是对某一具体工件和热处理工艺,可能以一种形式的变形为主。 1 工件热处理的尺寸变化 不同的组织具有不同的体积。常见组织的比体积如表3-1所示。 表3-1钢中各组织的比体积 组织wc(%) 室温下的比体积/(cm3。g-1)

现场管道焊缝热处理施工工艺标准

现场管道焊缝热处理施工工艺标准 QB-CNCEC J22303-2006 1 适用范围 本施工工艺标准仅适用于碳素钢、合金钢金属管道焊缝现场热处理作业。 2 施工准备 2.1 技术准备 2.1.1施工技术资料 设计资料(管道施工图、材料表、设计说明及技术规定等)。 2.1.2 现行施工标准规范 GB50235《工业金属管道工程施工及验收规范》 GB50236《现场设备、工业管道的焊接工程施工及验收规范》 HG20225《化工金属管道施工及验收规范》 SY0401《输油输气管道线路工程施工及验收规范》 SY0402《石油天然气工艺管道工程施工及验收规范》 SH3501《石油化工剧毒可燃介质管道工程施工及验收规范》 SH/T3517《石油化工钢制管道工程施工工艺标准》 DL5007《电力建设施工及验收技术规范》(火力发电厂焊接篇) JGJ46《施工现场临时用电安全技术规范》 2.1.3 热处理施工方案 根据管道施工图、设计说明及不同材质的管道焊缝热处理要求,以及工期、工程量等现场实际状况,编制管道焊缝现场热处理施工方案。热处理施工方案应明确:热处理工艺流程、施工方法、劳动力组织、施工机具、材料、质量目标、质量通病预防、职业健康安全环保技术措施。 2.2 作业人员 2.3 材料的验收与保管 2.3.1管道焊缝现场热处理主要材料见下表:

2.3.2材料的验收及保管 2.3.2.1 一般材料的验收及保管 ⑴脚手架钢管及扣件应检查确认符合质量要求并有序堆放; ⑵保温用铁丝、防雨用的移动棚(罩)妥善保管存放。 2.3.2.2 特殊材料的验收及保管。 ⑴用选定的保温材料、铁丝网、石棉布、细铁丝缝制保温毡;保温毡应保持干燥,存放在室内,或室外垫高的排架上,并应覆盖不得受潮。 ⑵电加热器、热电偶端点焊接良好、接线柱螺栓完好,补偿导线无脱皮并整齐盘绕,均存放在室内。 2.4主要施工机具 2.4.1 主要机械设备 变压器(或交流焊机)、温控柜、履带式电加热器、绳式电加热器、指型电加热器等。 2.4.2主要工具 钢丝钳、活动扳手、剪子、锯弓、手锤、扁錾、台虎钳、大锤、剥线钳、螺丝起、万能表等。 2.5 计量器具 温度自动记录仪、数字显示式表面测温仪、数字显示式硬度仪。 2.6 作业条件 2.6.1所有需要热处理的管道焊缝全部施焊完毕,并经检验合格。 2.6.2编制热处理方案已经批准并已进行技术交底。 2.6.3 现场电源、环境条件等均符合要求,并已采取防风、防雨、防火、防停电等措施;寒冷雨雪天气,室外管道焊缝热处理应搭设可靠的防护棚。 2.6.4 现场应准备充足的保温材料、细铁丝及自制的保温毡。 2.6.5 管道端口封闭,焊缝附近孔板、温度计、压力表等仪表已拆除,拆除口已保护。 2.6.6 确保热处理设备、仪表性能良好,电加热器、热电偶、测温点布置合理,热电偶、补偿导线与记录仪相配,现场接电、接线安全可靠。 2.6.7 所有热电偶、补偿导线、长图记录仪等仪器均已调试。 2.6.8外电源网压相对稳定。 2.6.9热处理前,热处理责任人员及质量检查人员应对管道焊接及检验记录、热处理加热区布置、测温点布置及热电偶安装可靠性、热处理设备、保温措施等进行全面检查并合格。 3 施工工艺 3.1 工艺流程

相关文档
相关文档 最新文档